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Outline

• The big picture

• Extracting physics knowledge with machine learning
• Learning frameworks and its ingredients

• The key elements

• Data sets

• Hypothesis sets
• Optimisation

• Example: Neural networks

• Building functions with perceptrons

• Universal approximation theorem
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Material

• book: Understanding deep learning from Simon Price

• Deeplearning.org  book from Ian Goodfellow

• Pictures from Lukas Heinrich

• Kyle Cranmer, ML Review

ML is NOT a spectator sport – important material in exercises from Peter Steinbach  

https://udlbook.github.io/udlbook/


Why is machine learning 
relevant for particle physics?
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Quantum mechanical nature of physics process
 -> Probabilistic distributed events p(x|θ)
Rely on a statistical model p to extract parameters θ from 
data x:

We have high dimensional data 

We have large data sets

Fundamentals of particle physics analysis
measurement

100 Mio electronic channels
Few parameters
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Curse of dimensionality 

1 dim: Sample N events to describe distribution
2 dim: sample N2 events to describe distribution

. 

. 
.

d dim: sample O(Nd) events to describe distribution 

-> Needs impractical computational resources
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Quantum mechanical nature of physics process
 -> Probabilistic distributed events p(x|θ)
Rely on a statistical model p to extract parameters θ from 
data x:

We have high dimensional data 

We have large data sets

Fundamentals of particle physics analysis

100 Mio electronic channels
Few parameters

simulation
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The role of simulators

Data {xi}i=1
N N samples independently and identically distributed  from p(x| θ) with simulator settings θ 

èApproximate p(x|θ) = ∫p(x, z|θ) dz
è fixed value of z specifies everything about the simulated event: z = ground truth “label”
èReconstruction algorithms estimate components from z

è  data set {xi, zi}N
i=1 to study reco algorithms

simulators capture the relevant physics on a hierarchy of scales 

GEANT4 Pythia PowHegreconstruction
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Data representation

Goal: bring the data into a form that is easier to understand and interpret
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Reducing dimensionality

100 Mio electronic channels

mHiggs = 125 GeV

Track reconstruction

energy reconstruction

Particle identification

Nelectron > 4
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Low level data

High level 
concepts

reconstruct high level concepts
from low-level, high-dim datagenerate low-level, high-dim data

from high-level concepts

Summary
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ML excels at  both!
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What is machine learning? 
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What is machine learning? 

Toni

Judith
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AI: systems that simulate intelligent behavior e.g. via rules, 
reasoning, symbol manipulation

ML: subset of AI that learns to make decisions or predictions 
by fitting mathematical models to observed data. 

DL: type of machine learning model, that aims at complex 
pipelines, work on low-level data (e.g. pixels)

What is machine learning? 
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Variable length
structured 
input

Fixed length
structured 
input

Fixed length
structured 
input

Binary class

multi class 

multi class

ttbb event
      ttb  event
      ttB event
      ttH event
      ttc event
      ttlight event

multi classVariable 
length
unstructured 
input 
(4vectors of 
particles)

Adapted from
 http://udlbook.com. 

ML examples: make decisions
Classification
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ML examples: making predictions

Fixed length
unstructured 
input

variable 
length
structured 
input

single real 
value output

multiple real 
value outputs

Predicted 
Higgs pT

single real 
value output

variable 
length
unstructured 
input 
(4vectors of 
particles)

Adapted from
 http://udlbook.com. 

Regression
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Generation

Pion in hadronic calorimeter

ML example: generate new data
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yx

f(x)
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What does the machine learn?
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Open the box
or fitting mathematical model to data

y = f(x)
output input
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Open the box
or fitting mathematical model to data

y = f(x, ɸ)
output

input family of functions
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Open the box
or fitting mathematical model to data

y = f(x, ɸ)
output

input family of functions

Learning = search through a family of functions  to let the data guide you to find the best one

Easiest if you have a labeled data set where the input-output relation is known to train and validate



DESY. Page 25

The data

Your connection to the algorithm is the data

• The most important thing in the ML lifecycle

[src]

Need to know:
• Where does the existing (labeled) data 

come from?
• Where will the new data come from?

https://www.industry-analytics.de/wp-content/uploads/2017/10/Data-is-the-new-oil.jpg
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The dominant paradigm: statistical learning

data = {x1, x2, …, xN}              x ~ p(x)
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Example

Labeled data set

Let’s try to describe them with a linear function, i.s.
my set of hypothesis to describe the data is
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Open the black box
or what’s this “mapping”?

y = fw[x] 

Learning = finding the optimal function from a set of functions to describe known “labeled” data 
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The Loss

• Need to have a performance measure to quantify what ”best” means: “loss”, “risk”, “cost” function
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The Loss
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Learning algorithms

We usually have no idea which of the functions is the best, we need to have a learning algorithm that leads us 
there 

Various possibilities:

• Exhaustive search (discrete functions)

• Closed form solutions (rare)

• Iterative optimization (mostly used)
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Learning algorithm

This case: exact solution is Phi = (XTX)-1XT  y  with Xik  = xik (i-th data point, k-th power) 
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Learning framework
Putting it all together

• Collect and prepare data to be consumed by the 
machine

• Define the task (objective)
• Choose search space of possible functions (algorithms) 

aka  “hypothesis set”
• Define what “good” means, i.e. a performance measure
• Provide an optimising algorithm to update functions, i.e. 

change hypothesis
• Decide when to stop and to define the final hypothesis 

(function)
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Supervised learning

Labeled data
Function/ML algorithm

Learned function
= trained ML algorithm 

New/unlabeled data Inference/predictionLearned function
= trained ML algorithm

Learning system

mapping from input data to an output prediction 
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Neural nets
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More complex family of functions

10 parameters ɸi, θj ,
activation function a

Linear 
functio
n of 
input

Example for a:

Build complexity by composing very simple building blocks 
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Neural network family of functions

hidden layer 
with nodes 
hi

input output
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Neural network hard wired

• Mark I perceptron

Images of 20x20 photo cells 
were trained for image 
recognition: “connections” = 
wires between photo cells and 
neurons
“weights” = potentiometers 
moved by electrical motors 

Perceptron:

=

1958
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Linear function of the input

Output of the 
activation function

Weighted output of 
the activation 
function

Resulting y = f(x,ɸ)
Piecewise linear function

Number of joints given by number of  nodes hi
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More variability 

Different settings of parameters ɸi, 
θj ,

Interactive figures

https://udlbook.github.io/udlfigures/
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Expanding the number of nodes
A lot to gain!

Neural networks with a single hidden layer  are universal function approximators
This also holds for multi-dimensional inputs and outputs. 

Side remark: it does NOT work for linear activation function, e.g. XOR problem
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Going more complex
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Beyond single layer

Not forbidden to stack neurons in a different way:  go deep instead of wide

->opportunity to build up complex things step by step 
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Wide or deep?

The relationship between expressivity of 
swallow networks and deep networks is an 
active area of research

But empirically:
It seems that deep networks can generate 
complex patterns with much fewer parameters
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Activation functions

UFA is achieved with any non-linear activation function, but at least for the output activation 
we need to be careful about the task 
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How big should we go?

With increasing size you get a better chance that the actual algorithm you are looking for lives within 
the family of functions 

An argument to make the function family as big as possible

Bias: the loss L(fmin) of the 
overall best function f ∈ H 

fmin = <f(x,    ) >D  
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But should we really….?

“With four parameters I can fit an elephant, 
and with five I can make him wiggle his 
trunk”
 - John von Neumann
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No free lunch theorem of learning

• With limited data you must learn effectively, i.e. you must restrict the “hypothesis set”  of functions to perform 
the task

• Only possible with “inductive bias”: constrain on the hypothesis set by adjusting the search space
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Empirical risk minimization
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The risk we want

In statistical learning we are interested in the expected performance of the algorithm on future data 

With assumpumption of  i.i.d. distribution of data: 
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The risk we can get

While we don’t have p(s) we do have samples s ~ p(s)

Ø We can (only) estimate the loss empirically as a proxy!

This difference between what we want 
and what we get has tricky 
consequences
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Empirical risk minimisation

Keep in mind that this is just a proxy depending on the training data set we have!
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Empirical risk minimization 

Keep in mind that this is just a proxy depending on the training data set we have!
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Empirical risk minimization 

Keep in mind that this is just a proxy depending on the training data set we have!

L (D2)
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Empirical risk minimization 

Keep in mind that this is just a proxy depending on the training data set we have!

L (D2)

L (D1)
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Variance and bias

variance

htrue

Loss Variance: spread of the 
the loss of h* in H

bias offset of the loss of h* 
with respect to the best 
true loss

Ltrue(h*) = Bias(L(h*))2 + Var(L(h*)) 

L (D2)

L (D1)

h* best hypothesis/function on a given data set
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Variance 

An argument to make the hypothesis set as small as possible given the data set size
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Bias - Variance trade-off 

high variance 
high bias

bias

variance

high variance 
low bias

low variance 
high bias

low variance 
low bias
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Bias-Variance trade off

We now have two competing forces

• Make model space as big as possible: reduce bias

• Constrain the model space: reduce variance
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Big networks require big data!

If you don’t have enough of it, you simply cannot afford to train a billion parameter model!

Size of hypothesis 
space
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Back-up
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Loss becomes also more complex
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Possible sources of labelled data

Huge advantage of ML in science: high-fidelity simulators
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Supervised 
learning

Reinforcement
learningUnsupervised 

learning

(multi) Classification 

(multi) Regression

Generation of 
structured dataStructured

Unstructured

Fixed/variable length


