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Outline

* The big picture

« Extracting physics knowledge with machine learning

» Learning frameworks and its ingredients

« The key elements

* Data sets
* Hypothesis sets

* Optimisation

« Example: Neural networks

» Building functions with perceptrons

» Universal approximation theorem
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Material

 book: Understanding deep learning from Simon Price

« Deeplearning.org book from lan Goodfellow
* Pictures from Lukas Heinrich

« Kyle Cranmer, ML Review

ML is NOT a spectator sport — important material in exercises from Peter Steinbach
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https://udlbook.github.io/udlbook/

Why Is machine learning
relevant for particle physics?



Fundamentals of particle physics analysis

measurement
. . s TR = (L i
Quantum mechanical nature of physics process Sl LT
-> Probabilistic distributed events p(x|0) e L
Rely on a statistical model p to extract parameters 6 from i W}M’ |

data x:

We have high dimensional data

We have large data sets Few parameters

100 Mio electronic channels
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Curse of dimensionality

1 dim: Sample N events to describe distribution
2 dim: sample N2 events to describe distribution

d dim: sample O(N9) events to describe distribution

-> Needs impractical computational resources
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Fundamentals of particle physics analysis

. s TR = (L i
Quantum mechanical nature of physics process R e ‘\',w
-> Probabilistic distributed events p(x|0) N .
Rely on a statistical model p to extract parameters 6 from o W}M’ N
data x:
e

We have high dimensional data

We have large data sets Few parameters
100 Mio electronic channels

A————————————

simulation
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The role of simulators

simulators capture the relevant physics on a hierarchy of scales

Matrix Element
Observables Detector L DIQED Final State Thecory
(reconstruction) Response Showering — Parameters
PR 2 6
p(z|0) = p(zs|zp) p(2p|0)
PowHeg

Data {xi}i-,N N samples independently and identically distributed from p(x| 6) with simulator settings ©
= Approximate p(x|8) = Jp(x, z|6) dz

=» fixed value of z specifies everything about the simulated event: z = ground truth “label”

=» Reconstruction algorithms estimate components from z

=>» data set {x;, z;}V._; to study reco algorithms
DESY.
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Data representation

Goal: bring the data into a form that is easier to understand and interpret

Hits Energy Cells E Clusters & Tracks E Clusters Particles

v
ATLAS simulation 2010 > AN R RS R AN LA IS L R
- . = T =y | ATLAS —4— Data =8 ToV
£ | Pythia6425 [ E [MeV] 9 1000 >
H L dijetevent * ~ 10° §-2.35F_- CMS % [ JLdt 202" E'::mm
o P ER - F Simulation KO, o $M0 fossmest )
N E 005k . $ s -24 oot E 800~ [ e
£" L & F . E4 |_|:J -,ocbmm-m(n-mmnm) 1
P — . -2.451 r S sue Syst tncorminty |
P S 4 Y RE10 : 600
F L -3 j : 2.5/ i
= e i E A LR B e A S T
e e : 5 -2.55 LE: S .
’ :: 10 :1_ 1
. 3 2.6 H [
£ ‘ 200,
-0.0 % -2.65[- 3¥ﬁ g
. F X E
"t -2.7:” =] =2 5 15
- £l 1 1 1 1 | 1 i1 1 L]
-0.05 0.05 3l \
[tan 8] x cos 6 0.65 0.7 0.75 0.8 .85 09 095 1 1.05 E 1 :
n 505945760 180 200 P20 240 260 280 300
o

Tracks Energy Clusters Particles Jets (~ parton) Resonances

DESY.

Page 10



Reducing dimensionality

Transition »
Radlation i,
Tracker Gl %
3 - SR
s f
°
R 2

i / S
dicon i
etexcton

&
“Track reconstruction Particle identification

100 Mio electronic channels

L e
j/—- o rw

+iPPY +h.e

=
[tan 6] xsin ¢
3

0.05

-0.05

energy reconstruction

+ ¥ di ‘H,fb’* h.c.
+ Bl ~ V(p)
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Summary

) i ? oV B N - Y .
Sy T, : g [ BRI Ine Ho2ZZ" -4l
s /.u/ ngh Ievel £ ast- ;&:;i:’;vz”l’ 15=7TeV JLataasm’
t & E' B bacground Zopes, € 1s=8TeV JLdt=207M
. conceptis 30F- 5t Systune
4 . @7 L VN

+ Y di ‘ﬂﬁb’* L.c.

e b?‘?!)(z - V(¢) 0.‘ 100 Ly m, 1G]
reconstruct high level concepts
generate low-level, high-dim data from low-level, high-dim data
from high-level concepts

EXPERIMENT

OATLAS & = V

Low level data
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ML excels at both!

street style photo of a woman selling pho This is a picture of Barack Obama.
at a Vietnamese street market, His foot is positioned on the right side of the scale.
sunset, shot on fujifilm High-Level The scale will show a higher weight.
Concept ?

>

reconstruct high level concepts
from low-level, high-dim data

<«

Low-Level
Dafa
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What is machine learning?
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What is machine learning?

statistics

@ Mat Velloso am

Difference between machine learning and Al:

If it is written in Python, it's probably machine learning

If it is written in PowerPoint, it's probably Al

o

- i
Artificial intelligence

>

Machine Learning

35
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What is machine learning?

Al: systems that simulate intelligent behavior e.g. via rules,
reasoning, symbol manipulation

ML.: subset of Al that learns to make decisions or predictions
Deep by fitting mathematical models to observed data.

Learning

Machine
Learning
Artificial
Intelligence

DL: type of machine learning model, that aims at complex
pipelines, work on low-level data (e.g. pixels)

DESY. Page 16



ML examples: make decisions

Classification

Variable length
structured
input

Fixed length
structured
input

Fixed length
structured
input

Variable
length
unstructured
input

(4vectors of

nAartialac)

“The steak was terrible,
the salad was rotten, and
the soup tasted like socks”

(—

8672
8194
9804
8634
8672

125
12054
1253
6178
24

4447

124
140
156
128
142
157

125
12054
1253
6178
24
4447

>

Deep learning

model

®

Deep learning

model

@.

Deep learning

model

ﬁ_.

Deep learning

model

|:|)_Uh

0.89

Negative

Electronica

Bicycle

Binary class

multi class

multi class

multi class
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ML examples: making predictions

Fixed length
unstructured
input

variable
length
structured
input

variable
length
unstructured
input
(4vectors of

particles)
DESY.

Real world input

Model input

6000 square feet,
4 bedrooms,
previously sold for
$235K in 2005,

1 parking spot.

Model

Model output

Regression

Real world output

6000

—> | 235
2005

Deep learning
model

— [340}—>

Predicted price
is $340k

Deep learning
model

-12.9
56.4

Ny,

Freezing point
is -12.9°C
Boiling point
is 56.4°C

6000

235
2005

Deep learning
model

> [:;40}-»

Predicted
Higgs pT

single real
value output

multiple real
value outputs

single real
value output

*wo0200q|pn//:dny wouy pandepy



ML example: generate new data

DESY.

distribution

I ——

distribution

—_—

Latent
variables

-0.5
0.1
1.2

-0.6

Latent
variables

-0.5
0.1
1.2

-0.6

Model

Deep learning
model

Model output
[110]

109
110
108
109

Generation

Real world output

Model

Deep learning
model

v

Model output

110
110
110
109

v

Real world output

—l 10- z [layers]
109 0 10 20 30 40
110 Ou- =m -':
4 - .
109 12, - . r
> 1110 J I T
110 8-.=I_.‘_l|:h_
1](1 125 ! o or
109 4
; 8 R |
121, . = m

Pion in hadronic calorimeter
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DESY.

X —»

Deep learning
model

f(x)
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What does the machine learn?
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Open the box . 8

or fitting mathematical model to data

output input
S /

y = 1(X)

DESY. Page 22



Open the box

or fitting mathematical model to data

DESY.

output

.

input family of functions

yﬂx,{

Deep learnin

model

Page 23



Open the box . 8

or fitting mathematical model to data

input family of functions
output

.

v = 1(X, ¢)

Learning = search through a family of functions to let the data guide you to find the best one

Easiest if you have a labeled data set where the input-output relation is known to train and validate

DESY. Page 24



The data

Your connection to the algorithm is the data

« The most important thing in the ML lifecycle

Need to know:

* Where does the existing (labeled) data
come from?

 Where will the new data come from?

[src]
DESY. Page 25


https://www.industry-analytics.de/wp-content/uploads/2017/10/Data-is-the-new-oil.jpg

The dominant paradigm: statistical learning

We assume the data is drawn i.i.d.

independent TI T distributed

data = {X4, X,, ..., X\} X ~ p(X)

We assume all existing data and all future data come
from the same distribution.

e Danger: “Out-of-Distribution” samples / Distribution Shift

DESY. Page 26



Example

2.0 Let’s try to describe them with a linear function, i.s.
e my set of hypothesis to describe the data is

e © O ©
° O

? ° y = f[ZE, ¢]

-]

% -0 ® © = ¢+ P17

O o

0.0 - - - : - : - - -
0.0 1.0 2.(

Input, x

Labeled data set

DESY. Page 27



Open the black box
or what’s this “mapping”? - -

Deep learning
model

200 °
oo ©
@
o %0 o
o ® @9
5[
. i . :
Age of child _’[10]_’ c O ® | _’[139]_’ Hglght of child
is 10 years £100® : is 139 cms
I
.%0- ) i
T|e |
|® i
1
1
] I
I
0 -
0 10 20
Age in years
y = f.[x]

Learning = finding the optimal function from a set of functions to describe known “labeled” data
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The Loss

* Need to have a performance measure to quantify what "best” means:

Loss, L = 7.07
o oo I ©
e _. S
@) ¥
e . 1
o IBE
® e\
L 017
— Do — UX
20 10 © 20
Input,

DESY.

Li¢]

M-

M-

1

1

“loss”,

(flzi, @] —

” (11

yi)’

(Po + P12 —

risk”,

2
Yi)

cost” function
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2.0

Loss, L = 7.07

1.0

Loss, L = 10.28

DESY.

Loss, L = 0.20

0 20
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The Loss

Loss, L[¢

0.0 1.0 2.0
Intercept, ¢q

DESY. Page 31



Learning algorithms

We usually have no idea which of the functions is the best, we need to have a learning algorithm that leads us
there

Various possibilities:

« Exhaustive search (discrete functions)

« Closed form solutions (rare) ¢ = argmin[L[
¢

ASa

]

« lterative optimization (mostly used)

™M~

= argmin
A

1

= argmin
@

(o + P13 — yz)2]

| =1
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Learning algorithm

0.0 1.0 2.0 o0 10 20
Intercept, ¢q Input, =

SYThis case: exact solutior ¢ Phi = (XTX)1XT y with Xix = x (i-th data point, k-th power)

DE Page 33



Learning framework
Putting it all together

DESY.

Collect and prepare data to be consumed by the
machine

Define the task (objective)

Choose search space of possible functions (algorithms)
aka “hypothesis set”

Define what “good” means, i.e. a performance measure
Provide an optimising algorithm to update functions, i.e.
change hypothesis

Decide when to stop and to define the final hypothesis
(function)

Hypothesis
Set

. . Learnin

‘

Final
Hypothsis
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Supervised learning

DESY.

mapping from input data to an output prediction

Labeled data

Function/ML algorithm

New/unlabeled data

Inference/prediction

e
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Neural nets
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More complex family of functions

Build complexity by composing very simple building blocks

y = flz,¢]
= ¢o + h1a[610 + 0117] + P2a[020 + O212] + P3a[030 + 031 7] 10 parameters ¢, 6;,
\/ activation function a
Linear
functio - Example for a:
n of '
input
§oo
o
-5.0

-5.0 0.0 5.0

DESY. z dage 37



DESY.

Neural network family of functions

flz, @]

b0 + p1a[010 + O11z] + ¢d2albf2 + O21x] + P3a[030 + 031 2]

hidden layer output
with nodes

hi = a[fi0+ 0117]
ho = a[920 + 92133]
hs = alfs0+ 0317],

f(x)
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Neural network hard wired

 Mark | perceptron

Perceptron:
f(x) = 1 if w-x+b>0,
0 otherwise

W-X = iwzmz
i=1

Images of 20x20 photo cells
were trained for image
recognition: “connections” =
wires between photo cells and
neurons

“‘weights” = potentiometers
moved by electrical motors

i
!
!
d
i
e
i
i
!

-
f
!
!
¥

.
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Linear function of the input g‘-oo

Output of the
activation function

Weighted output of
the activation
function

Resulting y = f(x,9)
Piecewise linear function

Nymber of joints given by number of nodes h;

-1.0

®o+ 01 ]L] ‘f‘c“)gllg + (:');5/13

0.0

1.0 2.0
Input, x

a),, b) c)
(@)
. 010 + 0112 Oo0 + U212 030 + 0312
0.0 1.0 2.0 0.0 1.0 2.00.0 1.0 2
d e f
)5 ) )
+J
3
=)0 —
3
(@)
10 ]l] — '(1[9]0 + 91].1'} //3 a /}3“ f ()g\vl ]13 = 61[930 + 631.’1']
0.0 1.0 2000 10 2000 0 2.
g) h) i)
1.0
) \
>
800} ]
=]
@]
¢1hy P22 ¢3hs
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0
Input, = : Input, =
i,
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More variability

Different settings of parameters ¢,

“1.U =B
. o
N
o
3 0.0
<)
)
@)
-1.0 S E— _—————— _———————
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
Input, Input, Input,

DESY. Interactive figures  page 41



https://udlbook.github.io/udlfigures/

Expanding the number of nodes
A lot to gain!

1.0 - . , . . , _
5‘|1near regions P ames I 10 linear regions 29 linear regions /, "~
»”~ \\ ! > ’I' \‘ !
I !
> \ ! %\ i
N \‘ I' “ 'l
o \ ! \ J
\ / 1 !
200 \ 4 \. /
+ N ,’ b Y ,’
- \\\ / \\\ I'
O “ / \\ H
\// \ /
\ [ \ J
‘\_—II i \\-','
“IO ' ' ' T T v T T T T T T T T T Y Y T Y Y Y T T Y T Y Y
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
Input, z Input, Input, z

Neural networks with a single hidden layer are universal function approximators
This also holds for multi-dimensional inputs and outputs.

esv. olde remark: it does NOT work for linear activation function, e.g. XOR problemi. ..



Going more complex

O30 + 03121 + 03222

c)

b)  0s0 + 00121 + Ooous

010 + 01171 + 01012

0.0
Input, x4

1.0 -1.0 0.0 1.0-1.
U = do+d1hi+doho+daha

o

DESY.

J

10

0.0
Input, x;
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Beyond single layer

O
5s
8 &3
A
0 3
WY
B

.0
-@.

Not forbidden to stack neurons in a different way: go deep instead of wide

->opportunity to build up complex things step by step

DESY.
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Wide or deep?

The relationship between expressivity of
swallow networks and deep networks is an
active area of research

But empirically:
It seems that deep networks can generate
complex patterns with much fewer parameters
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Activation functions

UFA is achieved with any non-linear activation function, but at least for the output activation
we need to be careful about the task

Regression Binary Classification

ppx) € R O0(x) € [0,1]

IIIIIIIIIIIIII

No activation!

DESY.

Multi-class Classification
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How big should we go?

With increasing size you get a better chance that the actual algorithm you are looking for lives within
the family of functions

Bias: the loss L(fnin) of the
overall best function f € H

fmin = <f(X,(}5 ) >D

An argument to make the function family as big as possible

DESY. Page 47



But should we really....?

“With four parameters | can fit an elephant,
and with five | can make him wiggle his
trunk”

- John von Neumann

© ©
@ @
e >
o
C‘ o
»
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No free lunch theorem of learning

« With limited data you must learn effectively, i.e. you must restrict the “hypothesis set” of functions to perform
the task

« Only possible with “inductive bias”: constrain on the hypothesis set by adjusting the search space

DESY. Page 49



Empirical risk minimization

DESY. Page 50



The risk we want

In statistical learning we are interested in the expected performance of the algorithm on future data

With assumpumption of i.i.d. distribution of data:

Performance of the hypothesis
for a specific input

i
)L(Sa h)

L=\ p(s)L(s,h) = = (s
> e

Distribution of
possible inputs
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The risk we can get

While we don’t have p(s) we do have samples s ~ p(s)

» We can (only) estimate the loss empirically as a proxy!

_ ~ 1
L= [S p($)L(s,h) > L = ~ Z L(s;, h)

L(D,) L(D,)
L(D,) L(D5)

This difference between what we want
and what we get has tricky
consequences
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Empirical risk minimisation

Keep in mind that this is just a proxy depending on the training data set we have!

A
Best true
performance
--------- l | T L — [ESL(S)
. __________
>
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Empirical risk minimization

Keep in mind that this is just a proxy depending on the training data set we have!

Best true
performance

l el L =FEL(s)

.........
,,,,,,
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Empirical risk minimization

Keep in mind that this is just a proxy depending on the training data set we have!

Best empirical
performance of

Dataset D,

A
Best true

L ( D2) performance o\ |

DESY. Page 55



Empirical risk minimization

Keep in mind that this is just a proxy depending on the training data set we have!

Best empirical
performance of

A DatasetD,
Best true Best empirical
L ( D ) performance performam;e of
Dataset D,
S L =EL(s)

4

L (Dy)
»
¢
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Variance and bias

Best empirical
performance of

A Dataset D,
Best true Best empirical 7
L ( D2 ) performance performance of e
Dataset D, d
B / L=ELo)
/ &

[

JL, | e

htrue
true loss

h* best hypothesis/function on a given data set
Liwe(”) = Bias(L(h"))* + Var(L(h"))
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Variance

Increases with #, decreases with N

> Hypothesis
Size Complexity

e}\/
Variance is low

if you have
nowhere to go

With more data it
starts pointing in
farged™®  the same direction

RS

Dataset

O
Size )

An argument to make the hypothesis set as small as possible given the data set size
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Bias - Variance trade-off

T low variance
high bias
o

high variance
high bias

N

-~
N

bias

low variance

o
o
© O
o] o]
(e]

®] o]

o

high variance
low bias

Y

.

@
=
@
I

IOW bias /< Tolerance Limit
&

?}*

[@]

DESY.

variance
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Bias-Variance trade off

We now have two competing forces
« Make model space as big as possible: reduce bias

» Constrain the model space: reduce variance

True Loss of the
selected hypothesis

Variance

Bias

>
optimal

hypothesis size “Size” of the
Hypothesis Space

DESY.
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Big networks require big data!

If you don’t have enough of it, you simply cannot afford to train a billion parameter model!

A\/

Small Data :

Bias

>

\ more data — bigger models possible

True Loss of the

Variance
Big Data .

Bias

! >
Size of hypothesis
space
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Back-up
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Loss becomes also more complex

Starting here

LOSS

We want to get \\
to here

DESY. Page 63



Possible sources of labelled data

Huge advantage of ML in science: high-fidelity simulators

simulated cosmology simulated fluid dynamics simulated particle physics

DESY. Page 64



Generation of
structured data

Unstrictured i \ (multi) Rtegressioy

Learnin
—» -

7 1N

Reinforcement
learning

Structured Fixed/variable length (multi) Classification

learned algorithm

Supervised Unsupervised
learning learning

DESY. Page 65



