Introduction to Machine Learning

Part II

Judith Katzy Hamburg, September 2024

HELMHOLTZ

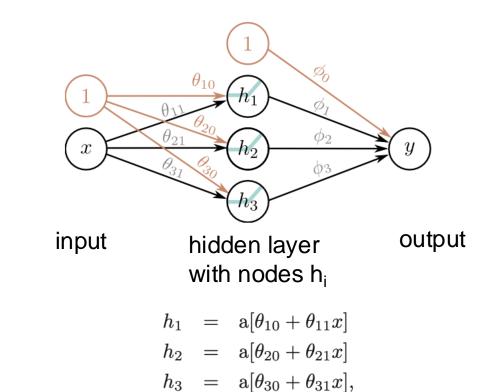
Outline

- Optimisation
- Stochastic learning
- Loss & Regularisation

Neural network family of functions

 $y = \mathbf{f}[x, \boldsymbol{\phi}]$

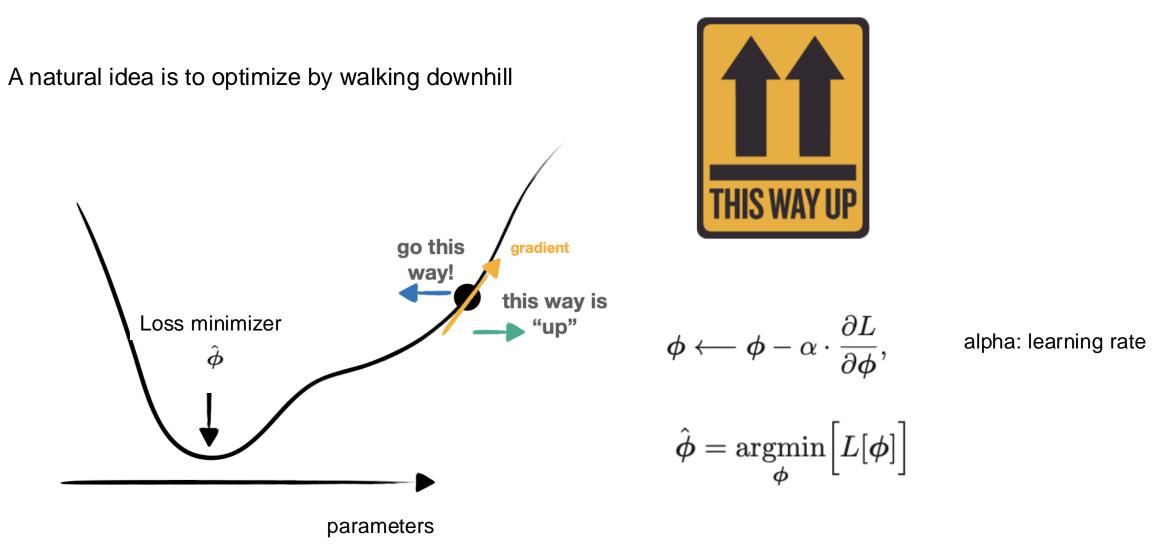
 $= \phi_0 + \phi_1 \mathbf{a}[\theta_{10} + \theta_{11}x] + \phi_2 \mathbf{a}[\theta_{20} + \theta_{21}x] + \phi_3 \mathbf{a}[\theta_{30} + \theta_{31}x]$



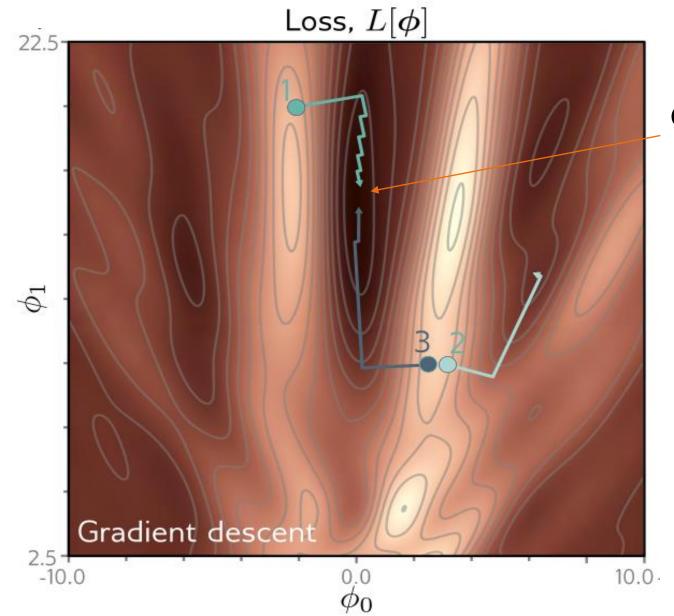
$$egin{array}{rcl} \hat{oldsymbol{\phi}} &=& rgmin_{oldsymbol{\phi}} \left[L[oldsymbol{\phi}]
ight] \ &=& rgmin_{oldsymbol{\phi}} \left[\sum_{i=1}^{I} \left(\mathrm{f}[x_i,oldsymbol{\phi}] - y_i
ight)^2
ight] \end{array}$$

Iterative Optimisation

Gradient descent



Guaranteed to work for convex functions



Global minimum

Stochastic gradient descent

Remember: goal is generalization not training loss

Evaluating the loss on a small "mini-batch" instead of the full data: useful noise to jump over e.g. local minima.

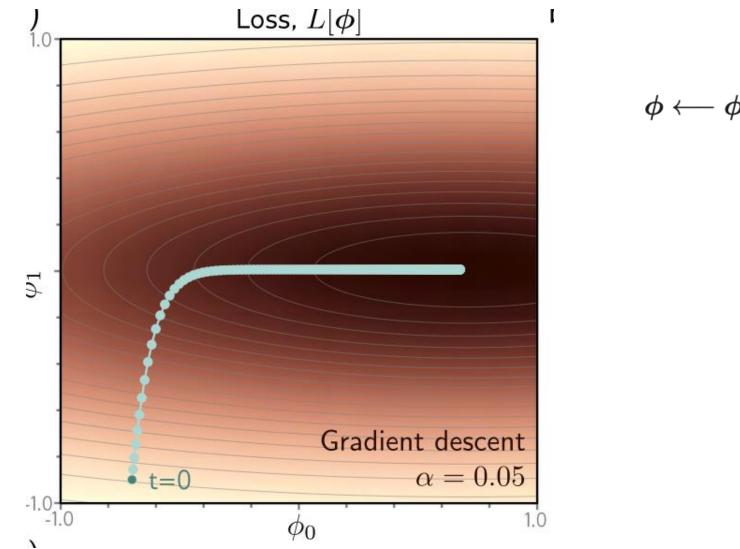


Update loss on (mini)batch

$$oldsymbol{\phi}_{t+1} \longleftarrow oldsymbol{\phi}_t - lpha \cdot \sum_{i \in \mathcal{B}_t} rac{\partial \ell_i [oldsymbol{\phi}_t]}{\partial oldsymbol{\phi}}$$

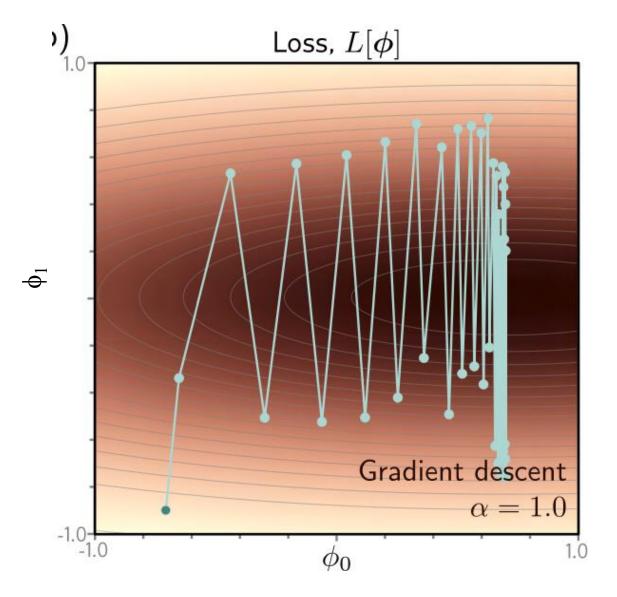
Additional benefit: Less computationally expensive

Tuning the learning rate



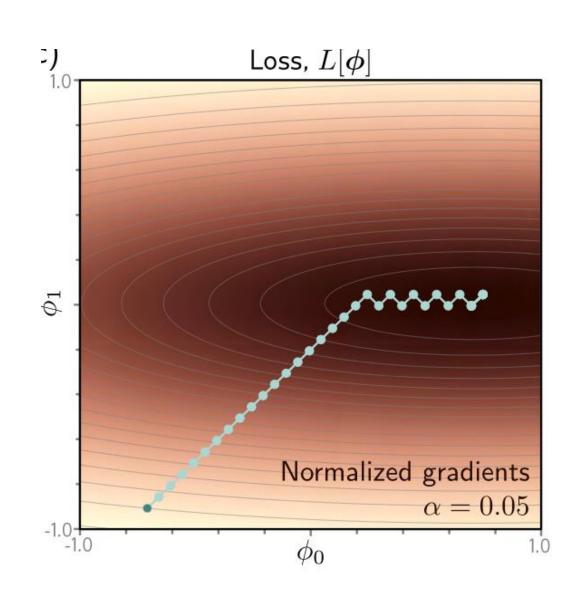
 $\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \cdot \frac{\partial L}{\partial \boldsymbol{\phi}},$

Tuning the learning rate



$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - lpha \cdot rac{\partial L}{\partial \boldsymbol{\phi}},$$

Tuning the learning rate



$$\phi \longleftarrow \phi - \alpha \cdot \frac{\partial L}{\partial \phi},$$

Adapting the learning rate dynamically

Many additional tricks & nuances in practical optimization algorithms to improve convergence for non-convex problems

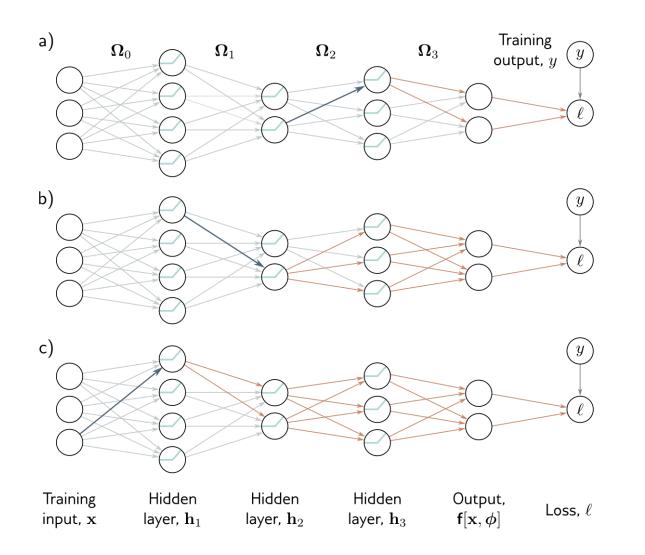
Loss, $L[\phi]$	
	Example of a good default: ADAM
	Weighted average ov
	$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1-\beta)^{\dot{o}}$
	$\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_t + (1-\gamma) \left(\right)$
Adam	$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot rac{\mathbf{r}}{\sqrt{\mathbf{v}}}$
$\alpha = 0.05, \beta = 0.9, \gamma = 0.99$	

Example of a good default: ADAM
Weighted average over history

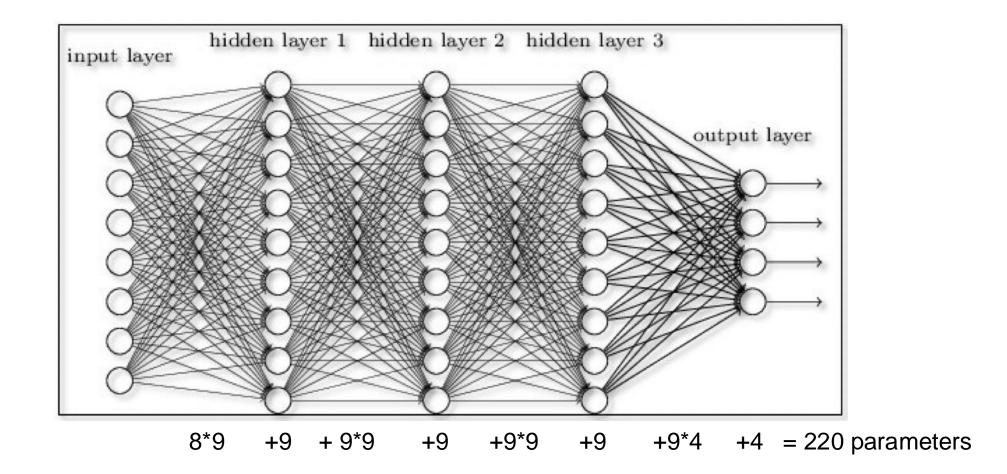
$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1-\beta) \frac{\partial L[\phi_t]}{\partial \phi}$$

 $\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_t + (1-\gamma) \left(\frac{\partial L[\phi_t]}{\partial \phi}\right)^2$
 $\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$

Gradient descent needs.....GRADIENTS!

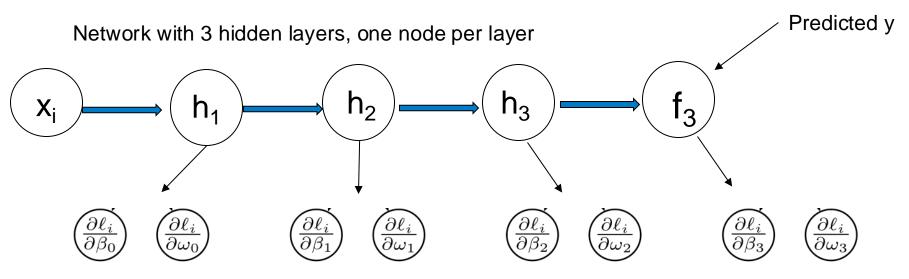


...and there are plenty of gradients



Biggest networks to date have up to $\sim 10^{12}$ parameters (e.g. ChatGPT)

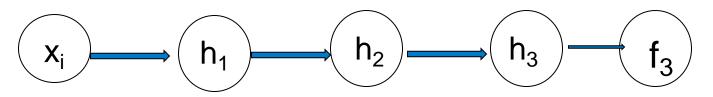
Let's start simple:



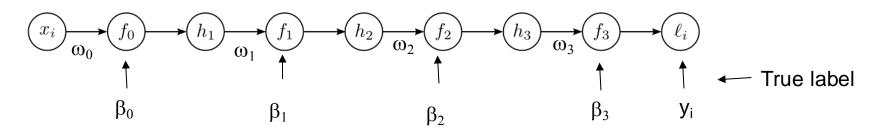
Our goal 8 gradients!

Let's start simple:

Network with 3 hidden layers, one node per layer



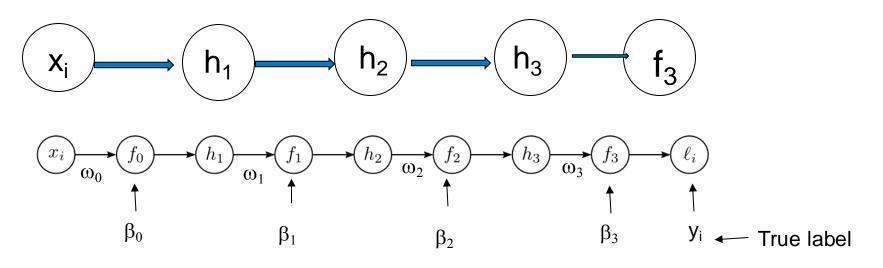
Break down in elements (algorithmic differentiation):



 $\begin{array}{rcl} f_{0} & = & \beta_{0} + \omega_{0} \cdot x_{i} \\ h_{1} & = & \mathbf{a} \quad [f_{0}] \\ f_{1} & = & \beta_{1} + \omega_{1} \cdot h_{1} \\ h_{2} & = & \mathbf{a} \quad [f_{1}] \\ f_{2} & = & \beta_{2} + \omega_{2} \cdot h_{2} \\ h_{3} & = & \mathbf{a} \quad [f_{2}] \\ f_{3} & = & \beta_{3} + \omega_{3} \cdot h_{3} \\ \ell_{i} & = & (f_{3} - y_{i})^{2}. \end{array}$

Let's start simple:

Network with 3 hidden layers, one node per layer



 $f_0 = \beta_0 + \omega_0 \cdot x_i$ $h_1 = \mathbf{a} \cdot [f_0]$ $f_1 = \beta_1 + \omega_1 \cdot h_1$ $h_2 = \mathbf{a} \cdot [f_1]$ $f_2 = \beta_2 + \omega_2 \cdot h_2$ $h_3 = \mathbf{a} \cdot [f_2]$ $f_3 = \beta_3 + \omega_3 \cdot h_3$ $\ell_i = (f_3 - y_i)^2.$

 $I_{i} (\omega_{0}, \beta_{0}, \omega_{1}, \beta_{1}, \omega_{2}, \beta_{2}, \omega_{3}, \beta_{3}) = (f_{3}(h_{3}(f_{2}(h_{2}(f_{1}(h_{1}(f_{0}(\omega_{0}, \beta_{0})))))) - y_{i})^{2})) - (f_{3}(h_{3}(f_{2}(h_{2}(f_{1}(h_{1}(f_{0}(\omega_{0}, \beta_{0})))))))) - y_{i})^{2})) - (f_{3}(h_{3}(f_{2}(h_{2}(f_{1}(h_{1}(f_{0}(\omega_{0}, \beta_{0}))))))))) - y_{i})^{2})) - (f_{3}(h_{3}(f_{2}(h_{2}(f_{1}(h_{1}(f_{0}(\omega_{0}, \beta_{0})))))))))))) - (f_{3}(h_{3$

Backpropagation: collect the ingredients for gradients

Forward pass

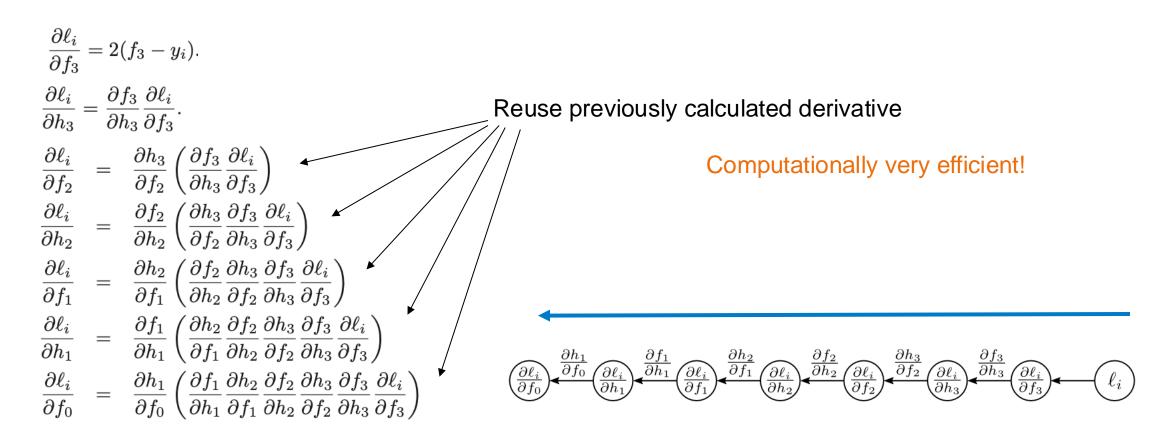
$$(x_i) \longrightarrow (f_0) \longrightarrow (h_1) \longrightarrow (f_1) \longrightarrow (h_2) \longrightarrow (f_2) \longrightarrow (h_3) \longrightarrow (f_3) \longrightarrow (\ell_i)$$

Store these intermediate values for later use

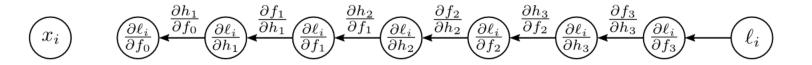
Backpropagation: collect ingredients for gradients

Calculate & store derivatives with respect to intermediate variables

$$|_{i} (\omega_{0},\beta_{0},\omega_{1},\beta_{1},\omega_{2},\beta_{2},\omega_{3},\beta_{3}) = (f_{3}(h_{3}(f_{2}(h_{2}(f_{1}(h_{1}(f_{0}(\omega_{0},\beta_{0})))))) - y_{i})^{2}))$$



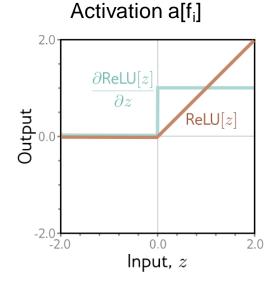
Backpropagation: derivatives of simple functions



 $\begin{array}{rcl} h_3 & = & \mathsf{a} & [f_2] \\ f_3 & = & \beta_3 + \omega_3 \cdot h_3 \end{array}$

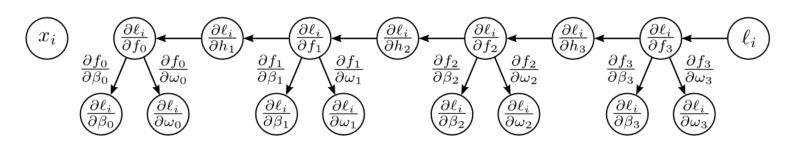
$$\frac{\partial h_3}{\partial f_2} = 1 \text{ for } f_2 > 0$$

0 for $f_2 <= 0$
$$\frac{\partial f_3}{\partial h_3} = \omega_3$$



Backpropagation: collect ingredients

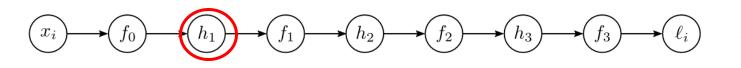
2. Backward pass

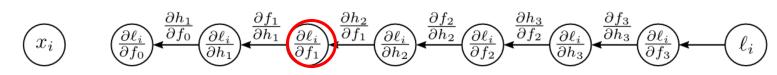


Finally gradient of loss with respect to weights and biases:

$$\frac{\partial f_k}{\partial \beta_k} = 1 \quad \text{and} \quad \frac{\partial f_k}{\partial \omega_k} = h_k. \quad \text{Recall: } f_k = \beta_k + \omega_k h_k$$
Already stored in forward pass

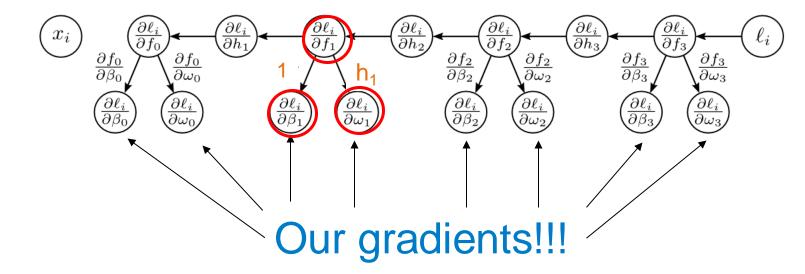
Putting it all together...





Stored from forward pass

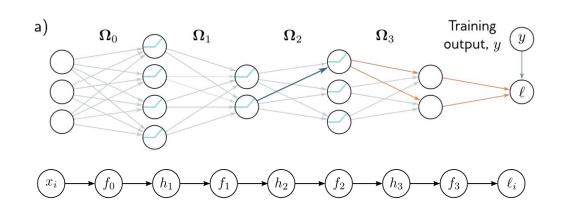
Stored from 1.backward pass



Get gradients by multiplication of stored results

Now complex network...forward pass

 Ω_i : matrix, x_i , b_i , h_i , f_i : vector:



$$\mathbf{f}_0 = oldsymbol{eta}_0 + oldsymbol{\Omega}_0 \mathbf{x}_i$$
 4x1

$$\mathbf{h}_1 = \mathbf{a}[\mathbf{f}_0] \qquad \qquad 4\mathbf{x}\mathbf{1}$$

$$\mathbf{f}_1 = \boldsymbol{\beta}_1 + \boldsymbol{\Omega}_1 \mathbf{h}_1$$
 2x1

$$\mathbf{h}_2 = \mathbf{a}[\mathbf{f}_1] \qquad \qquad \mathbf{2x1}$$

$$\mathbf{f}_2 = \boldsymbol{eta}_2 + \boldsymbol{\Omega}_2 \mathbf{h}_2$$
 3x1

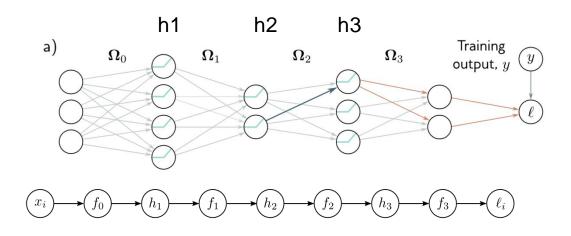
$$\mathbf{h}_3 = \mathbf{a}[\mathbf{f}_2] \qquad \qquad \mathbf{3x1}$$

$$\mathbf{f}_3 = \boldsymbol{eta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3$$
 2x1

$$\ell_i = l[\mathbf{f}_3, y_i], \qquad 1 \times 1$$

$$\Omega_{0} = \begin{pmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ \omega_{21} & \omega_{22} & \omega_{23} \\ \omega_{31} & \omega_{32} & \omega_{33} \\ \omega_{41} & \omega_{42} & \omega_{43} \end{pmatrix} \begin{pmatrix} x_{i1} \\ x_{i2} \\ x_{i3} \end{pmatrix}$$

Now complex model...backward pass



$$\mathbf{f}_2 = oldsymbol{eta}_2 + oldsymbol{\Omega}_2 \mathbf{h}_2$$
 3x1

$$\mathbf{h}_3 = \mathbf{a}[\mathbf{f}_2] \qquad \qquad \mathbf{3x1}$$

$$\mathbf{f}_3 = \boldsymbol{\beta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3 \qquad 2\mathbf{x}\mathbf{1}$$

$$\ell_i = \mathbf{l}[\mathbf{f}_3, y_i], \qquad \mathbf{1} \mathbf{x} \mathbf{1}$$

$$\frac{\partial \ell_i}{\partial \mathbf{f}_2} = \frac{\partial \mathbf{h}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{f}_3}{\partial \mathbf{h}_3} \frac{\partial \ell_i}{\partial \mathbf{f}_3}.$$

Derivatives of vectors become matrices

3x3 3x2 2x1 and scalar multiplication turns into matrix multiplication

but there are still simplifications

$$\frac{\partial \ell_i}{\partial \mathbf{f}_2} = \frac{\partial \mathbf{h}_3}{\partial \mathbf{f}_2} \frac{\partial \mathbf{f}_3}{\partial \mathbf{h}_3} \frac{\partial \ell_i}{\partial \mathbf{f}_3}.$$

$$\frac{\partial \mathbf{f}_3}{\partial \mathbf{h}_3} = \frac{\partial}{\partial \mathbf{h}_3} \left(\boldsymbol{\beta}_3 + \boldsymbol{\Omega}_3 \mathbf{h}_3 \right) = \boldsymbol{\Omega}_3^T.$$

proof with matrix calculus

 $\frac{\partial \mathbf{h}_3}{\partial \mathbf{f}_2}$ diagonal matrix -> replace by vector $\mathbb{I}(\mathbf{f}_2>0)$ and pointwise multiply very compute efficient!

$$\frac{\partial \ell_i}{\partial \mathbf{f}_2} = \mathbb{I}(\mathbf{f}_2 > \mathbf{0}) \ \Omega_3^{\mathrm{T}} \frac{\partial \ell_i}{\partial \mathbf{f}_3}.$$

Correspondingly for all other f_i , h_i

Summary backpropagation

Neural network $f(\mathbf{x}_i, \phi)$: K hidden layers, activation function (e.g. ReLu) Loss: $\ell_i = l[\mathbf{f}[\mathbf{x}_i, \phi], \mathbf{y}_i]$.

Forward pass: compute and store

$$\begin{aligned} \mathbf{f}_0 &= \boldsymbol{\beta}_0 + \boldsymbol{\Omega}_0 \mathbf{x}_i \\ \mathbf{h}_k &= \mathbf{a}[\mathbf{f}_{k-1}] & k \in \{1, 2, \dots, K\} \\ \mathbf{f}_k &= \boldsymbol{\beta}_k + \boldsymbol{\Omega}_k \mathbf{h}_k. & k \in \{1, 2, \dots, K\} \end{aligned}$$

Backward pass: compute and store

$$\frac{\partial \ell_i}{\partial \boldsymbol{\beta}_k} = \frac{\partial \ell_i}{\partial \mathbf{f}_k} \qquad k \in \{K, K-1, \dots, 1\} \\
\frac{\partial \ell_i}{\partial \boldsymbol{\Omega}_k} = \frac{\partial \ell_i}{\partial \mathbf{f}_k} \mathbf{h}_k^T \qquad k \in \{K, K-1, \dots, 1\} \\
\frac{\partial \ell_i}{\partial \mathbf{f}_{k-1}} = \mathbb{I}[\mathbf{f}_{k-1} > 0] \odot \left(\mathbf{\Omega}_k^T \frac{\partial \ell_i}{\partial \mathbf{f}_k} \right), \qquad k \in \{K, K-1, \dots, 1\}$$

Finally first layer $\frac{\partial \ell_i}{\partial \boldsymbol{\beta}_0} = \frac{\partial \ell_i}{\partial \mathbf{f}_0}$ $\frac{\partial \ell_i}{\partial \boldsymbol{\Omega}_0} = \frac{\partial \ell_i}{\partial \mathbf{f}_0} \mathbf{x}_i^T$

DESY.

Point wise multiplication

Comments

- Backpropagation is super compute efficient but not memory efficient
 - → All intermediate values of the forward pass and all weight matrices are stored -> might limit size of model to be trained
- If memory allows, perform the forward and backward passes for the entire batch in parallel
 - > Matrices and vectors get another index for the date event, i.,e, become a multi-dimensional tensor
 - "tensor" = generalization of matrix to arbitrary dimension (vector = 1d tensor, matrix=2d tenser, etc.)
- All of this is implemented in TensorFlow and PyTorch
 - > After this school you will just use a single line, like loss.backward()

Vanishing and exploding gradients

Due to the matrix multiplication

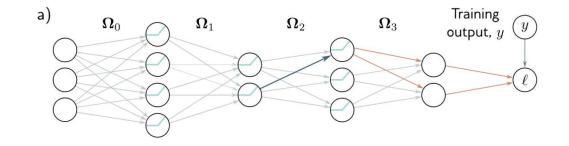
- > very small weights may get to 0 and effectively remove nodes from the network "vanishing gradient"
- > Large weights might get exponentiated to values beyond the precision of floating point arithmetic

Initialisation

To avoid vanishing or exploding gradients sample from normal distribution with mean 0 and variance

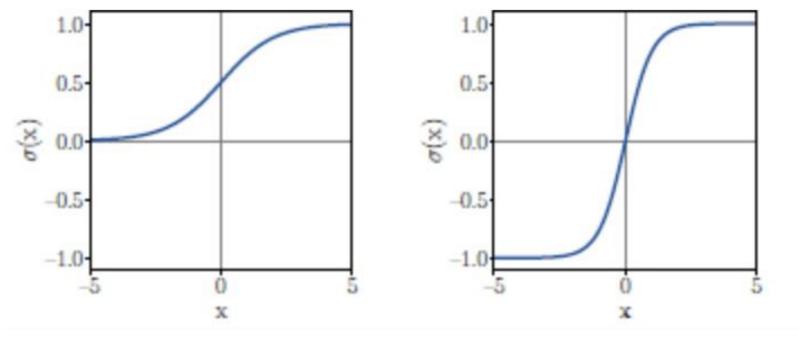
$$\sigma_{\Omega}^2 = \frac{4}{D_h + D_{h'}}.$$

 D_h : dimension of layer where weights are applied D_h ': dimension of layer to which they are fed



Complex network architectures may use separate simple networks to determine initialization for large complex networks

Gradients of other activation functions

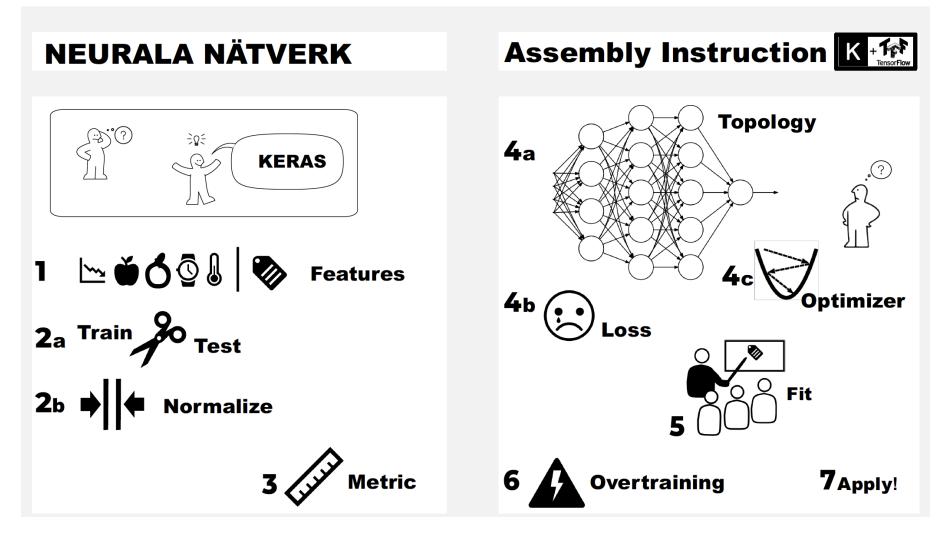


Logistic sigmoid

tanh

The full chain

ML frameworks like TensorFlow (with Keras API), PyTorch and JAX put a lot of the pieces together to provide a performant setup -> See exercises with Peter



The network

def create_model(input_dim, output_dim):
 return torch.nn.Sequential(
 torch.nn.Linear(input_dim, 9),
 torch.nn.ReLU(),
 torch.nn.Linear(9, 9),
 torch.nn.Linear(9, 9),
 torch.nn.ReLU(),
 torch.nn.ReLU(),
 torch.nn.ReLU(),
 torch.nn.linear(9, output_dim),

....improving step by step

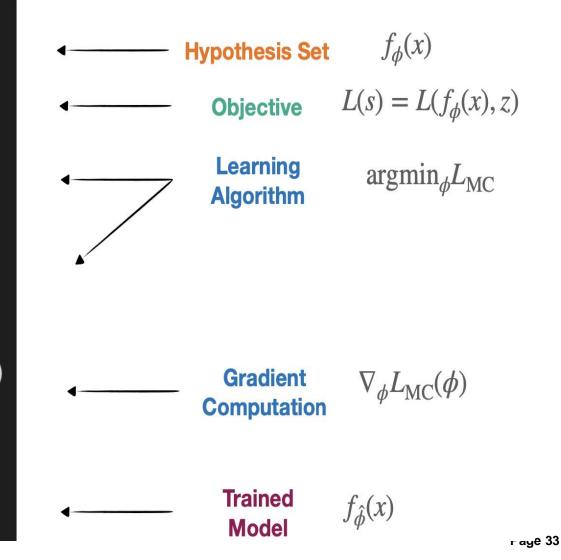
Learn by revisiting the data often and adjusting

f = initial_guess()
for n in range(steps):
 examples ~ p(data)
 loss = evaluate(f, examples)
 adjustment = react(loss, f)
 f = new_hypo(f, adjustment)

A full training loop

Data $s \sim p(s)$

```
def learn(samples):
    features, labels = samples
    model = MyModel()
    loss_func = torch.nn, MSELoss()
    opt = torch.optim.Adam(
        model.parameters(), lr = 1e-3
    for i in range(steps):
        predictions = model(samples)
        loss = loss_func(predictions, labels)
        loss.backward()
        opt.step()
        opt.zero_grad()
    return model
```



Back-up