About Judith

Born in Aachen, University in Heidelberg

- Postdoc in USA (University at Chicago and MIT in Boston)
- ➢ ROOT user since 1998
- Research at DESY, one year at CERN, teaching in Berlin
 - Experiments at colliders:
- PSI (Switzerland), HERA (DESY), RHIC (USA), LHC (CERN)
- ML and top-Higgs coupling

Hobbies:

Mountaineering Swimming Running Pilates Music Reading novels

Introduction to Machine Learning

Part I

Judith Katzy Hamburg, September 2024

HELMHOLTZ

Outline

- The big picture
 - Extracting physics knowledge with machine learning
 - Learning frameworks and its ingredients
- The key elements
 - Data sets
 - Hypothesis sets
 - Optimisation
- Example: Neural networks
 - Building functions with perceptrons
 - Universal approximation theorem

Material

- book: <u>Understanding deep learning from Simon Price</u>
- Deeplearning.org book from lan Goodfellow
- Pictures from Lukas Heinrich
- Kyle Cranmer, ML Review

ML is NOT a spectator sport – important material in exercises from Peter Steinbach

Why is machine learning relevant for particle physics?

Fundamentals of particle physics analysis

<u>measurement</u>

100 Mio electronic channels

Quantum mechanical nature of physics process

-> Probabilistic distributed events $p(x|\theta)$ Rely on a statistical model p to extract parameters θ from data x:

We have high dimensional data

We have large data sets

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \overline{\psi} \overline{\psi} \psi + h.c \\ &+ \overline{\psi} \overline{\psi} \overline{\psi} \psi + h.c. \\ &+ \overline{\psi} \overline{\psi} \overline{\psi} \overline{\psi} \overline{\psi} + h.c. \\ &+ \overline{\psi} \overline{\psi} \overline{\psi} \overline{\psi} \overline{\psi} - V(\phi) \end{aligned}$

Few parameters

Curse of dimensionality

1 dim: Sample N events to describe distribution 2 dim: sample N² events to describe distribution

d dim: sample $O(N^d)$ events to describe distribution

-> Needs impractical computational resources

Fundamentals of particle physics analysis

100 Mio electronic channels

Quantum mechanical nature of physics process

-> Probabilistic distributed events $p(x|\theta)$ Rely on a statistical model p to extract parameters θ from data x:

We have high dimensional data

We have large data sets

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \overline{\psi} \overline{p} \psi + h.c. \\ &+ \overline{\psi} \overline{y} \overline{i} \overline{j} \psi \overline{j} \phi + h.c. \\ &+ \overline{\psi} \overline{\rho} \overline{j} \overline{v} \overline{j} \phi + h.c. \end{aligned}$

Few parameters

simulation

The role of simulators

simulators capture the relevant physics on a hierarchy of scales

Data $\{xi\}_{i=1}^N N$ samples independently and identically distributed from $p(x|\theta)$ with simulator settings θ \rightarrow Approximate $p(x|\theta) = \int p(x, z|\theta) dz$

- → fixed value of z specifies everything about the simulated event: z = ground truth "label"
- → Reconstruction algorithms estimate components from z
 - → data set $\{x_i, z_i\}_{i=1}^N$ to study reco algorithms

Data representation

Goal: bring the data into a form that is easier to understand and interpret

Reducing dimensionality

Summary

generate low-level, high-dim data from high-level concepts

Low level data

High level

concepts

reconstruct high level concepts from low-level, high-dim data

ML excels at both!

This is a picture of Barack Obama. His foot is positioned on the right side of the scale. The scale will show a higher weight.

> reconstruct high level concepts from low-level, high-dim data

What is machine learning?

What is machine learning?

 \bigtriangledown

Difference between machine learning and Al: If it is written in Python, it's probably machine learning If it is written in PowerPoint, it's probably Al 3:25 AM · Nov 23, 2018 · Twitter Web Client 8,264 Retweets 911 Quote Tweets 23.8K Likes

 \bigcirc

⊥

 $\uparrow \downarrow$

What is machine learning?

Al: systems that simulate intelligent behavior e.g. via rules, reasoning, symbol manipulation

ML: subset of AI that learns to make decisions or predictions by fitting mathematical models to observed data.

DL: type of machine learning model, that aims at complex pipelines, work on low-level data (e.g. pixels)

ML examples: make decisions

Variable length structured input

Fixed length structured input

Fixed length structured input

Variable length unstructured input (Avectors of particles)

ML examples: making predictions

DESY.

ML example: generate new data

DESY.

What does the machine learn?

Open the box or fitting mathematical model to data

Open the box or fitting mathematical model to data

Open the box or fitting mathematical model to data

Learning = search through a family of functions to let the data guide you to find the best one

Easiest if you have a labeled data set where the input-output relation is known to train and validate

The data

Your connection to the algorithm is the data

• The most important thing in the ML lifecycle

Need to know:

- Where does the existing (labeled) data come from?
- Where will the new data come from?

The dominant paradigm: statistical learning

We **assume** all **existing data and all future data** come from the same distribution.

• Danger: "Out-of-Distribution" samples / Distribution Shift

Example

Let's try to describe them with a **linear function**, i.s. my set of hypothesis to describe the data is

$$y = \mathbf{f}[x, \boldsymbol{\phi}]$$

 $= \phi_0 + \phi_1 x.$

Labeled data set

Open the black box or what's this "mapping"?

Learning = finding the optimal function from a set of functions to describe known "labeled" data

The Loss

• Need to have a performance measure to quantify what "best" means: "loss", "risk", "cost" function

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$

=
$$\sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

The Loss

Learning algorithms

We usually have no idea which of the functions is the best, we need to have a learning algorithm that leads us there

Various possibilities:

- Exhaustive search (discrete functions)
- Closed form solutions (rare)
- Iterative optimization (mostly used)

$$\begin{split} \hat{\boldsymbol{\phi}} &= \operatorname{argmin}_{\boldsymbol{\phi}} \left[L[\boldsymbol{\phi}] \right] \\ &= \operatorname{argmin}_{\boldsymbol{\phi}} \left[\sum_{i=1}^{I} \left(\mathrm{f}[x_i, \boldsymbol{\phi}] - y_i \right)^2 \right] \\ &= \operatorname{argmin}_{\boldsymbol{\phi}} \left[\sum_{i=1}^{I} \left(\phi_0 + \phi_1 x_i - y_i \right)^2 \right] \end{split}$$

Learning algorithm

This case: exact solution $\hat{\phi}$ Phi = (X^TX)⁻¹X^T y with X_{ik} = x_i^k (i-th data point, k-th power)

Learning framework Putting it all together

- Collect and prepare data to be consumed by the machine
- Define the task (objective)
- Choose search space of possible functions (algorithms) aka "hypothesis set"
- Define what "good" means, i.e. a performance measure
- Provide an optimising algorithm to update functions, i.e. change hypothesis
- Decide when to stop and to define the final hypothesis (function)

Supervised learning

mapping from input data to an output prediction

Neural nets

More complex family of functions

Build complexity by composing very simple building blocks

'age 37

-5.0

Neural network family of functions

 $y = \mathbf{f}[x, \boldsymbol{\phi}]$

 $= \phi_0 + \phi_1 \mathbf{a}[\theta_{10} + \theta_{11}x] + \phi_2 \mathbf{a}[\theta_{20} + \theta_{21}x] + \phi_3 \mathbf{a}[\theta_{30} + \theta_{31}x]$

Neural network hard wired

• Mark I perceptron

 $f(\mathbf{x}) = egin{cases} \mathsf{Perceptron:} \ 1 & ext{if } \mathbf{w} \cdot \mathbf{x} + b > 0, \ 0 & ext{otherwise} \end{cases}$

 $\mathbf{w} \cdot \mathbf{x} = \sum_{i=1}^m w_i x_i$

Images of 20x20 photo cells were trained for image recognition: "connections" = wires between photo cells and neurons

"weights" = potentiometers moved by electrical motors 1958

More variability

Expanding the number of nodes A lot to gain!

Neural networks with a single hidden layer are universal function approximators This also holds for multi-dimensional inputs and outputs.

DESY. Side remark: it does NOT work for linear activation function, e.g. XOR problem 42

Going more complex

DESY.

Beyond single layer

Not forbidden to stack neurons in a different way: go deep instead of wide

->opportunity to build up complex things step by step

Wide or deep?

The relationship between expressivity of swallow networks and deep networks is an active area of research

But empirically: It seems that deep networks can generate complex patterns with much fewer parameters

Activation functions

UFA is achieved with any non-linear activation function, but at least for the output activation we need to be careful about the task

How big should we go?

With increasing size you get a better chance that the actual algorithm you are looking for lives within the family of functions

Bias: the loss $L(f_{min})$ of the overall best function $f \in \mathcal{H}$

$$f_{min} = \langle f(x, \hat{\phi}) \rangle_{D}$$

An argument to make the function family as big as possible

But should we really....?

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk"

- John von Neumann

No free lunch theorem of learning

- With limited data you must learn effectively, i.e. you must restrict the "hypothesis set" of functions to perform the task
- Only possible with "inductive bias": constrain on the hypothesis set by adjusting the search space

The risk we want

In statistical learning we are interested in the expected performance of the algorithm on future data

With assumption of i.i.d. distribution of data:

The risk we can get

While we don't have p(s) we do have samples $s \sim p(s)$

> We can (only) estimate the loss empirically as a proxy!

$$\bar{L} = \int_{S} p(s)L(s,h) \to \hat{L} = \frac{1}{N} \sum_{i} L(s_{i},h) \xrightarrow{L(D_{2})} L(D_{1}) \xrightarrow{L(D_{4})} L(D_{3})$$

This difference between what we want and what we get has tricky consequences

Variance and bias

$$L_{true}(h^*) = Bias(L(h^*))^2 + Var(L(h^*))$$

Variance

Increases with \mathcal{H} , decreases with N

An argument to make the hypothesis set as small as possible given the data set size

Bias - Variance trade-off

Bias-Variance trade off

We now have two competing forces

- Make model space as big as possible: reduce bias
- Constrain the model space: reduce variance

Big networks require big data!

If you don't have enough of it, you simply cannot afford to train a billion parameter model!

Back-up

Loss becomes also more complex

Possible sources of labelled data

Huge advantage of ML in science: high-fidelity simulators

simulated cosmology

simulated fluid dynamics

simulated particle physics

