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Understanding Neural Network Behaviour

 Model/architecture

« How is the model working? What is learned by a particular layer?

« Example: filter visualization in lecture Il

e Data:

* Which part of the data is most important for the task?

 Predictions

« Whis is a certain class (or value) predicted and can we gquantify what contributes how much to the prediction?

Use CNN as example to illustrate the method, adaptable for other networks
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Data inspection

AlexNet: image classification

classification

Input > output
224
55 dense dense
27 / dense
13 13 13
3 3 3
3 13 3 13 3 13
384 384 256 1000
224 256 Max Max 4096 4096
% Max pooling pooling
Stride pooling
3 of 4
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From activation in feature map back to image

Inspect which input pattern in the pixel space caused a given activation in the feature maps.

DeconvNet Trained model

transposed

convolutions

transposed

convolutions

take highest activarion
of a fearure map and
feed it into the
‘reversed’ model
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Step-by-step

Present single image to trained network

» Chose Iimage with high activation in one feature or just take maximal activation in one layer
Chose activated feature of interest, set all other features in that layer to O

Reconstruct iteratively the information in each layer until the input layer is reached

» Display activations projected down to pixel space and parts of input images

DeconvNet Trained model

transposed
convolutions
B )

transposed
convolutions

TS

map i
acrivaton &' S og— take highesrt activation =

- pack 10 I__,] B:I [-_Z] I:,] 0| L8] of afearure map and fﬁg“;re
input space feed it into the .

‘reversed’ model

@000
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DeconvNet

Pass layer to an attached DeconvNet

Layer Above
Reconstruction

classification

~
PR
= g
1
1
1
1

Pooled Maps

Switches
) Max Pooling
Max Unpooling | Q \J

Unpooled Maps Rectified Feature Maps
Rectified Linear Rectified Linear
Function Function
Rectified Unpooled Maps Feature Maps

Convolutional
Filtering {F'}

Convolutional
Filtering {F}

Reconstruction

Layer Below Pooled Maps
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Image

(pooling stage)

(activation stage)

(convolution stage)
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Unpooling

Store Location of Maximum value
from convolutional network

Deconvolution Convolution

%Pm}led Maps

Pooling

Max Locations
“Switches”
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Reverse filtering operation

Max Unpooling [
Rectified Linear
Function

Rectified Unpooled Maps

Deconvolute
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Example network

image size 224

filter size 7

‘Lstride 2

Input Image

110

3x3 max
pool

26

\2‘56

contrast

stride 2| [norm.

13

3

4 ase

Layer 2
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Layer 3

384

13 13
& 3
1 384

3%3 max
pool

stride 2
6

Layer 4 Layer 5

256

4096
units

—

C
class
softmax

Layer6 Layer7 Output
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Results
Layer 1

Top 9 activations in layer 1

“visualisation”

Only focusses on disriminating Features
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Corresponding parts of input
images (“patches”)
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Results

Layer 2 _
Top 9 acitvations

In each feature map Corresponding parts of input image
(patches)

; ’WW“WM
T e
7 T ’;
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ﬂ(f‘)l]]
e PP

16 randomly selected
Feature maps

]
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Results
Layer 4

Features triggering Corresponding parts of input
activations images (“patches”)
I v

Filters in later layers learn more specific and class related information
> here eyes and nose of the dog
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Results

Different pictures in layer 4

Filters in later layers learn more specific and class related information
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Results
Layer 5

Corresponding image patches

Little in common between images...... ?
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Saliency Maps
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Saliency maps

« Given atrained model fg
Interpret model for given sample(image) X,: fg (Xo)

What caused the network prediction?

Example: a Mnist image of 3 is presented to the network, the network classifies it as 8

Why?
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« Given a trained network predicting class ¢ with score
S for given input x: S¢(x,0) : input space X
> S¢ = value before applying softmax to get output fg 3 picture Xgq

feature maps

Calculate gradient
of class score with

st o) ot feature maps

feature maps

[ sofmax ]
Y Y V V
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Gradients with respect to pixels

] input space X
c 3 picture Xgq
g — 05¢(x, 0)
ox oy,
e feature maps
Calculate gradient
Ce of class score with '

The larger g¢ the stronger the sensitivity of respect to input __| feature maps
the model to this input pixel value

feature maps

Saliency map = complete set of gradients ’ 0 . class scores

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page 19



Saliency map

Visualisation

Input /
Saliency map for || !
true classes .

(input overlayed) }-
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Saliency maps

Visualisation of pixel importance

—

D b

=

-

X in 8 has big influence
On prediction distinguishing it from 0

—

1

&

g3
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Saliency maps

Visualisation of pixel importance

&
+ L A e

4 Increasing pixel intensity would close the
Loop and make it similar to 9

g’ g" g®

.-
—1.
-
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Visualisation of high dimensional data
or

How to visualize that two objects (pictures) are similar?
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Basic idea

Reproduce distances in higher dimensional space as closely as possible in low dimensional “map”

[ Hich-D b [ Low-D )
- e © I P
o @ ¢
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- s - -
k‘ JJJ \_ J
N J
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Basic idea

Reproduce distances in higher dimensional space as closely as possible in low dimensional “map”

High-D

A

LLk
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Map makers dilemma

eipadiim

“two-point equidistant projection”
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T-distributed Stochastic Neighbour Embdding

« Define pairwise probability distribution that depends on distance in high dimensional space

* Probability higher for close neighbours

7 “\\
High-D ¢ © N\
“
[
(¥}
o
- v,
~ y - o
S /{ <)
E

exp(- | x-xj|2 / 2 02)

Pij =
2k Zi=k exp (- |xk - xi|2 / 202) o

\
Normalisation over all pairs of points
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tSNE similarities in low dimensional space

iR =3
Low-D ®
@ v
' [*)
t 2 e
. P,
\ Students’t distribution
_ (1+]yi-yj?) - “Cauchy” distribution

Pairwise density: Q= 0.40 .

2k 2=t (14 |yk - w12 )

0.35
0.30
0.25

Z0.20
0.15

0.10

g comparably larger at long distances: 00s
. . . 0.00 i -
> low-dim has less space for points -> need to give them more 4-3-2-10 12 34
— Gauss
room e
> allows points in low-dim space to spread out for intermediate == Students’ t-distribution
distances
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tSNE find optimal mapping

Find g-distribution similar to p-distribution

Performance measure: Kullback-Leibler (KL) divergence

KL(PIQ) = % % pj log g+

Move points in low dimensional space around such that KL is minimized
» Use gradient descent for dKL/dy;
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tSNE on MNIST
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MNIST: high dimensional data 28x28
plot: 2 dimensional
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tSNE on MNIST
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Visualisation of CNN nodes with tSNE

> Take 4096 nodes of multi-layer CNN classifying ImageNet pictures (2012 competition)

> map 4096 nodes down to 2-dim using tSNE

4096 noes

A

dense¢ | |dense]

192 128 Max || ||
pooling | 2998 20as8|

Strid Max 128
of 4 pooling pooling
3 48
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Nodes of CNN classifying image net pictures
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Back-up
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Reverse filtering operation

Deconvolute

Unpool

Rectivy output of unpooling Repeat until input layer is
reached

Apply transpose filter matrix to undo filtering
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