
SUSTAINABLE COMPUTING

Part1: Introduction & systems at hand

Ana-Lucia Varbanescu

a.l.varbanescu@utwente.nl

mailto:a.l.varbanescu@utwente.nl

Computing is everywhere … and it’s not free!

• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or
about 400 North America persons)

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the
national railways

• And consumption increased by 80% in 3 years

• The ICT sector is predicted to reach 21% of the global energy consumption by 2030

The energy consumption of computing is substantial and

constantly increasing!

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos

Three types of stakeholders

System integrators

Offer the right mix of resources

for the application developers

and system operators.

Include efficient hardware to

enable different application

mixes.

System operators

Ensure efficient scheduling

of workloads on system

resources.

Harvest energy where

resources/systems are

massively underutilized.

Developers and users

Improve the energy efficiency

of their own codes, making use

of algorithmic, programming,

and hardware tools

Design and implement

applications able to adapt to

the available system resources

Three types of stakeholders

System integrators

Offer the right mix of resources

for the application developers

and system operators.

Include efficient hardware to

enable different application

mixes.

System operators

Ensure efficient scheduling

of workloads on system

resources.

Harvest energy where

resources/systems are

massively underutilized.

Developers and users

Improve the energy efficiency

of their own codes, making use

of algorithmic, programming,

and hardware tools

Design and implement

applications able to adapt to

the available system resources

Systems

• On-premise hardware
• Flexible, yet often limited in resources

• Good for development

• Limited value for production

• Supercomputers
• Massive machinery, high-performance

• Partially shared

• Less flexible in terms of infra and programming

• Datacenters & Cloud computing
• Scale-by-credit card

• Excellent efficiency

• Possible limitations in terms of performance (SLA)

• Computing continuum
• New development in distributed computing

• Unclear for scientific computing

• Relevant for complete data analysis (sensor-to-result)

Supercomputing/Data-centers

• Supercomputing is extremely high in carbon emissions, mainly due to scale.

• Embodied carbon: Indirect emissions, e.g., production, shipping, and

disposal of system components.

• Operational carbon: Electricity, heating, cooling, etc. for the site operation.

Acquisition

• New lifecycle assessment & procurement procedures

• Current Goal: Maximize Throughput (Workloads)

• Constraints:

• Budget = Machine Cost + Electricity;

• System Footprint/Weight; CoolingCapacity; PowerSupply; …

• New Constraint: Carbon Budget

Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain

Extend lifetime

• Extend Lifetime, Reuse, and Recycle

• System Lifetime: Typically 4-6 years

• Extended lifetime -> embodied carbon reduction.

• Reuse & Recycle: Reduce carbon emissions caused by

disposal & production

• Reuse: e.g., LRZ offers decommissioned machines for free.

• Recycling: accelerators, DRAM chips, heat pipes, cooling infra,

...

Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain

Operation

• Efficient operation

• Schedulers

• Automated tools

• Support/education for users

• Additional opportunities

• Shared resources

• Location shifting

• Time/Peak shifting

Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain

Three types of stakeholders

System integrators

Offer the right mix of resources

for the application developers

and system operators.

Include efficient hardware to

enable different application

mixes.

System operators

Ensure efficient scheduling

of workloads on system

resources.

Harvest energy where

resources/systems are

massively underutilized.

Developers and users

Improve the energy efficiency

of their own codes, making use

of algorithmic, programming,

and hardware tools

Design and implement

applications able to adapt to

the available system resources

Developers & users

• Measure/Quantify

• Select the right systems

• Select the right implementation tools

• Select the right algorithms

• Tweak and tune … and iterate

Agenda

• Different views on performance

• Towards zero-waste computing

• Understand systems

• Understand applications

• Performance engineering

• Methods and tools for sustainable computing

• Energy consumption and efficiency

• Beyond energy

• Take home message

Part 1

Part 2

Context

• Modern (and future) systems are parallel and heterogeneous

• In many dimensions

• Systems are characterized by peak performance (with various “roofs”)

• All applications want more performance

• Applications must enable parallelism

• One Application => n algorithms => n*m implementations

• Algorithms: characterized by complexity

• Algorithms/implementations: characterized by arithmetic/operation intensity – ops/byte

We want more …

• More speed => “higher performance”

• More pixels => “better resolution”

• More functions => “more complexity”

• More accuracy => “better models”

• More realism => “better simulators”

We need want more compute !

Just buy a newer/bigger computer !

Run it “in the cloud” !
This is (potentially) inefficient!

Some relevant performance metrics*

• Speed-up: how much faster do we get with new machines, algorithms, …

 S(workload) = Perf(Old)/Perf(New)

• Efficiency: how efficient are we in getting performance

 E(workload) = Perf / Resources

• Energy efficiency: how energy efficient are we in getting performance

 EE(workload) = Perf / Energy

• Utilization: how efficient are we utilizing our resources

 U(resource) = Achieved / Peak

High-efficiency computing

High-performance computing

*please accept the naïve notation and pseudo-definitions

Waste in computing

Unneccesary time (or energy) spent in (inefficient)

computing is compute waste.

We all can and must improve software and hardware

efficiency to minimize waste in computing!

To reduce compute waste, we must shift from

time-to-solution towards efficiency-to-solution

Why is compute efficiency challenging?

It is a nonfunctional requirement

Focuses on user-“irrelevant” issues like resource utilization, scalability, …

We all make a lot of excuses

It’s someone else’s problem

It’s just a matter of money
• More hardware, more people, more time

It’s easy to fix later

It’s “just engineering”

Requires effort,

 and there’s (often) little glory in it.

… and new applications and new computing systems

emerge monthly …

Detecting and reducing waste

• We assume computing waste is a consequence of underutilized resources.

• Informally, assume:

system1 > system2

P1 = performance(algorithm, workload, system1)

P2 = performance(algorithm, workload, system2)

• “Strict” definition:

 if (P1 == P2) => waste

• “Relaxed” definition:

 if (abs (P1 - P2) < T) => waste

 with T = threshold for performance loss

18

Challenges in both

efficiency

quantification and

improvement.

??

Reducing waste in computing

Raise awareness

• Monitor (energy) efficiency

• Quantify waste

Improve efficiency

• Improve applications for the systems at hand

• Make applications more efficient

• Make applications share systems

• Improve systems for the applications at hand

• Co-design applications and systems

Performance analysis

Performance modeling

Performance optimization

Efficient scheduling and

resource sharing

Application-centric system

design

Systems SOTA: Supercomputers

Hardware developments: parallel & heterogeneous

• More complex CPUs & GPUs
• See Fugaku, Sunway TaihuLight

• GPUs from different vendors and different capabilities

• DPUs
• Integrated CPUs+GPUs+DPUs (and other forms of HW)

• AI accelerators
• Google’s TPUS

• New machines for AI/data-intensive processing
• GraphCore, Cerebras

• Don’t forget FPGAs

And then put them together in supercomputers …

Or datacenters …

Supercomputers

• Powerful computers used for science, technology/engineering and AI

• Built as extremely large computer systems, with 100K’s “basic” components

and many billion transistors

• “replicate” architectural patterns from nodes to blades to racks/cabinets.

• interconnect each of these components with fast and/or efficient networks.

• All the processors in a supercomputer can perform computations at the same

time => parallel computing.

• Faster progress than sequential systems …

• …iff parallel code exists.

Example: IBM’s BlueGene/Q

Example: FUGAKU

Example: SUMMIT

@June’24

1 Exascale machine

1 custom-built machine

Heterogeneous

AMD, Intel+NVIDIA

Top500

Gap: 20 – 30%

#1

#500

Sum

Green 500

@June 2024

None of the top5 …

LUMI is #12

Aurora, Fugaku > #50

Parallel System Models

• Shared Memory
• Multiple compute nodes

• One single shared address space

• Typical example: multi-cores

• Distributed Memory
• Multiple compute nodes

• Multiple, local (disjoint) address spaces

• Virtual shared memory: software/hardware layer “emulates” shared memory

• Typical example: clusters

• Hybrids
• Multiple compute nodes, typically heterogeneous

• Mixed address space(s), some shared, some global memory

• Typical example: supercomputers

Shared memory

Distributed memory

Hybrid

Parallel Machine Models

• Shared Memory
• Multiple compute nodes

• One single shared address space

• Typical example: multi-cores

• Distributed Memory
• Multiple compute nodes

• Multiple, local (disjoint) address spaces

• Virtual shared memory: software/hardware layer “emulates” shared memory

• Typical example: clusters

• Hybrids
• Multiple compute nodes, typically heterogeneous

• Mixed address space(s), some shared, some global memory

• Typical example: supercomputers

Programming: multi-threading

Programming models: OpenMP, pthreads, TBB, …

Programming: message passing

Programming models: MPI, Big-data models, …

Programming: very diverse, depending on the

hardware configuration

Shared memory

Distributed memory

Hybrid

Main challenge: scaling to ExaFLOPS and beyond

• Peak performance = sum of capabilities of all machines

• E.g.: 100 nodes x 128 cores x 100GFLOPs/core

• Scaling options:

• More nodes = scale out

• More powerful nodes = scale up (or acceleration/heterogeneity)

• Limitations to actual performance

• Memory, I/O, networking bottlenecks

• Load-imbalance

• Non-uniform behaviour

• Programmability

Hybrid

How to scale-up/-out?

• Shared Memory model <= typical for scale-up, limited for scale-out

• Interconnect scalability problems & uniform accesses

• Programming challenge: RD/WR Conflicts

• Distributed Memory model <= typical for scale-out, inefficient for scale-up

• Data distribution is mandatory

• Programming challenge: remote accesses, consistency

• Virtual Shared Memory model <= increased programmability and overhead

• Significant virtualization overhead

• Easier programming

• Hybrid models <= trade-offs at different levels!

• Local/remote data more difficult to trace

What about sustainability?

• Efficient use of the system

• Low performance => Low utilization => Low efficiency

• Inefficient resource reservation => Low efficiency

• Application scaling + programming  system architecture

• E.g.: calculate the histogram of a very large dataset on a (small) number of bins.

Shared memory Distributed memory Hybrid

Programmer vs. runtime/OS vs. job scheduler

• Programmer exposes parallelism at
application level
• Job = application + dataset

• Application = set of tasks

• Tasks = execute in some sequential order and/or in
parallel

• Runtime/OS map the tasks on resources
• In both space and time

• Possibly with programmer’s restrictions

• (Job) Scheduler ensures jobs are allocated
resources
• Ideally sufficient and ”localized”

How to split and program the
tasks? How is data accessed?

Knowledge of node architecture is
essential for effective optimization.

What runs where and when?
Decisions by a runtime system
and/or OS; require deep knowledge
system architecture.

What resources are allocated?
Decisions by a job scheduler to
maximize utilization/performance.

Inefficient parallel application design affects all

levels in terms of efficiency and sustainability!

Systems SOTA: Inside the node

Inside the node*

Main

memory
I/O

bridge
Bus interface

ALU.

Register file

CPU core x n

System bus Memory bus

Disk

controller

Graphics

adapter/card

USB

controller

Mouse Keyboard Display

Disk

I/O bus
Expansion slots for

other devices such
as network adapters

PC

Computer architects: how to build these?

Computer scientists: how to use these?

Stores your

program

and data

Executes your

program

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron

Cache

memory

Accelerates

part of your

program

Performance “metrics”

• Clock frequency [GHz] = absolute hardware speed
• Memories, CPUs, interconnects

• Operational speed [GFLOPs]
• Operations per second

• single AND double precision

• Memory bandwidth [GB/s]
• Memory operations per second

• Can differ for read and write operations !

• Differs a lot between different memories on chip

• Power [Watt]
• The rate of consumption of energy

• Derived metrics
• FLOP/Byte, FLOP/Watt

A processor’s inner workings

• CPU = executes the “application”

• Manages the execution progress (PC)

• Fetches needed instructions and data (addresses)

• Executes (ALU) operations and manages results

• Memory = stores the executable code of the application and the data

• Receives request + address, replies with data (a bit vector)

• Bus = facilitates information (=bits) movement

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data
…

Addresses

Data

Instructions

Information

transfer

Bus

The CPU

• Computations are executed by the ALU

• Integer, single/double precision arithmetic, …

• Comparisons, logical operations, …

• ALU runs at its own “clock speed” / frequency
• Defines how many cycles/s can be executed by the CPU

• Each operation takes 1 or more cycles

• Higher performance CPUs
• Make a faster/smarter ALU

• More operations per cycle

• Make faster CPUs

• More cycles/s

• Multiple cores

• Even more operations per cycle!

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data
…

Addresses

Data

Instructions

Information

transfer

Bus

All these are powered!

Unused => low efficiency => waste!

Traditionally … single core CPUs

• More transistors = more functionality

• Improved technology = faster clocks = more speed

• Every 18 months => better and faster processors.

Not anymore!

We no longer gain performance by “growing” sequential

processors …

CPU

Individual

Memory (cache)

More individual

memory (cache)

Bus interface

Off-chip

components

Single core processor

New ways to use transistors

Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs)

and many-core processors (GPUs).

The shift to multi-core

Generic multi-core CPU
Hardware threads

SIMD units (vector lanes)

L1 and L2

dedicated

caches

Shared L3 cache

Main memory, I/O

Peak

performance

Bandwidth

CPU levels of parallelism

• Instruction-level parallelism (e.g., superscalar processors) (fine)
• Multiple operations of different kinds per cycle

• Implemented/supported by the instruction scheduler
• typically in hardware

• SIMD parallelism = data parallelism (fine)
• Multiple operations *of the same kind* per cycle

• Run same instruction on vector data

• Sensitive to divergence

• Implemented by programmer OR compiler

• Multi-Core parallelism ~ task/data parallelism (coarse)
• 10s of powerful cores

• Hardware hyperthreading (2x)

• Local caches

• Symmetrical or asymmetrical threading model

• Implemented by programmer

No programmer’s intervention!

Some programmer/compiler

intervention!

Programer’s intervention and OS

support

Accelerators: a generic GPU

Streaming

Multi-

processor

(SM)

CUDA

cores

Special

function units

Local memory

Inside an NVIDIA GPU architecture

GPU Integration into the host system

• Typically based on a PCI Express bus

• Transfer speed (effectively, CPU-to-GPU):

 16 GT/s per lane x 16 lanes

• Can be NVLink (~10x faster) for specialized motherboards

GPU Levels or Parallelism

• Data parallelism (fine-grain)
• Write 1 thread, instantiate a lot of them

• SIMT (Single Instruction Multiple Thread) execution
• Many threads execute concurrently

• Same instruction

• Different data elements

• HW automatically handles divergence

• Not same as SIMD because of multiple register sets, addresses, and flow paths*

• Hardware multithreading
• HW resource allocation & thread scheduling

• Excess of threads to hide latency

• Context switching is (basically) free

• Task parallelism is “emulated” (coarse-grain)
• Hardware mechanisms exist

• Specific programming constructs to execute multiple tasks.

• Heterogeneous computing
• CPU is always present …

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

Programmer’s (or some compiler’s)

intervention!

Programer’s intervention!

Programmer’s intervention!

Theoretical peak performance

Throughput[GFLOP/s] = chips * cores * vectorWidth *

 FLOPs/cycle * clockFrequency

Cores Threads/ALUs Throughput Bandwidth

Intel Core i7 4 16 85

AMD Barcelona 4 8 37

AMD Istanbul 6 6 62.4

NVIDIA GTX 580 16 512 1581

NVIDIA GTX 680 8 1536 3090

AMD HD 6970 384 1536 2703

AMD HD 7970 32 2048 3789

Intel Xeon Phi 7120 61 240 2417

multi vs *many* cores (SP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

multi vs *many* cores (DP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

The memory

• Typically organized as linear spaces

• Some word-size granularity

• Code and data are stored in memory

• Everything that lives in memory has an “address”

• Visible at assembly level

• Accessible via pointers/variable names/… from the program itself

• Memory operations are slow!

• Off-chip

• Request read/write

• Search and find

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data
…

Addresses

Data

Instructions

Information

transfer

Bus

Lots of memory traffic => CPUs idle

=> waste!

The CPU-Memories Gap

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

The gap widens between DRAM,

disk, and CPU speeds.

SRAM

These gaps are the main

reason for using a memory

hierarchy.

Data takes longer and longer to load

to the CPU!

Memory hierarchy

• A single memory for the entire system is not efficient!

• Several memory spaces
• Large size, low cost, high latency – main memory

• Small size, high cost, low latency – caches / registers

• Main idea: Bring some of the data closer to the processor
• Smaller latency => faster access

• Smaller capacity => not all data fits!

• Who can benefit?

• Applications with locality in their data accesses

• Spatial locality

• Temporal locality

This data is "cached” – that

is, stored in a cache.

Memory hierarchy and caches

• Cache: A smaller, faster storage device that acts as a staging area for a

subset of the data in a larger, slower device.

• Memory hierarchy

• Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)

• For each k, the faster, smaller device at level k is a cache for the larger, slower device at

level k+1.

• How/why do memory hierarchies work?

• Locality => data at level k is used more often than data at level k+1.

• Level k+1 can be slower, and thus larger and cheaper.

Memory hierarchy Regs

L1 cache

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,

slower,

and

cheaper

(per byte)

storage

devices

Remote secondary storage

(e.g., Web servers)

Local disks hold files

retrieved from disks
on remote servers

L2 cache

(SRAM)

L1 cache holds cache lines

retrieved from the L2 cache.

CPU registers hold words

retrieved from the L1 cache.

L2 cache holds cache lines

 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and

costlier

(per byte)

storage

devices
L3 cache

(SRAM)
L3 cache holds cache lines

 retrieved from main memory.

L6:

Main memory holds disk

blocks retrieved from
local disks.

Matrix Multiplication

Good vs bad locality / caching …

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

ijk / jik

jki / kji

kij / ikj

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
y
c

le
s

 p
e

r
in

n
e

r
lo

o
p

 i
te

ra
ti

o
n

Array size (n)

jki

kji

ijk

jik

kij

ikj

ijk / jik

jki / kji

kij / ikj

Theoretical peak performance

Throughput[GFLOP/s] = chips * cores * vectorWidth *

 FLOPs/cycle * clockFrequency

Bandwidth[GB/s] = memory bus frequency * bits per cycle *

bus width

Cores Threads/ALUs Throughput Bandwidth

Intel Core i7 4 16 85 25.6

AMD Barcelona 4 8 37 21.4

AMD Istanbul 6 6 62.4 25.6

NVIDIA GTX 580 16 512 1581 192

NVIDIA GTX 680 8 1536 3090 192

AMD HD 6970 384 1536 2703 176

AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352

multi vs *many* cores (GB/s)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Balance

Throughput[GFLOP/s] = chips * cores * vectorWidth *

 FLOPs/cycle * clockFrequency

Bandwidth[GB/s] = memory bus frequency * bits per cycle *

bus width

Cores Threads/ALUs FLOPS/s Byte/s FLOPS/Byte

Intel Core i7 4 16 85 25.6 3.3

AMD Barcelona 4 8 37 21.4 1.7

AMD Istanbul 6 6 62.4 25.6 2.4

NVIDIA GTX 580 16 512 1581 192 8.2

NVIDIA GTX 680 8 1536 3090 192 16.1

AMD HD 6970 384 1536 2703 176 15.4

AMD HD 7970 32 2048 3789 264 14.4

Intel Xeon Phi 7120 61 240 2417 352 6.9

Balance ?

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (SP) !

Balance ?

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (DP) !

Why should we care?

• Peak performance indicates an absolute bound of the performance that can

be achieved on a given machine

• It is *application independent*

• Such performance is rarely* achievable in practice for real applications.

• Applications rarely utilize all the machine features.

• The balance of an application must consistently match the balance of the

machine to get anywhere near the peak…

• ... or else… different bottlenecks!

*Empirical studies show this reads as “almost never” .

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

Sustainability TODO’s

• Use all CPUs capabilities

• Maximize parallelism

• Use SIMD & ILP

• Use accelerators

• Maximize parallelism

• Correct mapping of application to GPU

• Heterogeneous computing

• Use all memory capabilities

• Maximize bandwidth

• Use caching / improve locality

** non trivial …

Limit the impact of low utilization

Reduce impact of unused cores/chips

Reduce impact of unused bandwidth**

Thousands of Cores

Few
cores

Heterogeneous computing?

• A heterogeneous platform = a CPU + a GPU (the starting point)

• An application workload = an application + its input dataset

• Workload partitioning = workload distribution among the processing units of a

heterogeneous system

Example 1: dot product

• Dot product

• Compute the dot product of 2 (1D) arrays

• Performance

• TG = execution time on GPU

• TC = execution time on CPU

• TD = data transfer time CPU-GPU

• GPU best or CPU best?

69

Example 1: dot product

70

Waste!

Example 2: separable convolution

• Separable convolution (CUDA SDK)

• Apply a convolution filter (kernel) on a large image.

• Separable kernel allows applying

• Horizontal first

• Vertical second

• Performance

• TG = execution time on GPU

• TC = execution time on CPU

• TD = data transfer time

• GPU best or CPU best?

Example 2: separable convolution

Waste!

Example 3: matrix multiply

• Matrix multiply

• Compute the product of 2 matrices

• Performance

• TG = execution time on GPU

• TC = execution time on CPU

• TD = data transfer time CPU-GPU

• GPU best or CPU best?

73

Example 3: matrix multiply

74

Waste!

Determining the partition

• Static partitioning (SP) vs. Dynamic partitioning (DP)

75

Thousands of Cores

Multiple
Cores

Thousands of Cores

Multiple
Cores

*Jie Shen et al., IEEE TPDS. 2015

“Workload partitioning for accelerating applications on heterogeneous platforms”

In summary …

• Understand the system you use …

• And match applications to hardware

• Increase utilization

• Re-design application/algorithm

• Decrease impact of low utilization

• Share resources

• DVFS

Next time: PART 2 – applications & tools

• Understand applications

• Tools to quantify and improve sustainability

Backup slides

(1) ILP (Instruction level parallelism)

• Multiple instructions issued & executed in the same cycle

Instr. i
Instr. i+1
.
.
.
.
.
Instr. n

Sequential

No parallelism ILP support

Potentially

in parallel

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” –

http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures

Implementing ILP

• Super-scalar processors

• “dynamic scheduling”: instruction reordering and scheduling happens in hardware

• More complex hardware

• More area, more power …

• Adopted in most high-end CPUs today

• VLIW processors

• ”static scheduling”: instruction reordering and scheduling is done by the compiler

• Simpler hardware

• Less area, less power

• Adopted in most GPUs and embedded CPUs

No programmer’s intervention!

(2) SIMD (single instruction, multiple data)

• Same instruction executed on multiple data items

a[i] +=5
a[i+1] +=5
.
.
.
a[i+7] +=5

“vector”

(parallel)

”scalar”

(sequential)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” –

http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures

Scalar vs SIMD operations

Image: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html

Implementing SIMD

• SIMD extensions: special registers and functional units

• Multiple generations of SIMD extensions
• SSE4.x = 128 bits

• AVX / AVX2 = 256 bits (most available CPUs, DAS-5 included)

• AVX-512 = 512 bits (Intel Xeon Phi, partial in most recent CPUs)

Requires programmer’s (or compiler’s)

intervention!

SIMD programmer intervention

• Auto-vectorization

• Typically enabled with “-O” compiler flags

• Compiler directives

• Specifically add directives in the code to force persuade the compiler to vectorize code

• C or C++ intrinsics

• Wrappers around ASM instructions

• Declare vector variables

• Name instruction

• Work on variables, not registers

• Assembly instructions

• Can write assembly to target SIMD

(3) Multi-core parallelism

• Two (or more cores) to execute different streams of instructions.

Requires programmer’s (or compiler’s)

intervention and OS (operating system) support!

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” –

http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures

Multi-core programmer intervention

• Must define concurrent tasks to be executed in parallel

• Typically called (software) threads

• Threads are executed per core

• Under the OS scheduling

• Some control can be exercised with additional programmer intervention

for i = 1 … 3*n

 do_something(i)

for i = 1 … n

 do_something(i)

for i = n+1 … 2*n

 do_something(i)

for i = 2*n+1 … 3*n

 do_something(i)

Core 0

Core 1

Core 2

Computer architecture talk

CPU features for ILP

• Instruction pipelining

• Multiple instructions “in-flight”

• Superscalar execution

• Multiple execution units

• Out-of-order execution

• Any order that does not violate data dependencies

• Branch prediction

• Speculative execution

Superscalar, Out-of-order

• A superscalar processor can issue and execute multiple instructions in one

cycle.

• The instructions are retrieved from a sequential instruction stream and are usually

scheduled dynamically.

• An out-of-order processor can reorder the execution of operations in

hardware.

• Superscalar, out-of-order processors can take advantage of the instruction

level parallelism that most programs have.

• Most modern CPUs are superscalar and out-of-order.

• Intel: since Pentium (1993)

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

A real CPU …

SkyLake ®

Image: https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Multiple execution

units, some SIMD

Fetch & decode,

producing multiple

uOps

Optimize, reorder,

schedule uOps

Hardware multi-threading (or hyperthreading®)

BONUS!

”Are there hardware threads?!”

• Hardware (supported) multi-threading

• Core manages thread context

• Interleaved (temporal multi-threading) – employed in GPUs

• Simultaneous (co-located execution) – e.g., Intel Hyperthreading

Why bother?

• Interleave the processing of multiple instruction streams on the same core to

hide the latency of stalls

• Requires replication of hardware resources

• Each thread uses its own PC to execute the instruction stream

• Requires replication of register file

• Performance improvement: higher throughput

Advantage: increased throughput

Advantage: increased throughput

Advantage: increased throughput

What about the memory?

• Three levels of cache: L1 (separate I$ and D$, per-core), L2 (per-core), L3

(=LLC, shared)

Putting it all together

• A modern CPU has a mix of all these features…

SIMD programming

BONUS!

Vectorization/SIMD options

• Auto-vectorization

• Both gcc and icc have support for it

• Successful for simple loops and data structures

• Compiler directives

• Both gcc and icc allow for specific pragma’s to enable vectorization

• Pragma’s are used to “force” the compiler to vectorize

• C or C++: intrinsics

• Declare vector variables

• Name instruction

• Work on variables, not registers

• Assembly instructions

• Execute on vector registers

Using intrinsics

• https://software.intel.com/en-us/articles/introduction-to-intel-advanced-

vector-extensions

• https://software.intel.com/sites/landingpage/IntrinsicsGuide/

• Requirements:

• Using aligned data structures (aligned to the size of the vector)

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Examples of intrinsics

0.0

0element

value

1 2 3

0.00.00.0

0.0

0element

value

1 2 3

3.02.01.0

float data[1024];

// init: data[0] = 0.0, data[1] = 1.0, data[2] = 2.0, etc.

init(data);

// Set all elements in my vector to zero.

__m128 myVector0 = _mm_setzero_ps();

// Load the first 4 elements of the array into my vector.

__m128 myVector1 = _mm_load_ps(data);

// Load the second 4 elements of the array into my vector.

__m128 myVector2 = _mm_load_ps(data+4);

4.0

0element

value

1 2 3

7.06.05.0

Examples of intrinsics
// Add vectors 1 and 2; instruction performs 4 FLOP.

__m128 myVector3 = _mm_add_ps(myVector1, myVector2);

// Multiply vectors 1 and 2; instruction performs 4 FLOP.

__m128 myVector4 = _mm_mul_ps(myVector1, myVector2);

// _MM_SHUFFLE(w,x,y,z) selects w&x from vec1 and y&z from vec2.

__m128 myVector5 = _mm_shuffle_ps(myVector1, myVector2,

 _MM_SHUFFLE(2, 3, 0, 1));

0element

value

1 2 3

4.0 = +6.0 8.0 10.0

0element

value

1 2 3

0.0 1.0 2.0 3.0

0element

value

1 2 3

4.0 5.0 6.0 7.0

0element

value

1 2 3

0.0 = x5.0 12.0 21.0

0element

value

1 2 3

2.0 =3.0 4.0 5.0 s

0element

value

1 2 3

0.0 1.0 2.0 3.0

0element

value

1 2 3

4.0 5.0 6.0 7.0

0element

value

1 2 3

0.0 1.0 2.0 3.0

0element

value

1 2 3

4.0 5.0 6.0 7.0

Steps for vectorization

• Identify (loop) to vectorize

• Unroll (by the intended SIMD width)

• Use the correct intrinsics to vectorize computation

• Move data from arrays to vectors

Vector add

void vectorAdd(int size, float* a, float* b, float* c) {

 for(int i=0; i<size; i++) {

 c[i] = a[i] + b[i];

 }

}

Vector add with SSE: unroll loop

void vectorAdd(int size, float* a, float* b, float* c) {

 for(int i=0; i<size; i += 4) {

 c[i+0] = a[i+0] + b[i+0];

 c[i+1] = a[i+1] + b[i+1];

 c[i+2] = a[i+2] + b[i+2];

 c[i+3] = a[i+3] + b[i+3];

 }

}

Vector add with SSE: vectorize loop

void vectorAdd(int size, float* a, float* b, float* c) {

 for(int i=0; i<size; i += 4) {

 __m128 vecA = _mm_load_ps(a + i); // load 4 elts from a

 __m128 vecB = _mm_load_ps(b + i); // load 4 elts from b

 __m128 vecC = _mm_add_ps(vecA, vecB); // add four elts

 _mm_store_ps(c + i, vecC); // store four elts

 }

}

	Slide 1: Sustainable Computing
	Slide 2: Computing is everywhere … and it’s not free!
	Slide 3: Three types of stakeholders
	Slide 4: Three types of stakeholders
	Slide 5: Systems
	Slide 6: Supercomputing/Data-centers
	Slide 7: Acquisition
	Slide 8: Extend lifetime
	Slide 9: Operation
	Slide 10: Three types of stakeholders
	Slide 11: Developers & users
	Slide 12: Agenda
	Slide 13: Context
	Slide 14: We want more …
	Slide 15: Some relevant performance metrics*
	Slide 16: Waste in computing
	Slide 17: Why is compute efficiency challenging?
	Slide 18: Detecting and reducing waste
	Slide 19: Reducing waste in computing
	Slide 20: Systems SOTA: Supercomputers
	Slide 21: Hardware developments: parallel & heterogeneous
	Slide 22: Supercomputers
	Slide 23: Example: IBM’s BlueGene/Q
	Slide 24: Example: FUGAKU
	Slide 25: Example: SUMMIT
	Slide 26: Top500
	Slide 27
	Slide 28: Green 500
	Slide 29: Parallel System Models
	Slide 30: Parallel Machine Models
	Slide 31: Main challenge: scaling to ExaFLOPS and beyond
	Slide 32: How to scale-up/-out?
	Slide 33: What about sustainability?
	Slide 34: Programmer vs. runtime/OS vs. job scheduler
	Slide 35: Systems SOTA: Inside the node
	Slide 36: Inside the node*
	Slide 37: Performance “metrics”
	Slide 38: A processor’s inner workings
	Slide 39: The CPU
	Slide 40: Traditionally … single core CPUs
	Slide 41: New ways to use transistors
	Slide 42: The shift to multi-core
	Slide 43: Generic multi-core CPU
	Slide 44: CPU levels of parallelism
	Slide 45: Accelerators: a generic GPU
	Slide 46: Inside an NVIDIA GPU architecture
	Slide 50: GPU Integration into the host system
	Slide 51: GPU Levels or Parallelism
	Slide 52: Theoretical peak performance
	Slide 53: *multi* vs *many* cores (SP-FLOPs)
	Slide 54: *multi* vs *many* cores (DP-FLOPs)
	Slide 55: The memory
	Slide 56: The CPU-Memories Gap
	Slide 57: Memory hierarchy
	Slide 58: Memory hierarchy and caches
	Slide 59: Memory hierarchy
	Slide 60: Matrix Multiplication
	Slide 61: Theoretical peak performance
	Slide 62: *multi* vs *many* cores (GB/s)
	Slide 63: Balance
	Slide 64: Balance ?
	Slide 65: Balance ?
	Slide 66: Why should we care?
	Slide 67: Sustainability TODO’s
	Slide 68: Heterogeneous computing?
	Slide 69: Example 1: dot product
	Slide 70: Example 1: dot product
	Slide 71: Example 2: separable convolution
	Slide 72: Example 2: separable convolution
	Slide 73: Example 3: matrix multiply
	Slide 74: Example 3: matrix multiply
	Slide 75: Determining the partition
	Slide 76: In summary …
	Slide 77: Next time: PART 2 – applications & tools
	Slide 78: Backup slides
	Slide 79: (1) ILP (Instruction level parallelism)
	Slide 80: Implementing ILP
	Slide 81: (2) SIMD (single instruction, multiple data)
	Slide 82: Scalar vs SIMD operations
	Slide 83: Implementing SIMD
	Slide 84: SIMD programmer intervention
	Slide 85: (3) Multi-core parallelism
	Slide 86: Multi-core programmer intervention
	Slide 87: Computer architecture talk
	Slide 88: CPU features for ILP
	Slide 89: Superscalar, Out-of-order
	Slide 90: Modern CPU Design
	Slide 91: A real CPU …
	Slide 92: SkyLake ®
	Slide 93: Hardware multi-threading (or hyperthreading®)
	Slide 94: ”Are there hardware threads?!”
	Slide 95: Why bother?
	Slide 96: Advantage: increased throughput
	Slide 97: Advantage: increased throughput
	Slide 98: Advantage: increased throughput
	Slide 99: What about the memory?
	Slide 100: Putting it all together
	Slide 101: SIMD programming
	Slide 102: Vectorization/SIMD options
	Slide 103: Using intrinsics
	Slide 104: Examples of intrinsics
	Slide 105: Examples of intrinsics
	Slide 106: Steps for vectorization
	Slide 107: Vector add
	Slide 108: Vector add with SSE: unroll loop
	Slide 109: Vector add with SSE: vectorize loop

