
Introduction to Machine

Learning

Judith Katzy

Hamburg, September 2024

Part II

DESY. Page 2

Outline

• Optimisation

• Stochastic learning

• Loss & Regularisation

DESY. Page 3

Neural network family of functions

hidden layer

with nodes hi

input output

DESY. Page 4

Iterative Optimisation

DESY. Page 5

Gradient descent

A natural idea is to optimize by walking downhill

parameters

Loss minimizer

Guaranteed to work for convex functions

alpha: learning rate

DESY. Page 6

Global minimum

DESY. Page 7

Stochastic gradient descent

Remember: goal is generalization not training loss

Evaluating the loss on a small “mini-batch” instead of the full data: useful noise to jump over e.g. local minima.

Update loss on (mini)batch

Additional benefit:

Less computationally expensive

DESY. Page 8

Tuning the learning rate

DESY. Page 9

Tuning the learning rate




DESY. Page 10

Tuning the learning rate

DESY. Page 11

Adapting the learning rate dynamically

Weighted average over history

Many additional tricks & nuances in practical optimization algorithms to improve convergence for

non-convex problems

Example of a good default: ADAM

DESY. Page 12

Gradient descent needs…..GRADIENTS!

DESY. Page 13

8*9 +9 + 9*9 +9 +9*9 +9 +9*4 +4 = 220 parameters

…and there are plenty of gradients

Biggest networks to date have up to ~1012 parameters (e.g. ChatGPT)

DESY. Page 14

Let’s start simple:

xi h1
h2 h3 f3

Network with 3 hidden layers, one node per layer
Predicted y

Our goal 8 gradients!

DESY. Page 15

Let’s start simple:

a

a

  
 yi

 
 

xi h1
h2 h3 f3

Network with 3 hidden layers, one node per layer

True label

Break down in elements (algorithmic differentiation):

DESY. Page 16

Let’s start simple:

a

a

  
 yi

 
 

xi h1
h2 h3 f3

Network with 3 hidden layers, one node per layer

True label

li () = (f3(h3(f2(h2(f1(h1(f0())))))) – yi)
2

DESY. Page 17

Backpropagation: collect the ingredients for gradients

Forward pass

Store these intermediate values for later use

DESY. Page 18

Backpropagation: collect ingredients for gradients

Reuse previously calculated derivative

Computationally very efficient!

Calculate & store derivatives with respect to intermediate variables

li () = (f3(h3(f2(h2(f1(h1(f0())))))) – yi)
2

DESY. Page 19

Backpropagation: derivatives of simple functions

a

= 3

= 1 for f2>0

 0 for f2<=0

Activation a[fi]

DESY. Page 20

Backpropagation: collect ingredients
2. Backward pass

Finally gradient of loss with respect to weights and biases:

Recall: fk = k + k hk

Already stored in forward pass

DESY. Page 21

Putting it all together…

Stored from forward pass

Stored from 1.backward pass

Get gradients by

multiplication of stored

results

Our gradients!!!

h1
1

DESY. Page 22

Now complex network…forward pass

i: matrix, xi, bi, hi, fi: vector:

4x1

4x1

2x1

2x1

3x1

3x1

2x1

1x1

xi 3x1

  

  

  

  

 =

xi1

xi2

xi3

DESY. Page 23

Now complex model…backward pass

3x3 3x2 2x1

h1 h2 h3

Derivatives of vectors

become matrices
and scalar multiplication turns into matrix multiplication

3x1

3x1

2x1

1x1

DESY. Page 24

but there are still simplifications

proof with matrix calculus

diagonal matrix -> replace by vector I(f2>0) and pointwise multiply

very compute efficient!

Correspondingly for all other fi, hi

I(f2>0) 


DESY. Page 25

Summary backpropagation

Forward pass: compute and store

Neural network f(xi,)  K hidden layers, activation function (e.g. ReLu)

Loss:

Backward pass: compute and store

Point wise multiplication

Finally first layer

DESY. Page 26

Comments

• Backpropagation is super compute efficient but not memory efficient

➔ All intermediate values of the forward pass and all weight matrices are stored -> might limit size of model to be trained

• If memory allows, perform the forward and backward passes for the entire batch in parallel

➢ Matrices and vectors get another index for the date event, i.,e, become a multi-dimensional tensor

➢ “tensor” = generalization of matrix to arbitrary dimension (vector = 1d tensor, matrix=2d tenser, etc.)

• All of this is implemented in TensorFlow and PyTorch

➢ After this school you will just use a single line, like loss.backward()

DESY. Page 27

Vanishing and exploding gradients

Due to the matrix multiplication

➢ very small weights may get to 0 and effectively remove nodes from the network “vanishing gradient”

➢ Large weights might get exponentiated to values beyond the precision of floating point arithmetic

DESY. Page 28

Initialisation

To avoid vanishing or exploding gradients sample from normal distribution with mean 0 and variance

Dh: dimension of layer where weights are applied

Dh’: dimension of layer to which they are fed

Complex network architectures may use separate simple networks to determine initialization for large complex networks

DESY. Page 29

Gradients of other activation functions

DESY. Page 30

The full chain

ML frameworks like TensorFlow (with Keras API), PyTorch and JAX put a lot of the pieces together to provide a performant setup

-> See exercises with Peter

DESY. Page 31

The network

DESY. Page 32

….improving step by step

Learn by revisiting the data often and adjusting

f = initial_guess()

for n in range(steps):

 examples ~ p(data)

 loss = evaluate(f, examples)

 adjustment = react(loss, f)

 f = new_hypo(f, adjustment)

DESY. Page 33

A full training loop

MSELoss()

DESY. Page 34

Back-up

	Slide 1: Introduction to Machine Learning
	Slide 2: Outline
	Slide 3: Neural network family of functions
	Slide 4: Iterative Optimisation
	Slide 5: Gradient descent
	Slide 6
	Slide 7: Stochastic gradient descent
	Slide 8: Tuning the learning rate
	Slide 9: Tuning the learning rate
	Slide 10: Tuning the learning rate
	Slide 11: Adapting the learning rate dynamically
	Slide 12: Gradient descent needs…..GRADIENTS!
	Slide 13: …and there are plenty of gradients
	Slide 14: Let’s start simple:
	Slide 15: Let’s start simple:
	Slide 16: Let’s start simple:
	Slide 17: Backpropagation: collect the ingredients for gradients
	Slide 18: Backpropagation: collect ingredients for gradients
	Slide 19
	Slide 20: Backpropagation: collect ingredients
	Slide 21: Putting it all together…
	Slide 22: Now complex network…forward pass
	Slide 23: Now complex model…backward pass
	Slide 24: but there are still simplifications
	Slide 25: Summary backpropagation
	Slide 26: Comments
	Slide 27: Vanishing and exploding gradients
	Slide 28: Initialisation
	Slide 29: Gradients of other activation functions
	Slide 30: The full chain
	Slide 31: The network
	Slide 32: ….improving step by step
	Slide 33: A full training loop
	Slide 34: Back-up

