Introduction to Machine Learning

Part III: network architectures

Judith Katzy Hamburg, September 2024

HELMHOLTZ

Multi-variate classification based on features

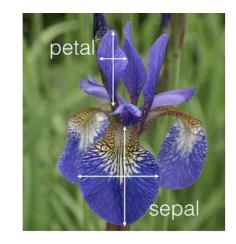
identify Iris plants as belonging into 3 different categories based on their petal and sepal length and width

"engineered features"

Iris setosa				Iris versicolor				Iris virginica			
Sepal length	Sepal width	Petal length	Petal width	Sepal length	Sepal width	Petal length	Petal width	Sepal length	Sepal width	Petal length	Petal width
5.1	3.5	1.4	0.2	7.0	3.2	4.7	1.4	6.3	3.3	6.0	2.5
4.9	3.0	1.4	0.2	6.4	$3 \cdot 2$	4.5	1.5	5.8	2.7	5.1	1.9
4.7	3.2	1.3	0.2	6.9	3.1	4.9	1.5	7.1	3.0	5.9	2.1
4.6	3.1	1.5	0.2	5.5	2.3	4.0	1.3	6.3	2.9	5.6	1.8
5.0	3.6	1.4	0.2	6.5	2.8	4.6	1.5	6.5	3.0	5.8	2.2
5.4	3.9	1.7	0.4	5.7	2.8	4.5	1.3	7.6	3.0	6.6	2.1
4.6	3.4	1.4	0.3	6.3	3.3	4.7	1.6	4.9	2.5	4.5	1.7
5.0	3.4	1.5	0.2	4.9	2.4	3.3	1.0	7.3	2.9	6.3	1.8
4.4	2.9	1.4	0.2	6.6	2.9	4.6	1.3	6.7	2.5	5.8	1.8

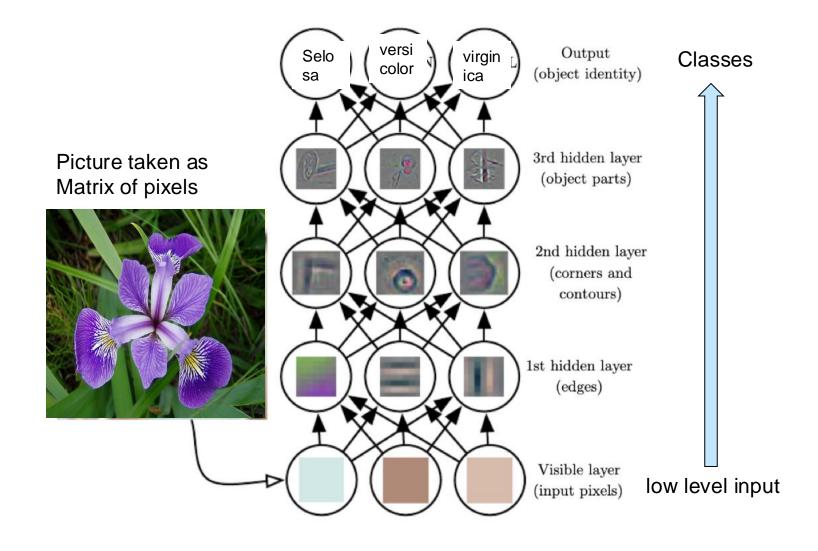
Morphological Measures of Iris Flowers (Part of the Iris Dataset, Source & License)

Fisher, R.A.(1936), the use of multiple measurements in taxonomic problems, Annals of Eugenics, 7:179-188



Deep learning

The assumption is that effective machine-learned tasks should start from low level in puts and go through layers of abstraction to learn the classification

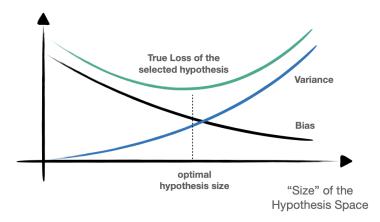


Beyond depth....

Can we push this further, should we move away from universal function approximators?

bias variance tradeoff: reduce as much as you can

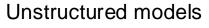
General Idea: should match data modality & task

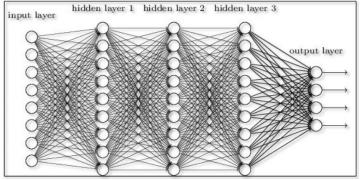


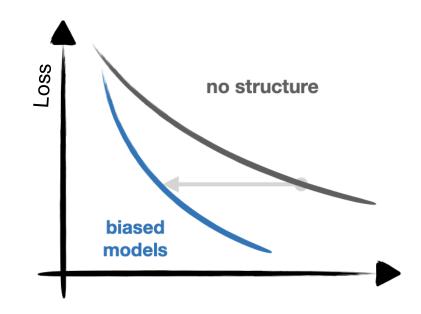
Inductive Bias

If we can throw out irrelevant functions, which we know can't be the solution, we **bias** our inductive process towards good solution

➢ here: bias is good







The Architecture Zoo

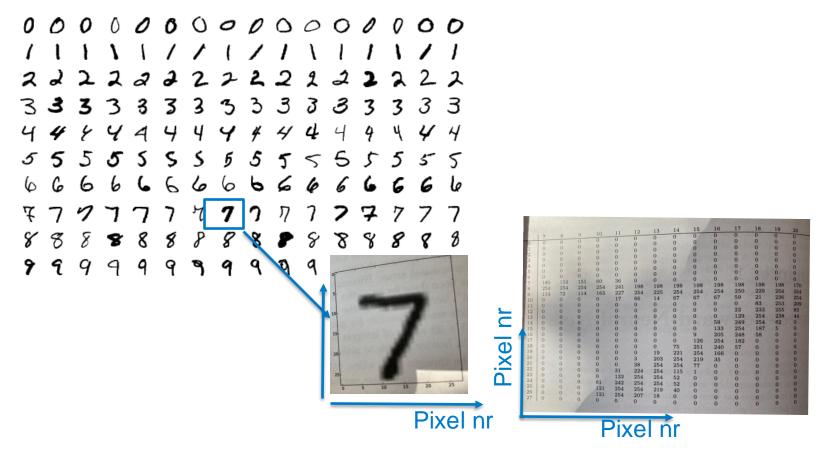
GNN

TRANSFORMER

MNIST

2 dim regular grid

MNIST (Modified National Institute of Standards and Technology database) set of 70000 handwritten digits classified into 10 classes (0-9)



Grid of 28x28 values (pixels)

Each pixel value [0,255] indicating black/grey shade

CIFAR 2 dim regular grid

60000 32x32 color images (32x32 values each for Red Green Blue (RGB)) in 10 classes

airplane a france automobile bird cat deer dog frog horse ship truck

10 randomly selected pictures out of 6000 per class

14,197,122 images, 21841 synsets indexed

Not logged in. Login I Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images. The project has been **instrumental** in advancing computer vision and deep learning research. The data is available for free to researchers for non-commercial use.

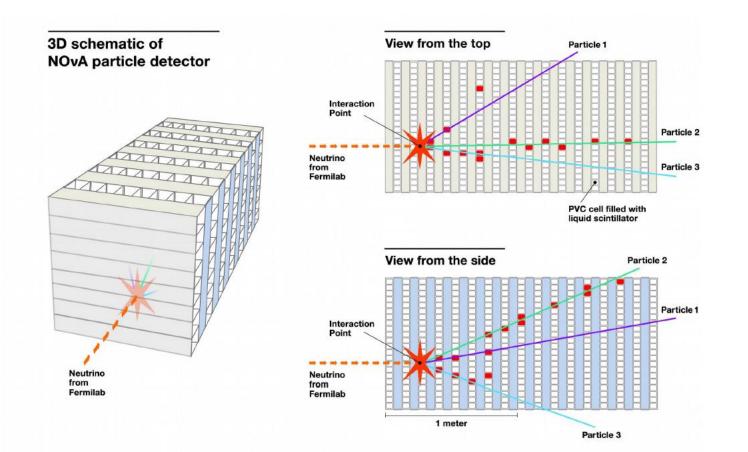
Home Download Challenges About

Mar 11 2021. ImageNet website update.

- 14,197,122 images, 21841 categories; ~650 annotated images per category
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - > Annually contest (solutions on kaggle)
 - > Challenges are on object detection, object location etc.
 - > Winners usually provide significant steps forward in CNN architectures or methods (reference networks)

Particle detector as image

Identify particles in a sampling calorimeter of the Nova detector



Convolutional Neural Networks

Translational invariance

Is there a 9 in the picture? And now?

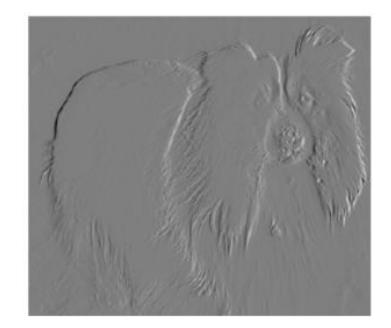
Implement algorithm supporting translational invariance of local structures

 \succ Of the first successes of deep learning in the early 80's

For each pixel: subtract the value of its neighboring pixel on the left

Edge detection

For each pixel: subtract the value of its neighboring pixel on the left



Two key ideas lead to the use of convolutions as building blocks of networks

Local connectivity and weight sharing

Convolution

$$F(\tau) = f * g = \int f(\tau - t) g(t) dt$$

input distribution "kernel" or "filter"

Convolution in 2 dimension – discrete case

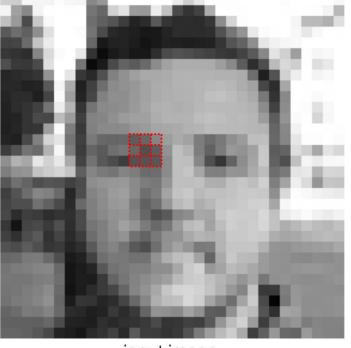
$$I(i, j) =$$
Image
 $K(m, n) =$ Kernel

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i-m, j-n)K(m,n)$$

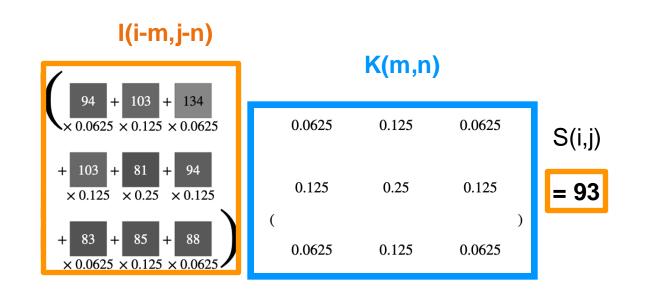
Filtered image

Analysing images by convolution: blurr

$$S(i,j) = (I * K)(i,j) = \sum \sum I(i-m,j-n)K(m,n)$$



input image



Sliding through the full picture

Page 19

Analysing images by convolution: top sobel

2

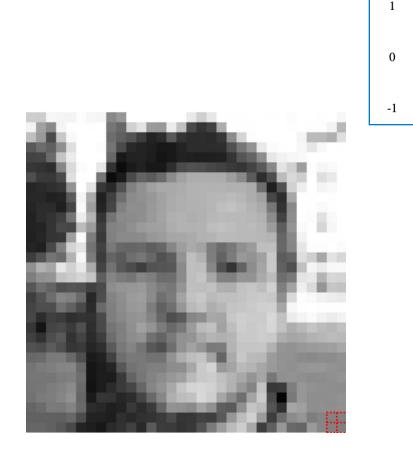
0

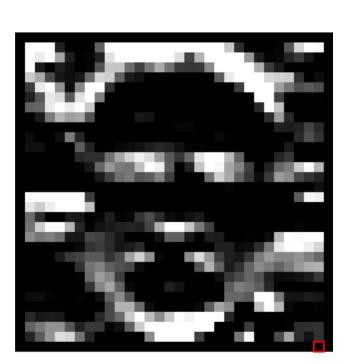
-2

1

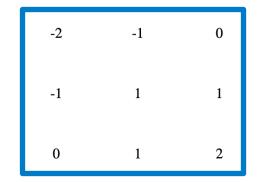
0

-1



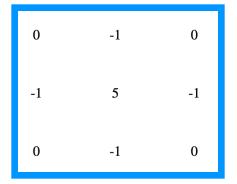


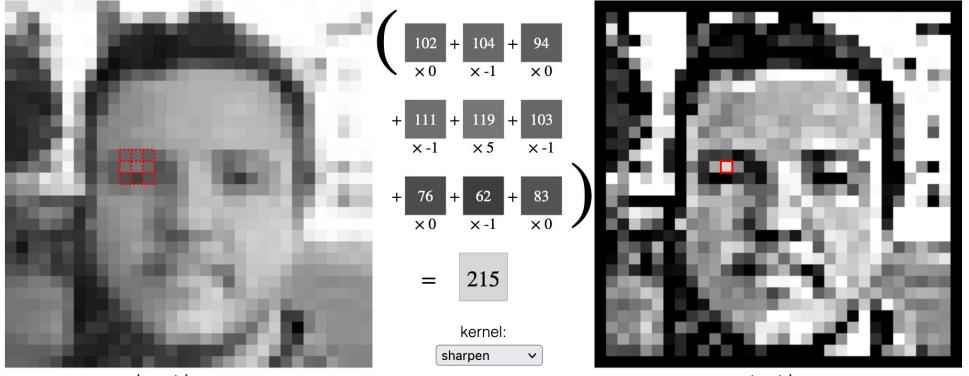
Analysing images by convolution: emboss





Analysing images by convolution: sharpen





input image

output image

Have fun with kernels

https://setosa.io/ev/image-kernels/

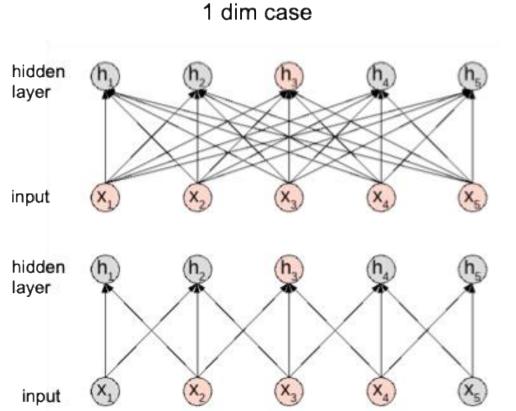
In CNNs we train filters of various sizes

$$\begin{bmatrix} w & w_2 \\ w_3 & w_4 \end{bmatrix} \begin{bmatrix} w & w_2 & w_3 \\ w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \end{bmatrix} \begin{bmatrix} w & w_2 & w_3 & w_4 \\ w_5 & w_6 & w_7 & w_8 \\ w_9 & w_{10} & w_{11} & w_{12} \\ w_{13} & w_{14} & w_{15} & w_{16} \end{bmatrix}$$

How can we implement the "filter" process in a neural network architecture?

....

Sparse local connectivity

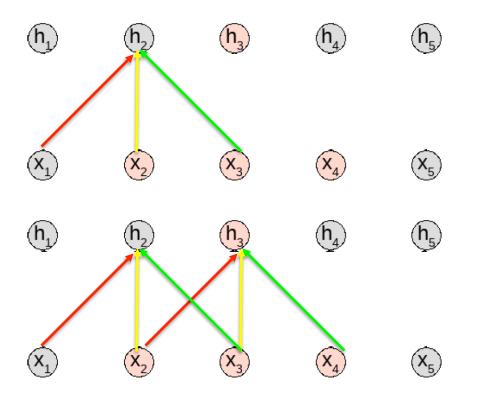


Fully connected neural network: h₃ receives input from all input nodes

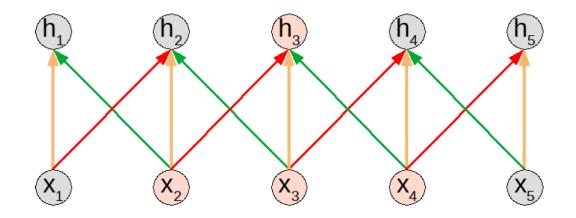
CNN: h₃ receives input from few input nodes

Weight sharing

Simulate filter process: Same weights when moving over the input

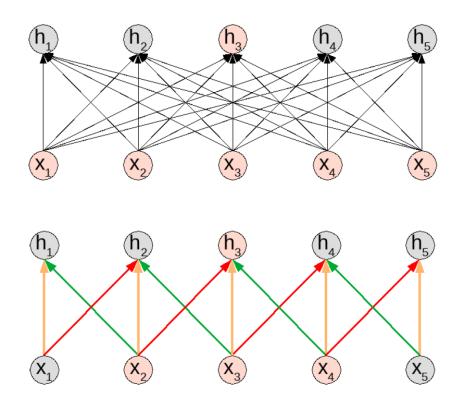


Weight sharing complete layer



Same color = shared weight

Significant reduction of training weights

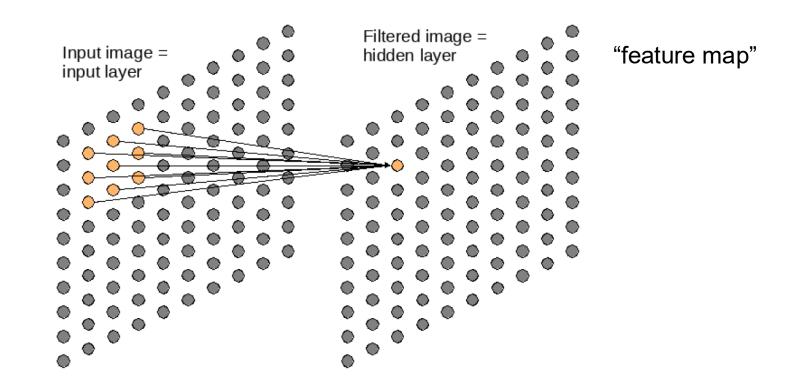


Fully connected neural network: **25 (unique) weights** (+5 biases)

CNN: 3 (unique) weights (+3 biases)

For both cases: at hidden node bias is added and activation function σ (Σ W_j x_j +b) is applied

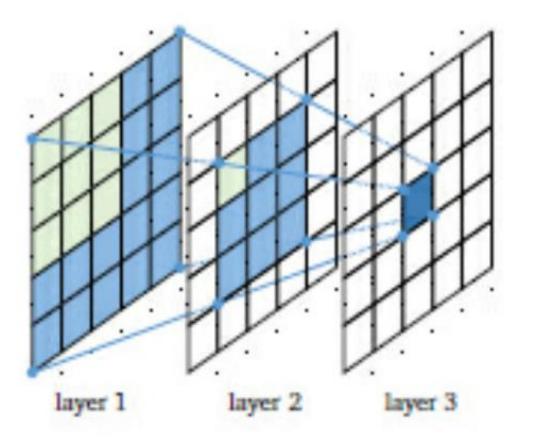
2d images with 2d filters



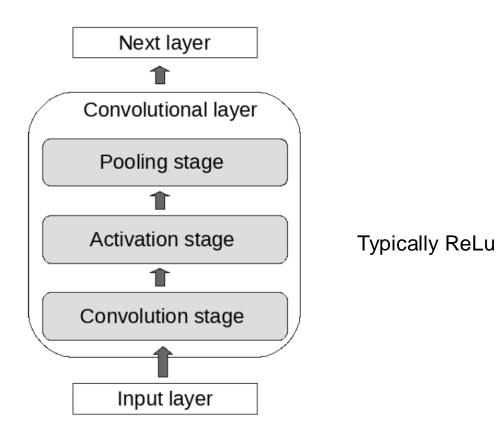
Each hidden node shares the weight with all other hidden nodes of the layer At hidden node: add bias and apply activation function σ (Σ W_j x_j +b)

Going deeper....

• Receptive field of multi-layer CNN

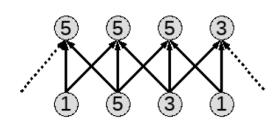


Convolutional layer



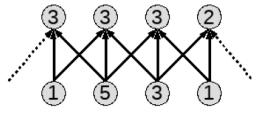
Pooling in 1dim CNN

Max pooling layer



Hidden layer

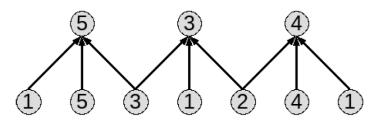
Average pooling layer



Hidden layer

no downsampling

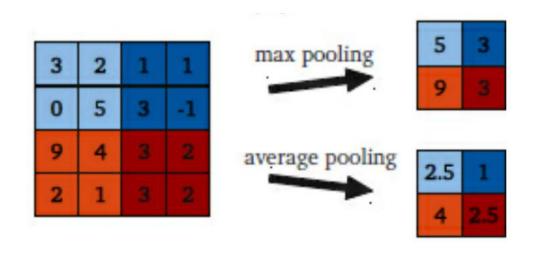
Max pooling, with downsampling



Hidden layer

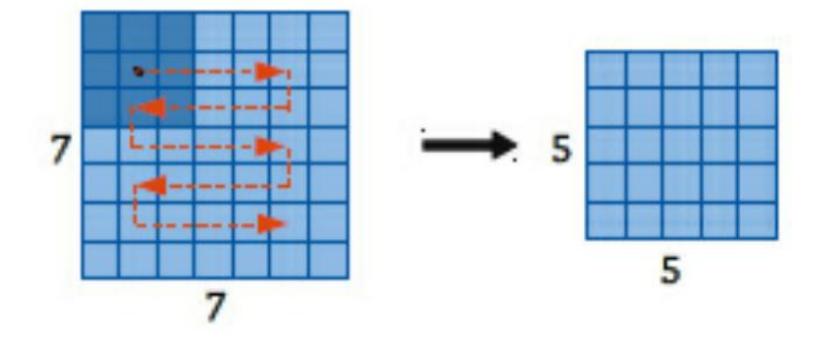
with downsampling

2d CNNs: Pooling

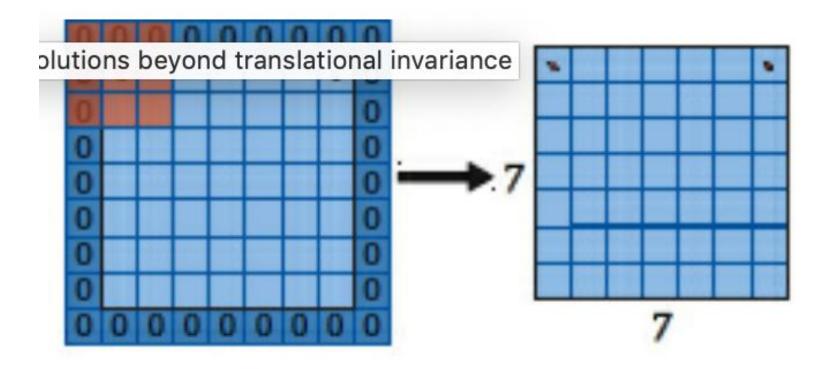


- Max pooling over spatial positions is naturally invariant to translation
- Downsampling of image size
- Also possible: global pooling over complete feature map
 - > Drastically reduced image size

Details of convolution: Padding

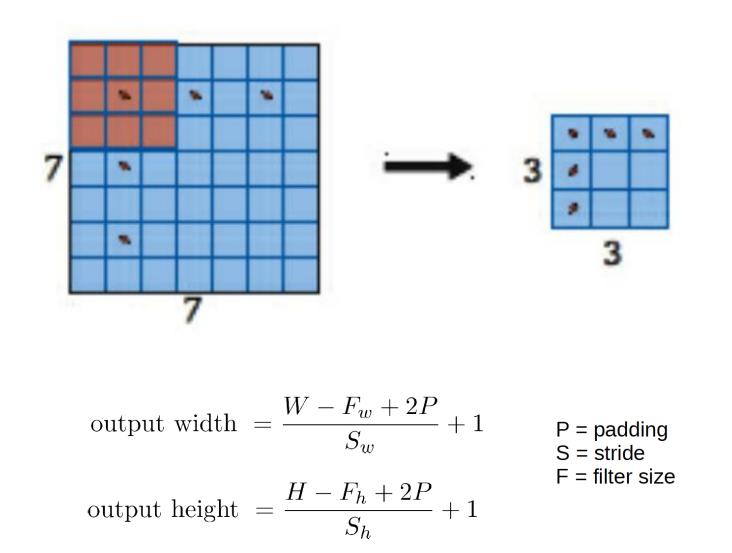


Details of convolution: Padding

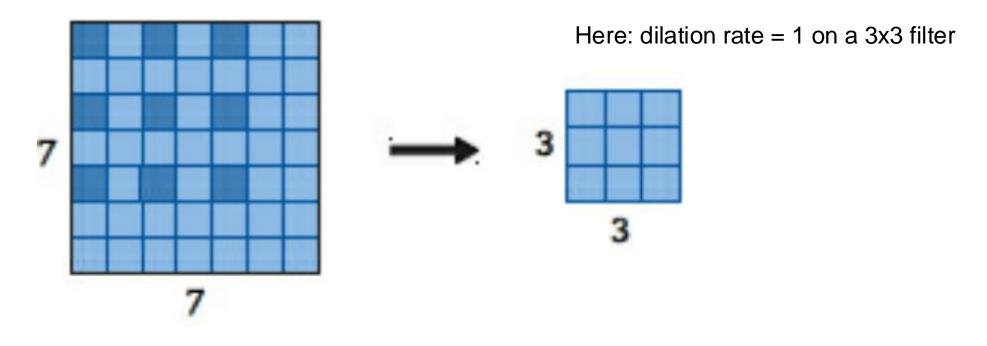


• Zero padding to treat edges when keeping image size

Details of convolution: Stride

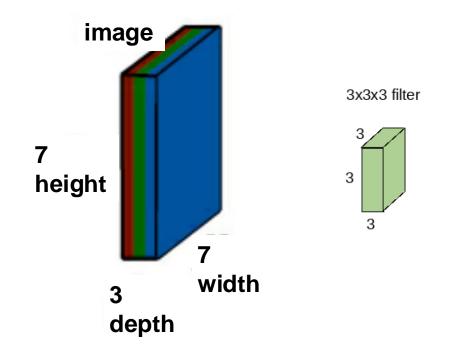


Details of convolution: Dilation



- Filter with Gaps to capture larger area without increasing the number of weights
 - > Useful to create large receptive field of view within a few layers

Coloured images (RGB)

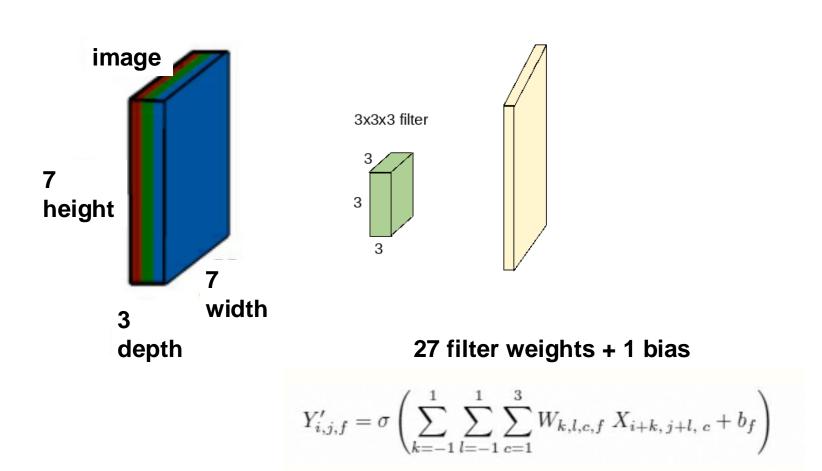


Remember: Filters always extend to the full dept of the input image

 $\overline{}$

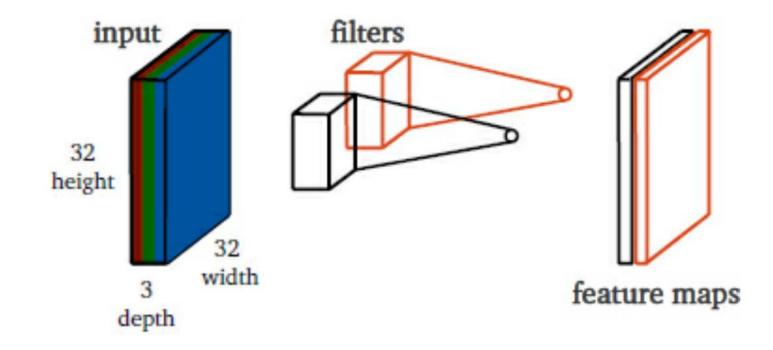
Coloured images (RGB)

Regardless of the input depth the output has depth 1

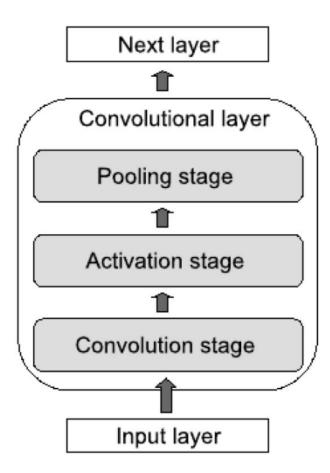


5x5x1 feature map

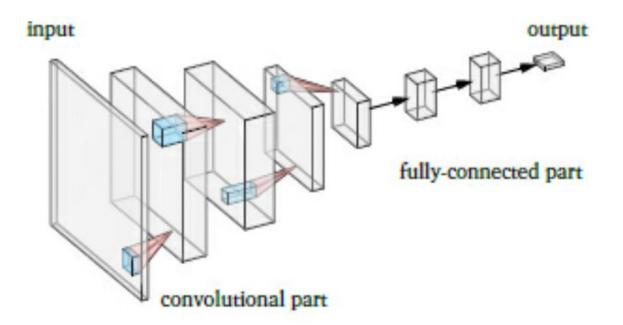
Coloured images, multiple filters



Building CNN out of building blocks

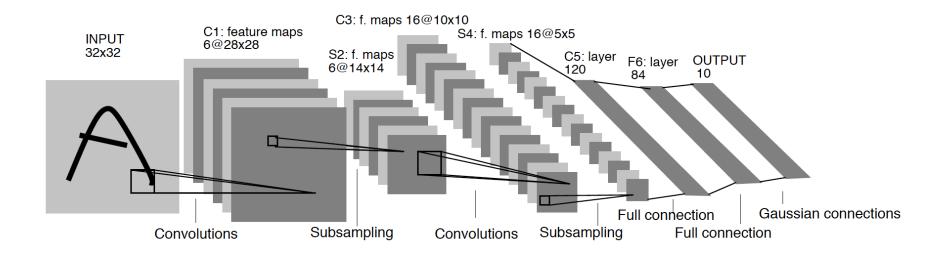


Complete CNN



LeNet-5

• One of the very first CNNs, LeCun (1998)



CNN in PyTorch

self.layers.append(torch.nn.Conv1d(in_channels=1,out_channels=20,kernel_size=11))
self.layers.append(torch.nn.ReLU())

-> More in Peters exercis

Image data

Standard data sets to compare ML algorithms

Examples of famous CNNs

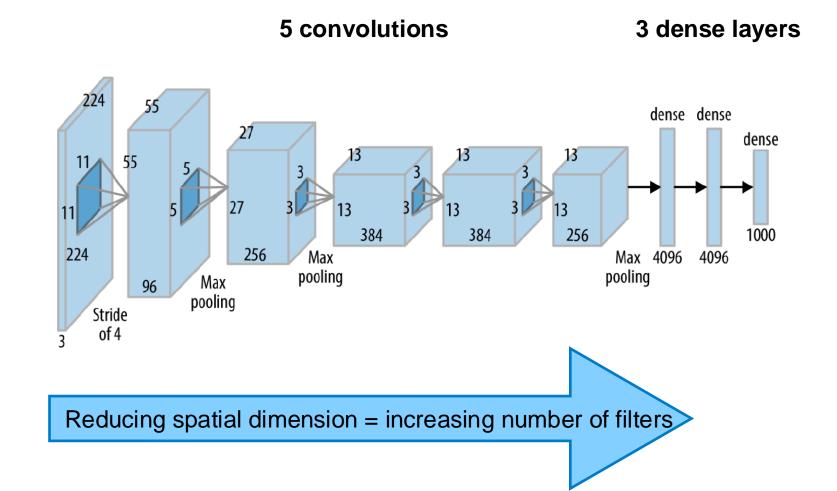
Alex Net

- Classifies 1000 objects of Imagenet
- 1.2 million training images
- 100 000 test images

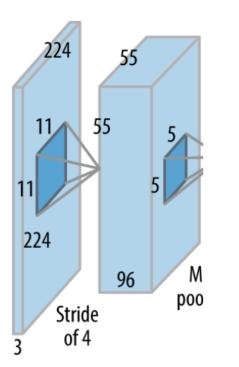
> Winner of ILSVRC2012

- > 10% better than 2nd best network
- > One of the most influential papers on CNN (8000 citations)
 - > Establish large deep convolutional networks for imaging

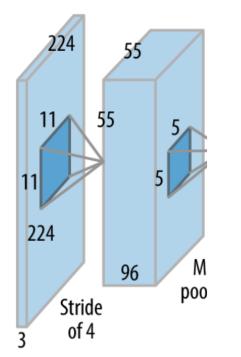
Alex Net structure



• Images: 227x227x3• Filter size: 11x11• Stride: 4 • Conv layer output: 55x55x96W - F + 2 P S W - F + 2 P S P: padding, here P=0



AlexNet - number of parameters

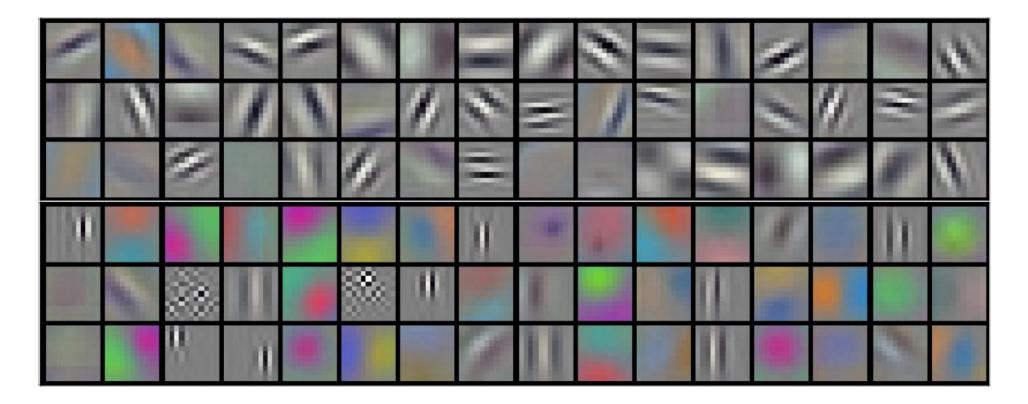


Number of weights: 11 * 11* 3 + 1 per filter 96 filters (11*11*3+1)*96 = 34944 weights

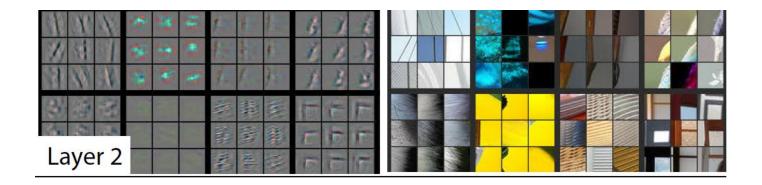
Number of parameters

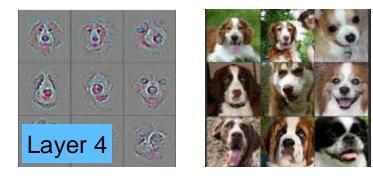
Size / Operation	Filter	Depth	Stride	Padding	Number of Parameters	
3* 227 * 227		_				
Conv1 + Relu	11 * 11	96	4		(11*11*3 + 1) * 96=34944	
96 * 55 * 55						
Max Pooling	3 * 3		2			
96 * 27 * 27						
Norm						
Conv2 + <u>Relu</u>	5 * 5	256	1	2	(5 * 5 * 96 + 1) * 256=614656	
256 * 27 * 27						
Max Pooling	3 * 3		2			
256 * 13 * 13						
Norm						
Conv3 + Relu	3 * 3	384	1	1	(3 * 3 * 256 + 1) * 384=885120	
384 * 13 * 13						convolutions:
Conv4 + Relu	3 * 3	384	1	1	(3 * 3 * 384 + 1) * 384=1327488	ſ
384 * 13 * 13						3 million
Conv5 + <u>Relu</u>	3 * 3	256	1	1	(3 * 3 * 384 + 1) * 256=884992	
256 * 13 * 13					· · · ·	
Max Pooling	3 * 3		2			
256 * 6 * 6						
Dropout (rate 0.5)						
FC6 + Relu					256 * 6 * 6 * 4096=37748736	
4096				. h.		-
Dropout (rate 0.5)						> fully connected part:
FC7 + Relu					4096 * 4096=16777216	
4096						59 million
FC8 + Relu					4096 * 1000=4096000	
1000 classes				_		total: 62 million
Overall					62369152=62.3 million	
Conv VS FC					Conv: 3.7million	EC 2 lover dense NINI
1		1	Î	1		FC 2 layer dense NN:
						~6*10 ⁹ weights

What type of filters are being learned?



96 filters of the first layer

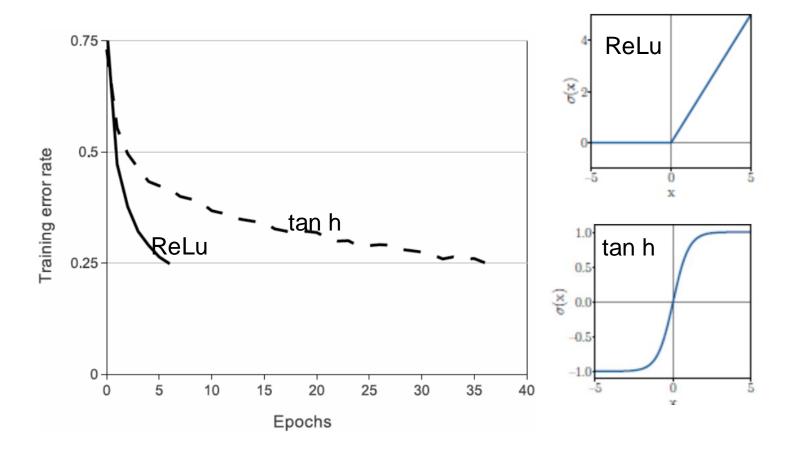




Lower layers of network learn simple shapes / rough structure

Higher layers of network learn specific features/detailed modification

AlexNet: activation function



VGG net

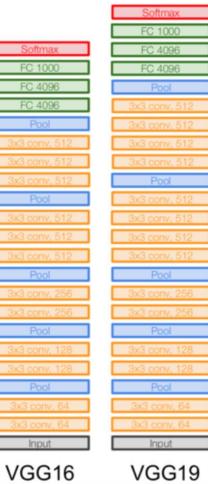
Going deeper

- Much smaller filters \geq
- Much deeper network \geq
- Winner of ILSVRC2014 in localization, 2nd in classification \triangleright

Stack filters of 3x3 with stride 1 in 3 layers

deeper network possible due to smaller filters \geq

Initialisation with paratemeters of pre-trained swallow network



AlexNet

Memory usage of VGG

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases) CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K CONV3-512: [14x14x512] memory: 14*14*512=100K CONV3-512: [14x14x512] memory: 14*14*512=100K POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

> TOTAL memory: 24M * 4 bytes ~= 96MB / image TOTAL params: 138M parameters

Softmax						
Softmax FC 1000						
FC 4096						
FC 4096						
Pool						
3x3 conv, 512						
3x3 conv, 512						
3x3 conv. 512						
Pool						
3x3 conv, 512						
3x3 conv, 512						
3x3 conv, 512						
Pool						
3x3 conv, 256						
3x3 conv, 256						
Pool						
3x3 conv, 128						
3x3 conv, 128						
Pool						
3x3 conv, 64						
3x3 conv, 64						
Input						

VGG16

Memory usage of VGG

INPUT: [224x224x3] memory: 224*224*3=150K.params: 0 (not counting biases) Largest **memory** CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 consumption in initial CONV3-64: [224x224x64 memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 layers (by feature POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 maps) CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K CONV3-512: [14x14x512] memory: 14*14*512=100K CONV3-512: [14x14x512] memory: 14*14*512=100K Largest number of POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 parameters in final FC: [1x1x4096] memory: 4096 barams: 4096*4096 = 16,777,216 dense layers FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image TOTAL params: 138M parameters

- Method outperforming fully connected feed-forward NN for image like data
- Performs hierarchical learning, explores local structures and translational invariance
- Low number of parameters (compared to fully connected deep neural networks) and significantly shorter training time

ML playgrounds

Machine Learning Playground

http://ml-playground.com/

Deep Learning in your browser

https://cs.stanford.edu/people/karpathy/convnetjs/

https://cs.stanford.edu/people/karpathy/convnetjs/

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

https://playground.tensorflow.org/

Experiments with Google

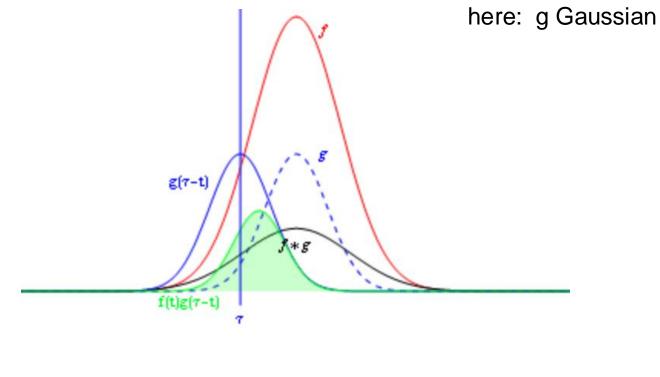
COLLECTION

AI Experiments

https://experiments.withgoogle.com/collection/ai

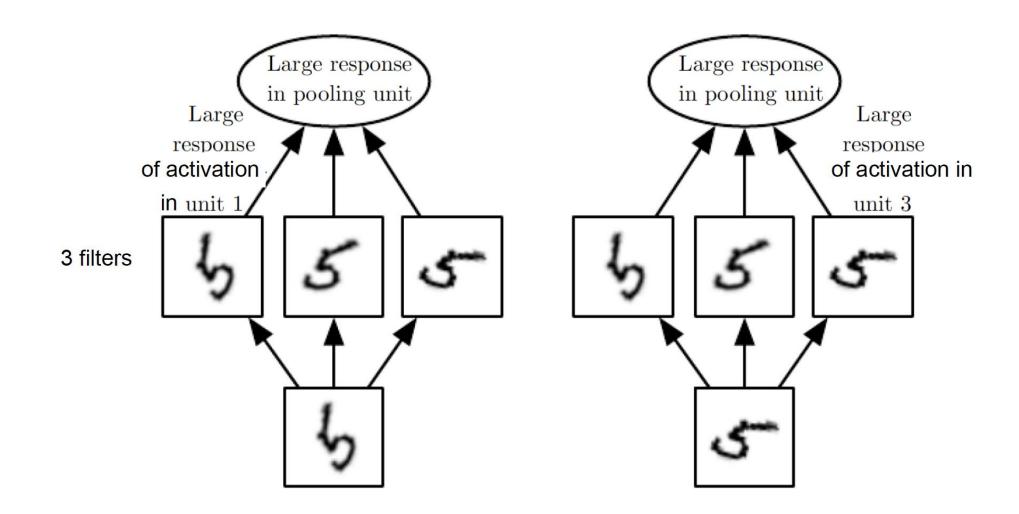
Back-up

Convolution



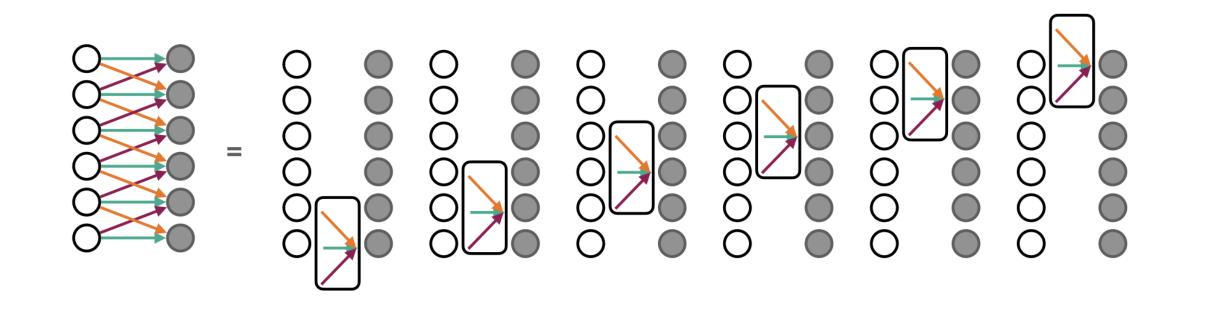
 $F(\tau) = f \cdot g = \int f(t) g(\tau - t) dt$

Invariance to local transformation

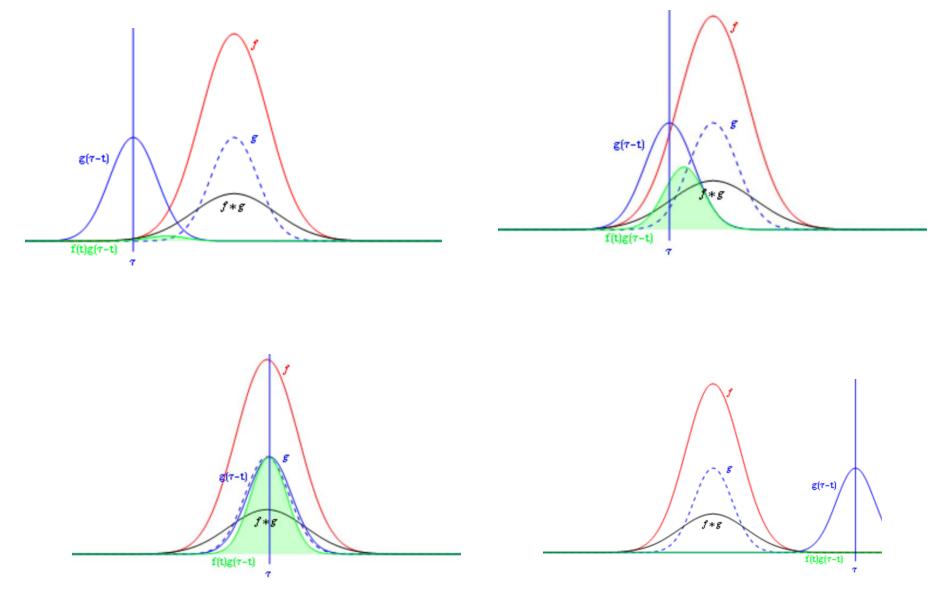


Convolutions

• Equivalent to a filter that slides across the inputs



Convolution: Gaussian smearing



DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")