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Multi-variate classification based on features

identify  Iris plants as belonging into 3 different 

categories based on their petal and sepal length 

and width 

“engineered features”

Fisher, R.A.(1936), the use of multiple measurements in taxonomic problems,

Annals of Eugenics, 7:179-188
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Deep learning

The assumption is that effective 

machine-learned tasks should start 

from low level in puts  and go through 

layers of abstraction to learn the 

classification

Picture taken as 

Matrix of pixels
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Beyond depth….

•  
Can we push this further, should we move away from

universal function approximators?

➢  bias variance tradeoff: reduce as much as you can

General Idea: should match data modality & task
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Inductive Bias

If we can throw out irrelevant functions, which we know can’t be the solution, we bias our inductive process

towards good solution 

➢ here: bias is good

Unstructured models
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MNIST

MNIST (Modified National Institute of Standards and Technology database) set of 70000 handwritten digits 

classified into 10 classes (0-9)

Pixel nr Pixel nr

P
ix

e
l 
n
r

Grid of 28x28 values (pixels)

Each pixel value [0,255]  indicating black/grey shade

2 dim regular grid

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
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CIFAR

60000 32x32 color images (32x32 

values each for Red Green Blue 

(RGB))  in 10 classes

10 randomly selected pictures out of 6000 per class

2 dim regular grid
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IMAGENET

•  14,197,122 images, 21841 categories; ~650 annotated images per category

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

> Annually contest  (solutions on kaggle)

> Challenges are on object detection, object location etc.

> Winners usually provide significant steps forward in CNN architectures or methods 

(reference networks)

2 dim regular grid
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Particle detector as image
Identify particles in a sampling calorimeter of the Noνa detector
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Convolutional Neural Networks
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Translational invariance

Implement algorithm supporting translational invariance of local structures

➢ Of the first successes of deep learning in the early 80’s

Is there a 9 in the picture?
And now?
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For each pixel: subtract the value of 

its neighboring pixel on the left
?
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Edge detection

For each pixel: subtract the value of 

its neighboring pixel on the left
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Convolutions

Two key ideas lead to the use of convolutions as building blocks of networks

➢ Local connectivity and weight sharing
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Convolution

F(𝜏) = f*g  = ∫ f(−t) g(t) dt

input distribution “kernel” or “filter” 
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Convolution in 2 dimension – discrete case
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Analysing images by convolution: blurr

K(m,n)

I(i-m,j-n)

= 93

S(i,j)
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Sliding through the full picture
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Analysing images by convolution: top sobel
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Analysing images by convolution: emboss
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Analysing images by convolution: sharpen
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Have fun with kernels

https://setosa.io/ev/image-kernels/



DESY. Page 24

In CNNs we train filters of various sizes

How can we implement the “filter” process in a neural network 
architecture?
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Sparse local connectivity
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Weight sharing

Simulate filter process: Same weights when moving over the input 
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Weight sharing complete layer

Same color = shared weight
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Significant reduction of training weights

Fully connected neural network:

25 (unique) weights (+5 biases)

CNN:

3 (unique) weights (+3 biases)

For both cases: at hidden node  bias is added and activation function σ (Σ Wj xj +b) is applied
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2d images with 2d filters

Each hidden node shares the weight with all other hidden nodes of the layer

At hidden node: add bias and apply activation function σ (Σ Wj xj +b)

“feature map”
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Going deeper….

• Receptive field of multi-layer CNN
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Convolutional layer

Typically ReLu
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Pooling in 1dim CNN

no downsampling

with downsampling
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2d CNNs: Pooling

• Max pooling over spatial positions is naturally invariant to translation

• Downsampling of image size

• Also possible: global pooling over complete feature map 

> Drastically reduced image size
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Details of convolution: Padding
D

e
e

p
 le

a
rn

in
g

 fo
r p

h
y
s
ic

s
 re

s
e

a
rc

h



DESY. Page 35

Details of convolution: Padding
D
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• Zero padding to treat edges when keeping image size
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Details of convolution: Stride
D
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Details of convolution: Dilation
D
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Here: dilation rate = 1 on a 3x3 filter

• Filter with Gaps to capture larger area without increasing the number of weights

> Useful to create large receptive field of view within a few layers
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Coloured images (RGB)

38
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Coloured images (RGB)

7

height 

7

width3

depth

image 

Regardless of the input depth the output has depth 1

5x5x1 feature map 

27 filter weights + 1 bias
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Coloured images, multiple filters
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Building CNN out of building blocks
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Complete CNN
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LeNet-5

• One of the  very first CNNs, LeCun (1998)

LeNet paper
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CNN in PyTorch

self.layers.append(torch.nn.Conv1d(in_channels=1,out_channels=20,kernel_size=11))

self.layers.append(torch.nn.ReLU())

-> More in Peters exercis
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Image data
Standard data sets to compare ML algorithms

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")
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Examples of famous CNNs

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")
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Alex Net

• Classifies 1000 objects of Imagenet

• 1.2 million training images

• 100 000 test images

> Winner of ILSVRC2012

> 10% better than 2nd best network

> One of the most influential papers on CNN (8000 citations)

> Establish large deep convolutional networks for imaging

https://dl.acm.org/doi/10.1145/3065386
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Alex Net structure

5 convolutions 3 dense layers

Reducing spatial dimension = increasing number of filters 
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AlexNet -  number of parameters
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Number of parameters

convolutions:

3 million

fully connected part:

59 million

total: 62 million

FC 2 layer dense NN:

~6*109 weights
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What type of filters are being learned?

96 filters of the first layer 
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Layer 4

Lower layers of network learn simple shapes / 

rough structure

Higher layers of network learn specific 

features/detailed modification
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AlexNet: activation function

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

ReLu
tan h

ReLu

tan h
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VGG net
Going deeper

➢ Much smaller filters

➢ Much deeper network

➢ Winner of ILSVRC2014 in localization, 2nd in classification

Stack filters of 3x3 with stride 1 in 3 layers

➢  deeper network possible due to smaller filters

Initialisation with paratemeters of pre-trained swallow 

network
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Memory usage of VGG
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Memory usage of VGG
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Summary 

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

• Method outperforming fully connected feed-forward NN for image like data

• Performs hierarchical learning, explores local structures and translational 

invariance

• Low number of parameters (compared to fully connected deep neural networks) 

and significantly shorter training time
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ML playgrounds



DESY. Page 60

Back-up
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Convolution

F(𝜏) = f*g  = ∫ f(t) g(𝜏-t) dt

here:  g Gaussian
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Invariance to local transformation
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Convolutions

• Equivalent to a filter that slides across the inputs
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Convolution: Gaussian smearing

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")
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