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Outline

• Optimisation

• Stochastic learning 

• Loss & Regularisation



DESY. Page 3

Neural network family of functions

hidden layer 

with nodes hi

input output
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Iterative Optimisation
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Gradient descent

A natural idea is to optimize by walking downhill 

parameters

Loss minimizer

Guaranteed to work for convex functions

alpha: learning rate
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Global minimum
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Stochastic gradient descent

Remember: goal is generalization not training loss 

Evaluating the loss on a small “mini-batch” instead of the full data: useful noise to jump over e.g. local minima.

Update loss on (mini)batch

Additional benefit: 

Less computationally expensive
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Tuning the learning rate
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Tuning the learning rate



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Tuning the learning rate
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Adapting the learning rate dynamically

Weighted average over history

Many additional tricks & nuances in practical optimization algorithms to improve convergence for 

non-convex problems

Example of a good default: ADAM
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Gradient descent needs…..GRADIENTS!
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8*9      +9    + 9*9       +9      +9*9      +9       +9*4     +4   = 220 parameters

…and there are plenty of gradients

Biggest networks to date have up to ~1012 parameters (e.g. ChatGPT)
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Let’s start simple: 

xi h1
h2 h3 f3

Network with 3 hidden layers, one node per layer
Predicted y

Our goal 8 gradients!
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Let’s start simple: 

a

a

  
 yi

 
 

xi h1
h2 h3 f3

Network with 3 hidden layers, one node per layer

True label

Break down in elements (algorithmic differentiation):
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Let’s start simple: 

a

a

  
 yi

 
 

xi h1
h2 h3 f3

Network with 3 hidden layers, one node per layer

True label

li () = (f3(h3(f2(h2( f1(h1(f0())))))) – yi)
2 
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Backpropagation:  collect the ingredients for gradients

Forward pass

Store these intermediate values for later use
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Backpropagation: collect ingredients for gradients

Reuse previously calculated derivative

         
Computationally very efficient!

Calculate & store derivatives with respect to intermediate variables 

li () = (f3(h3(f2(h2( f1(h1(f0())))))) – yi)
2 
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Backpropagation: derivatives of simple functions

a

= 3

=  1 for f2>0

    0 for f2<=0

Activation a[fi]
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Backpropagation: collect ingredients
2. Backward pass

Finally gradient of loss with respect to weights and biases:

Recall: fk = k + k hk  

Already stored in forward pass
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Putting it all together…

Stored from forward pass

Stored from 1.backward pass

Get gradients by 

multiplication of stored 

results

Our gradients!!!

h1
1
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Now complex network…forward pass

i: matrix, xi, bi, hi, fi: vector: 

4x1

4x1

2x1

2x1

3x1

3x1

2x1

1x1

xi  3x1

  

  

  

   

 = 

xi1  

xi2 

xi3
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Now complex model…backward pass

3x3 3x2 2x1

h1 h2 h3

Derivatives of vectors 

become matrices
and scalar multiplication turns into matrix multiplication

3x1

3x1

2x1

1x1
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but there are still simplifications

proof with matrix calculus

diagonal matrix -> replace by vector I(f2>0) and pointwise multiply

very compute efficient!

     

Correspondingly for all other fi, hi

I(f2>0) 

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Summary backpropagation

Forward pass:  compute and store

Neural network    f(xi,)  K hidden  layers, activation function (e.g. ReLu)

Loss:  

Backward pass:  compute and store

Point wise multiplication

Finally  first layer
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Comments

• Backpropagation is super compute efficient but not memory efficient

➔ All intermediate values of the forward pass and all weight matrices are stored -> might limit size of model to be trained

• If memory allows, perform the forward and backward passes for the entire batch in parallel 

➢ Matrices and vectors get another index for the date event, i.,e, become a multi-dimensional tensor 

➢ “tensor” = generalization of matrix to arbitrary dimension (vector = 1d tensor, matrix=2d tenser, etc.)

• All of this is implemented in TensorFlow and PyTorch

➢ After this school you will just use a single  line, like loss.backward() 
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Vanishing and exploding gradients

Due to the matrix multiplication 

➢ very small weights may get to 0 and effectively remove nodes from the network “vanishing gradient”

➢ Large weights might get exponentiated to values beyond  the precision of floating point arithmetic
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Initialisation

To avoid vanishing or exploding gradients sample from normal distribution with mean 0 and variance

Dh: dimension of layer where weights are applied

Dh’: dimension of layer to which they are fed

Complex network architectures may use separate simple networks to determine initialization for large complex networks
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Gradients of other activation functions
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The full chain

ML frameworks like TensorFlow (with Keras API), PyTorch and JAX  put a lot of the pieces together to provide a performant setup

-> See exercises with Peter
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The network
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….improving step by step

Learn by revisiting the data often and adjusting 

f = initial_guess()

for n in range(steps):

        examples ~ p(data)

        loss = evaluate(f, examples)

        adjustment = react(loss, f)

        f = new_hypo(f, adjustment)
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A full training loop

MSELoss()
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Back-up
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