Introduction to Machine Learning

Part IV

Judith Katzy Hamburg, September 2024

HELMHOLTZ

Outline

Understanding Neural Network Behaviour

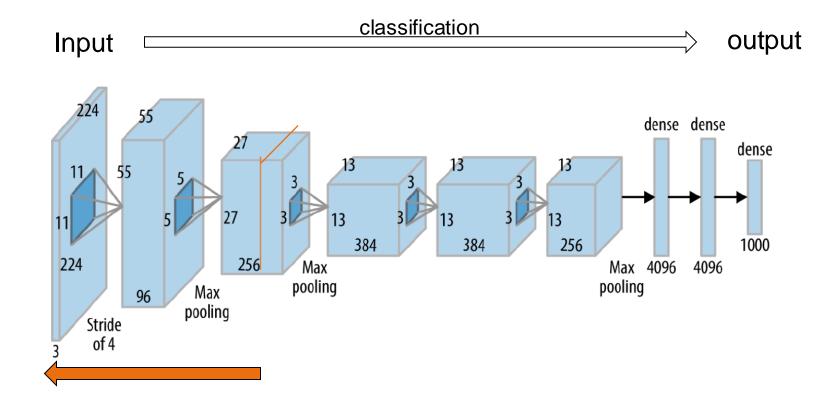
- Model/architecture
 - How is the model working? What is learned by a particular layer?
 - Example: filter visualization in lecture III
- Data:
 - Which part of the data is most important for the task?

- Predictions
 - Whis is a certain class (or value) predicted and can we quantify what contributes how much to the prediction?

Use CNN as example to illustrate the method, adaptable for other networks

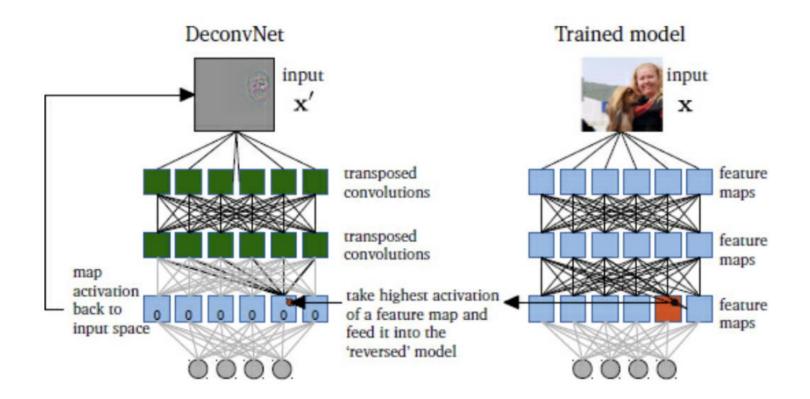
Data inspection

AlexNet: image classification



From activation in feature map back to image

Inspect which input pattern in the pixel space caused a given activation in the feature maps.

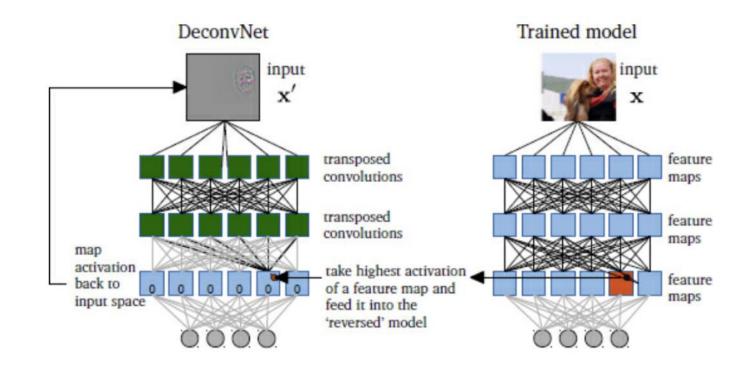


Step-by-step

Present single image to trained network

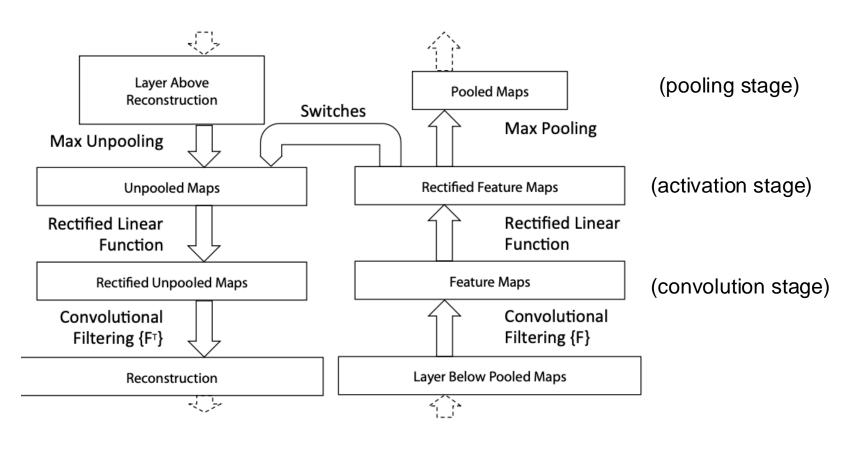
Chose image with high activation in one feature or just take maximal activation in one layer Chose activated feature of interest, set all other features in that layer to 0 Reconstruct iteratively the information in each layer until the input layer is reached

Display activations projected down to pixel space and parts of input images



DeconvNet

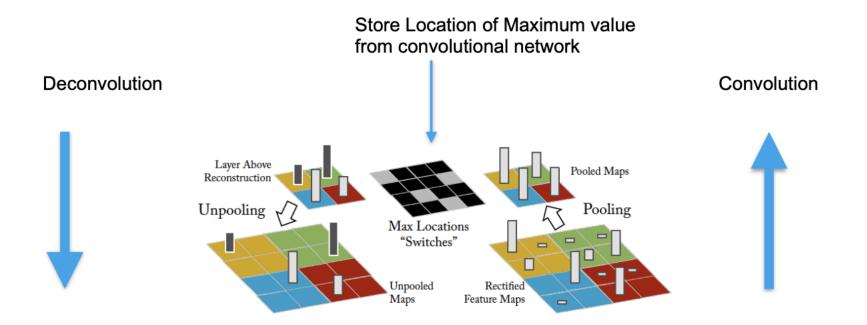
Pass layer to an attached DeconvNet



classification

image

Unpooling

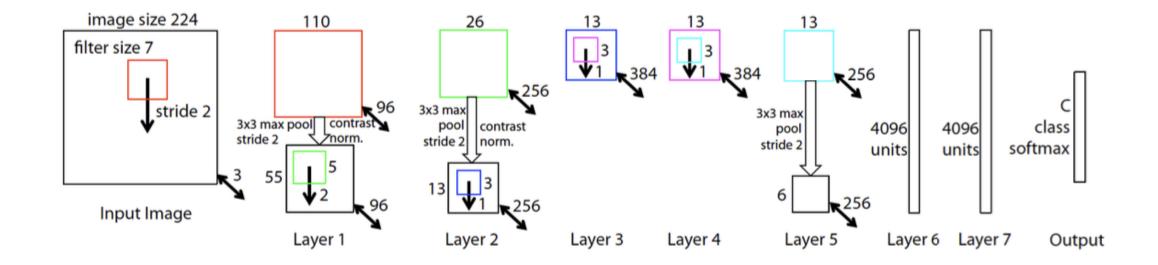


Reverse filtering operation

Deconvolute

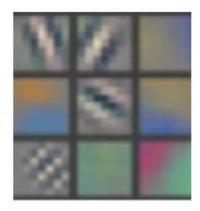
Max Unpooling
Unpooled Maps
Rectified Linear Function
Rectified Unpooled Maps
Convolutional Filtering (F ⁷)
Reconstruction
Max Unpooling
Unpooled Maps
Rectified Linear Function
Rectified Unpooled Maps
Convolutional Filtering (F ⁷)
Reconstruction
NON

Example network



Layer 1

Top 9 activations in layer 1



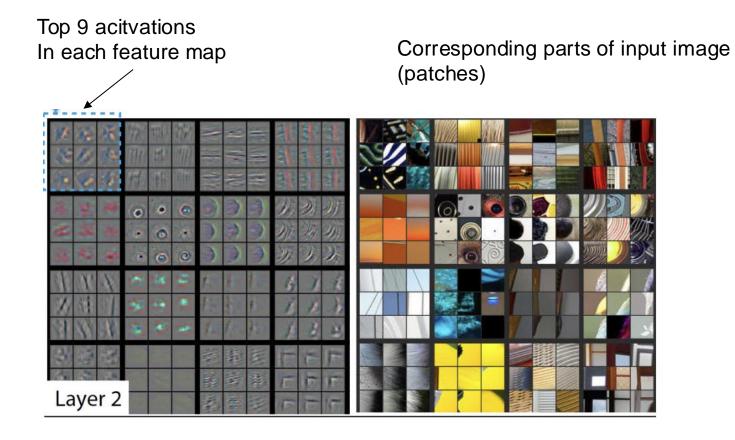
"visualisation"

Corresponding parts of input images ("patches")

Only focusses on disriminating Features

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

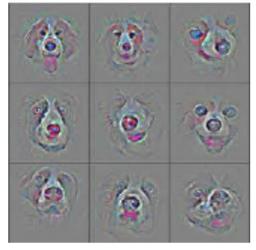
Layer 2



16 randomly selected Feature maps

Layer 4

Features triggering activations

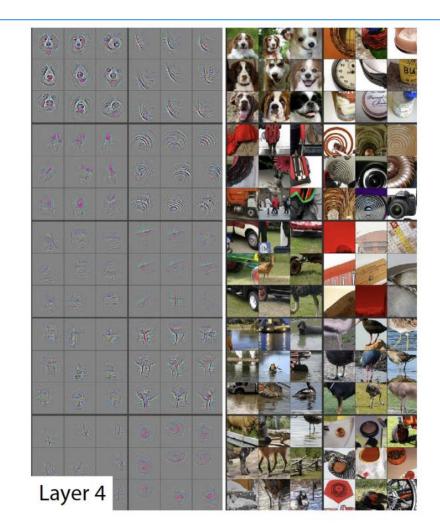


Corresponding parts of input images ("patches")

Filters in later layers learn more specific and class related information > here eyes and nose of the dog

- -

Different pictures in layer 4



Filters in later layers learn more specific and class related information

Layer 5

Corresponding image patches

Little in common between images.....?

Saliency Maps

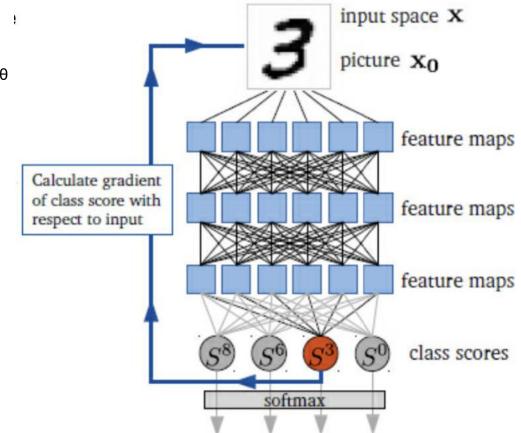
Saliency maps

- Given a trained model f_{θ}
 - > interpret model for given sample(image) \mathbf{x}_0 : f_{θ} (\mathbf{x}_0)
- > What caused the network prediction?

Example: a Mnist image of 3 is presented to the network, the network classifies it as 8 Why?

Given a trained network predicting class c with score
S for given input **x**: S^c(**x**₀,θ)

> S^c = value before applying softmax to get output f_{θ}

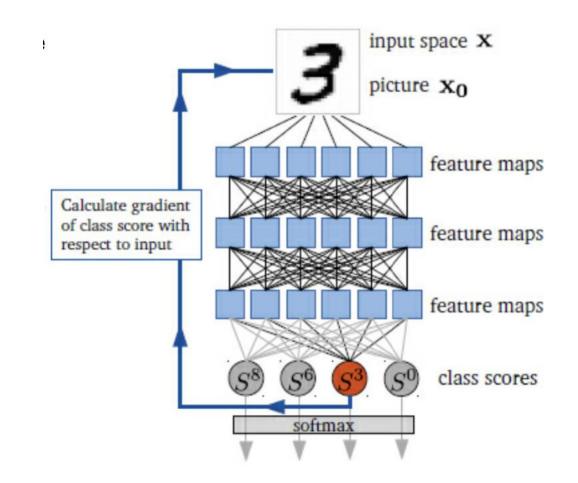


Gradients with respect to pixels

$$\mathbf{g}^{c} = \frac{\partial S^{c}(\mathbf{x}, \theta)}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{0}}$$

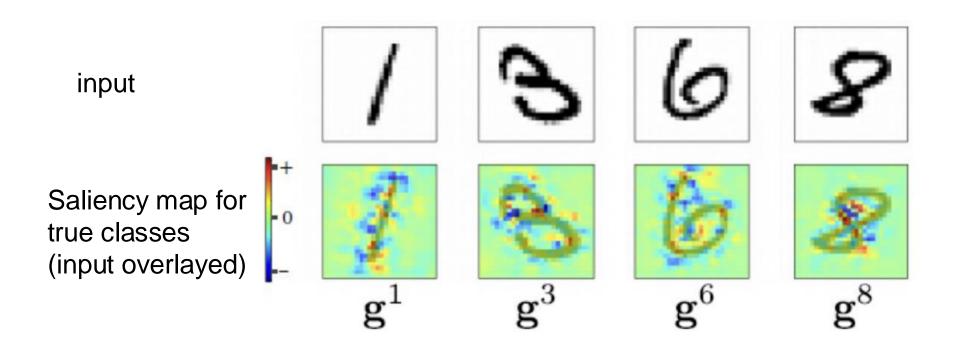
The larger g^c the stronger the sensitivity of the model to this input pixel value

Saliency map = complete set of gradients



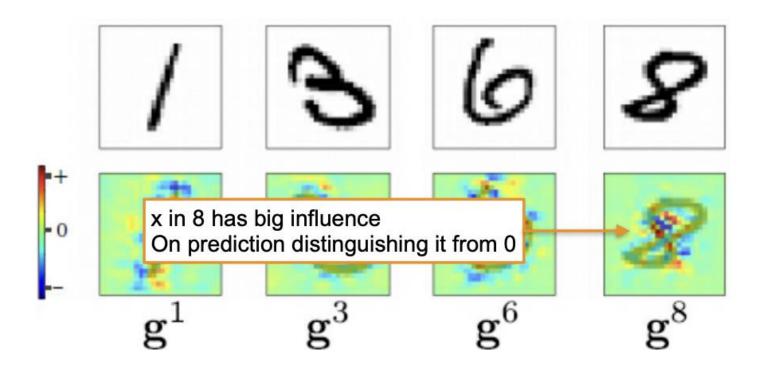
Saliency map

Visualisation



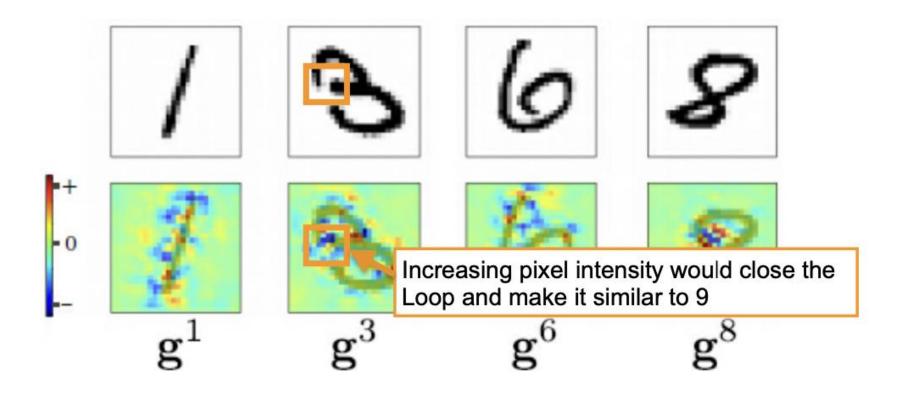
Saliency maps

Visualisation of pixel importance



Saliency maps

Visualisation of pixel importance



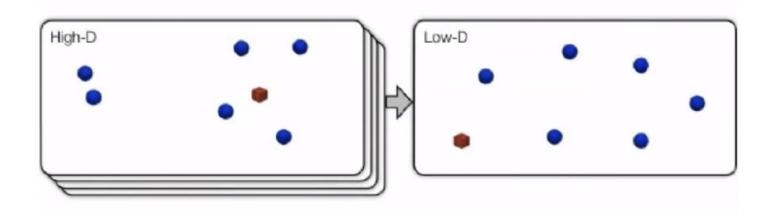
Visualisation of high dimensional data

or

How to visualize that two objects (pictures) are similar?

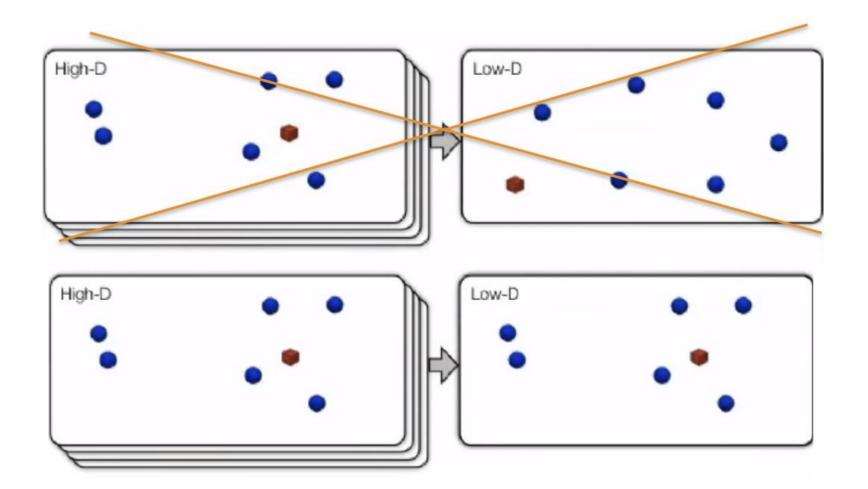
Basic idea

Reproduce distances in higher dimensional space as closely as possible in low dimensional "map"

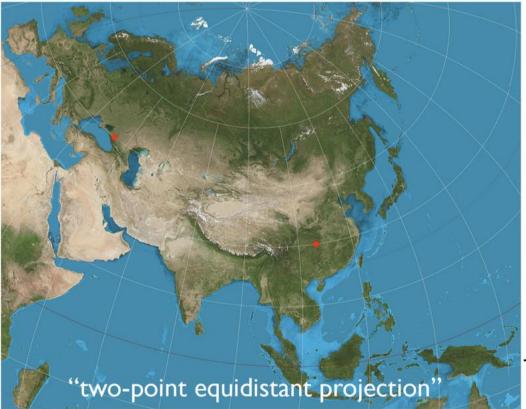


Basic idea

Reproduce distances in higher dimensional space as closely as possible in low dimensional "map"



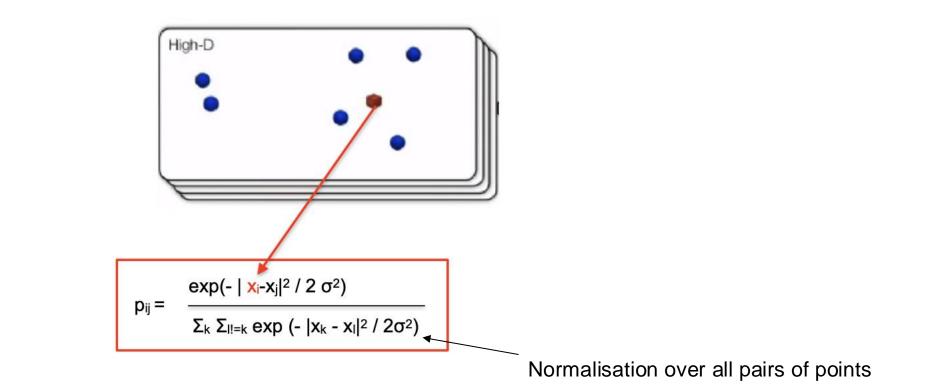
Map makers dilemma



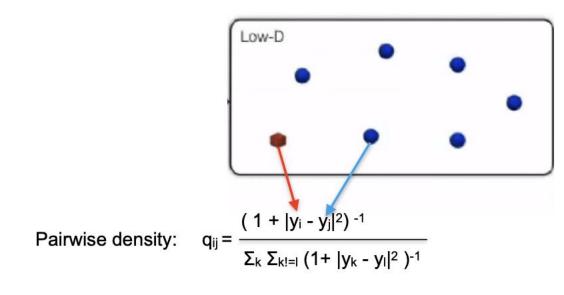
wikipedia

T-distributed Stochastic Neighbour Embdding

- Define pairwise probability distribution that depends on distance in high dimensional space
 - Probability higher for close neighbours



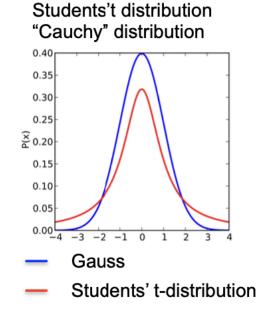
tSNE similarities in low dimensional space



q comparably larger at long distances:

> low-dim has less space for points -> need to give them more room

> allows points in low-dim space to spread out for intermediate distances



tSNE find optimal mapping

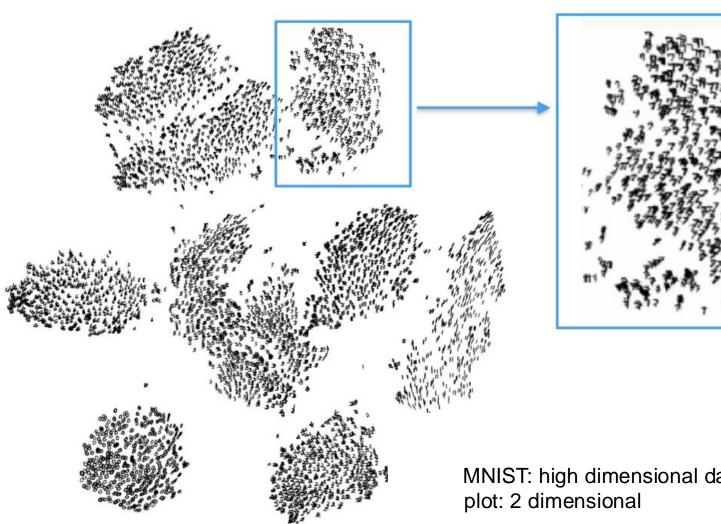
Find q-distribution similar to p-distribution

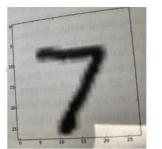
Performance measure: Kullback-Leibler (KL) divergence

KL(P||Q) = Σ_i Σ_j p_{ij} log
$$\frac{p_{ij}}{q_{ij}}$$

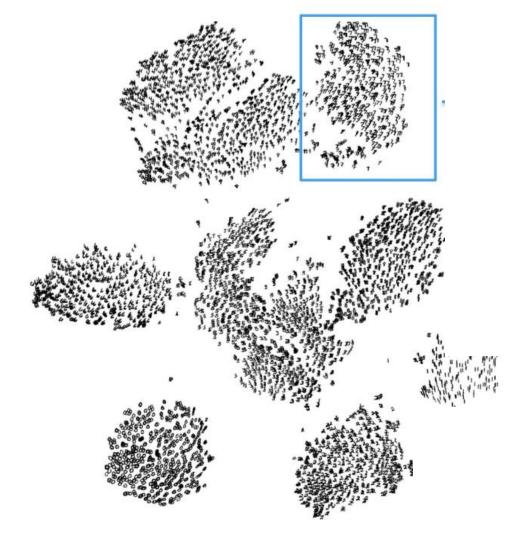
Move points in low dimensional space around such that KL is minimized \geq Use gradient descent for dKL/dy_i

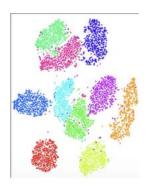
MNIST: high dimensional data 28x28



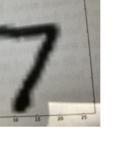


tSNE on MNIST





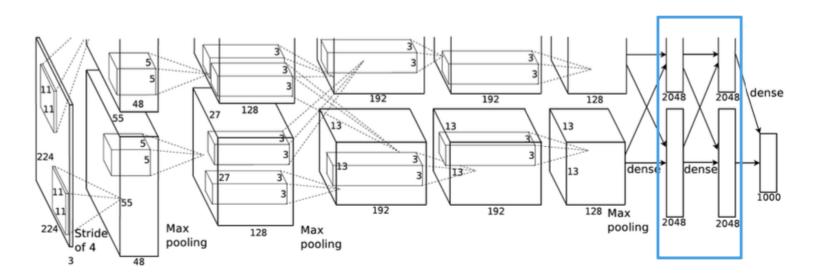
Color each image according to the truth label From 0-9

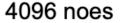


Visualisation of CNN nodes with tSNE

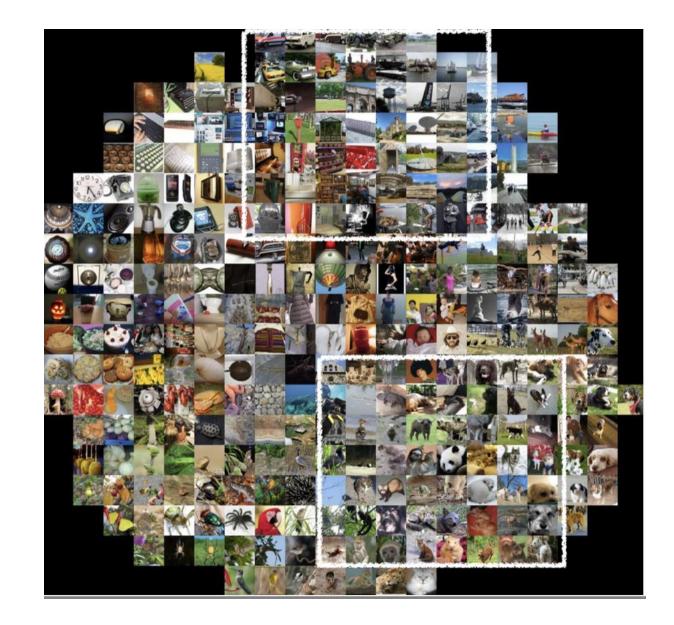
> Take 4096 nodes of multi-layer CNN classifying ImageNet pictures (2012 competition)

> map 4096 nodes down to 2-dim using tSNE





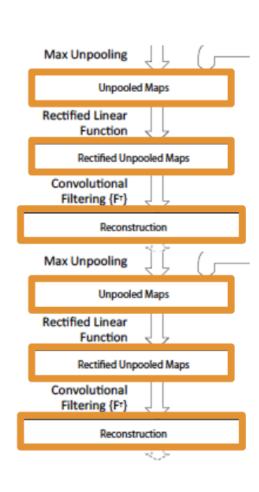
Nodes of CNN classifying image net pictures



Back-up

Reverse filtering operation

Deconvolute



Unpool

Rectivy output of unpooling

Apply transpose filter matrix to undo filtering

Repeat until input layer is reached