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Computing is everywhere … and it’s not free!

• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or 
about 400 North America persons)

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year 

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the 
national railways

• And consumption increased by 80% in 3 years

• The ICT sector is predicted to reach 21% of the global energy consumption by 2030

The energy consumption of computing is substantial and 

constantly increasing! 

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos



Three types of stakeholders

System integrators

Offer the right mix of resources 

for the application developers 

and system operators. 

Include efficient hardware to 

enable different application 

mixes. 

System operators 

Ensure efficient scheduling 

of workloads on system 

resources. 

Harvest energy where 

resources/systems are 

massively underutilized. 

Developers and users 

Improve the energy efficiency 

of their own codes, making use 

of algorithmic, programming, 

and hardware tools 

Design and implement 

applications able to adapt to 

the available system resources



Three types of stakeholders

System integrators

Offer the right mix of resources 

for the application developers 

and system operators. 

Include efficient hardware to 

enable different application 

mixes. 

System operators 

Ensure efficient scheduling 

of workloads on system 

resources. 

Harvest energy where 

resources/systems are 

massively underutilized. 

Developers and users 

Improve the energy efficiency 

of their own codes, making use 

of algorithmic, programming, 

and hardware tools 

Design and implement 

applications able to adapt to 

the available system resources



Systems 

• On-premise hardware
• Flexible, yet often limited in resources  

• Good for development 

• Limited value for production 

• Supercomputers 
• Massive machinery, high-performance 

• Partially shared 

• Less flexible in terms of infra and programming 

• Datacenters & Cloud computing 
• Scale-by-credit card 

• Excellent efficiency 

• Possible limitations in terms of performance (SLA)

• Computing continuum 
• New development in distributed computing 

• Unclear for scientific computing 

• Relevant for complete data analysis (sensor-to-result) 



Supercomputing/Data-centers

• Supercomputing is extremely high in carbon emissions, mainly due to scale.

• Embodied carbon: Indirect emissions, e.g., production, shipping, and 

disposal of system components.

• Operational carbon: Electricity, heating, cooling, etc. for the site operation.



Acquisition 

• New lifecycle assessment & procurement procedures

• Current Goal: Maximize Throughput (Workloads)

• Constraints:

• Budget = Machine Cost + Electricity;

• System Footprint/Weight; CoolingCapacity; PowerSupply; … 

• New Constraint: Carbon Budget 

Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain



Extend lifetime 

• Extend Lifetime, Reuse, and Recycle

• System Lifetime: Typically 4-6 years

• Extended lifetime -> embodied carbon reduction.

• Reuse & Recycle: Reduce carbon emissions caused by 

disposal & production

• Reuse: e.g., LRZ offers decommissioned machines for free.

• Recycling: accelerators, DRAM chips, heat pipes, cooling infra, 

...

Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain



Operation 

• Efficient operation 

• Schedulers 

• Automated tools 

• Support/education for users 

• Additional opportunities 

• Shared resources 

• Location shifting 

• Time/Peak shifting 

 

Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain
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Developers & users

• Measure/Quantify

• Select the right systems 

• Select the right implementation tools 

• Select the right algorithms

• Tweak and tune … and iterate 



Agenda

• Different views on performance

• Towards zero-waste computing

• Understand systems

• Understand applications 

• Performance engineering 

• Methods and tools for sustainable computing 

• Energy consumption and efficiency 

• Beyond energy 

• Take home message

Part 1

Part 2



Context

• Modern (and future) systems are parallel and heterogeneous

• In many dimensions 

• Systems are characterized by peak performance (with various “roofs”)

• All applications want more performance 

• Applications must enable parallelism 

• One Application => n algorithms => n*m implementations

• Algorithms: characterized by complexity

• Algorithms/implementations: characterized by arithmetic/operation intensity – ops/byte



We want more … 

• More speed => “higher performance” 

• More pixels => “better resolution”  

• More functions => “more complexity” 

• More accuracy  => “better models” 

• More realism => “better simulators” 

 

We need want more compute !

Just buy a newer/bigger computer ! 

Run it “in the cloud” ! 
This is (potentially) inefficient!



Some relevant performance metrics*

• Speed-up: how much faster do we get with new machines, algorithms, … 

  S(workload) = Perf(Old)/Perf(New)   

• Efficiency: how efficient are we in getting performance 

      E(workload) = Perf / Resources

• Energy efficiency: how energy efficient are we in getting performance

      EE(workload) = Perf / Energy

• Utilization: how efficient are we utilizing our resources 

      U(resource) = Achieved / Peak   

High-efficiency computing

High-performance computing

*please accept the naïve notation and pseudo-definitions



Waste in computing  

Unneccesary time (or energy) spent in (inefficient) 

computing is compute waste.  

We all can and must improve software and hardware 

efficiency to minimize waste in computing!

To reduce compute waste, we must shift from 

time-to-solution towards efficiency-to-solution



Why is compute efficiency challenging?

It is a nonfunctional requirement

Focuses on user-“irrelevant” issues like resource utilization, scalability, …

We all make a lot of excuses

It’s someone else’s problem 

It’s just a matter of money  
• More hardware, more people, more time 

It’s easy to fix later 

It’s “just engineering” 

Requires effort,

  and there’s (often) little glory in it. 

… and new applications and new computing systems 

emerge monthly …  



Detecting and reducing waste

• We assume computing waste is a consequence of underutilized resources.

• Informally, assume:

system1 > system2 

P1 = performance(algorithm, workload, system1)

P2 = performance(algorithm, workload, system2)

• “Strict” definition: 

     if (P1 == P2) => waste 

• “Relaxed” definition: 

     if ( abs (P1 - P2) < T ) => waste 

 with T = threshold for performance loss 

18

Challenges in both 

efficiency 

quantification and 

improvement.



??

Reducing waste in computing  

Raise awareness 

• Monitor (energy) efficiency

• Quantify waste 

Improve efficiency 

• Improve applications for the systems at hand 

• Make applications more efficient 

• Make applications share systems  

• Improve systems for the applications at hand 

• Co-design applications and systems 

Performance analysis

Performance modeling

Performance optimization

Efficient scheduling and 

resource sharing

Application-centric system 

design



Systems SOTA: Supercomputers



Hardware developments: parallel & heterogeneous

• More complex CPUs & GPUs
• See Fugaku, Sunway TaihuLight

• GPUs from different vendors and different capabilities

• DPUs 
• Integrated CPUs+GPUs+DPUs (and other forms of HW) 

• AI accelerators 
• Google’s TPUS 

• New machines for AI/data-intensive processing 
• GraphCore, Cerebras 

• Don’t forget FPGAs 

And then put them together in supercomputers … 

Or datacenters … 



Supercomputers

• Powerful computers used for science, technology/engineering and AI

• Built as extremely large computer systems, with 100K’s “basic” components

and many billion transistors 

• “replicate” architectural patterns from nodes to blades to racks/cabinets.

• interconnect each of these components with fast and/or efficient networks.

• All the processors in a supercomputer can perform computations at the same 

time => parallel computing. 

• Faster progress than sequential systems … 

• …iff parallel code exists. 



Example: IBM’s BlueGene/Q



Example: FUGAKU



Example: SUMMIT



@June’24

1 Exascale machine

1 custom-built machine

Heterogeneous

AMD, Intel+NVIDIA

Top500

Gap:  20 – 30%



#1

#500

Sum



Green 500

@June 2024

None of the top5 … 

LUMI is #12

Aurora, Fugaku > #50



Parallel System Models 

• Shared Memory
• Multiple compute nodes 

• One single shared address space

• Typical example: multi-cores 

• Distributed Memory
• Multiple compute nodes 

• Multiple, local (disjoint) address spaces

• Virtual shared memory: software/hardware layer “emulates” shared memory 

• Typical example: clusters 

• Hybrids 
• Multiple compute nodes, typically heterogeneous 

• Mixed address space(s), some shared, some global memory

• Typical example: supercomputers 

Shared memory

Distributed memory

Hybrid



Parallel Machine Models 

• Shared Memory
• Multiple compute nodes 

• One single shared address space

• Typical example: multi-cores 

• Distributed Memory
• Multiple compute nodes 

• Multiple, local (disjoint) address spaces

• Virtual shared memory: software/hardware layer “emulates” shared memory 

• Typical example: clusters 

• Hybrids 
• Multiple compute nodes, typically heterogeneous 

• Mixed address space(s), some shared, some global memory

• Typical example: supercomputers 

Programming: multi-threading

Programming models: OpenMP, pthreads, TBB, … 

Programming: message passing

Programming models: MPI, Big-data models, … 

Programming: very diverse, depending on the 

hardware configuration

Shared memory

Distributed memory

Hybrid



Main challenge: scaling to ExaFLOPS and beyond 

• Peak performance = sum of capabilities of all machines 

• E.g.: 100 nodes x 128 cores x 100GFLOPs/core 

• Scaling options: 

• More nodes = scale out 

• More powerful nodes = scale up (or acceleration/heterogeneity)

• Limitations to actual performance 

• Memory, I/O, networking bottlenecks 

• Load-imbalance 

• Non-uniform behaviour

• Programmability 

Hybrid



How to scale-up/-out? 

• Shared Memory model <= typical for scale-up, limited for scale-out

• Interconnect scalability problems & uniform accesses 

• Programming challenge: RD/WR Conflicts 

• Distributed Memory model <= typical for scale-out, inefficient for scale-up 

• Data distribution is mandatory 

• Programming challenge: remote accesses, consistency

• Virtual Shared Memory model <= increased programmability and overhead 

• Significant virtualization overhead

• Easier programming

• Hybrid models <= trade-offs at different levels! 

• Local/remote data more difficult to trace 



What about sustainability? 

• Efficient use of the system  

• Low performance => Low utilization => Low efficiency 

• Inefficient resource reservation => Low efficiency 

• Application scaling + programming  system architecture

• E.g.: calculate the histogram of a very large dataset on a (small) number of bins. 

Shared memory Distributed memory Hybrid



Programmer vs. runtime/OS vs. job scheduler

• Programmer exposes parallelism at 
application level 
• Job = application + dataset 

• Application = set of tasks 

• Tasks = execute in some sequential order and/or in 
parallel  

• Runtime/OS map the tasks on resources 
• In both space and time 

• Possibly with programmer’s restrictions 

• (Job) Scheduler ensures jobs are allocated 
resources 
• Ideally sufficient and ”localized” 

How to split and program the 
tasks? How is data accessed? 

Knowledge of node architecture is 
essential for effective optimization. 

What runs where and when?
Decisions by a runtime system 
and/or OS; require deep knowledge 
system architecture. 

What resources are allocated?
Decisions by a job scheduler to 
maximize utilization/performance.

Inefficient parallel application design affects all 

levels in terms of efficiency and sustainability! 



Systems SOTA: Inside the node



Inside the node*

Main

memory
I/O 

bridge
Bus interface

ALU.

Register file

CPU core x n

System bus Memory bus

Disk 

controller

Graphics

adapter/card

USB

controller

Mouse Keyboard Display

Disk

I/O bus
Expansion slots for

other devices such
as network adapters

PC

Computer architects: how to build these?

Computer scientists: how to use these?

Stores your 

program 

and data 

Executes your 

program

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron

Cache 

memory

Accelerates 

part of your 

program



Performance “metrics” 

• Clock frequency [GHz] = absolute hardware speed
• Memories, CPUs, interconnects

• Operational speed [GFLOPs]
• Operations per second

• single AND double precision 

• Memory bandwidth [GB/s]
• Memory operations per second

• Can differ for read and write operations ! 

• Differs a lot between different memories on chip

• Power [Watt] 
• The rate of consumption of energy 

• Derived metrics
• FLOP/Byte, FLOP/Watt



A processor’s inner workings

• CPU = executes the “application”

• Manages the execution progress (PC)

• Fetches needed instructions and data (addresses) 

• Executes (ALU) operations and manages results 

• Memory = stores the executable code of the application and the data

• Receives request + address, replies with data (a bit vector)

• Bus = facilitates information (=bits) movement 

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions 
Data 
…

Addresses

Data

Instructions

Information 

transfer

Bus



The CPU

• Computations are executed by the ALU

• Integer, single/double precision arithmetic, … 

• Comparisons, logical operations, … 

• ALU runs at its own “clock speed” / frequency
• Defines how many cycles/s can be executed by the CPU  

• Each operation takes 1 or more cycles 

• Higher performance CPUs 
• Make a faster/smarter ALU 

• More operations per cycle 

• Make faster CPUs 

• More cycles/s 

• Multiple cores 

• Even more operations per cycle!  

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions 
Data 
…

Addresses

Data

Instructions

Information 

transfer

Bus

All these are powered! 

Unused => low efficiency => waste!



Traditionally … single core CPUs 

• More transistors = more functionality 

• Improved technology = faster clocks = more speed

• Every 18 months => better and faster processors. 

Not anymore! 

We no longer gain performance by “growing” sequential 

processors … 

CPU 

Individual 

Memory (cache)

More individual 

memory (cache)

Bus interface

Off-chip 

components

Single core processor



New ways to use transistors

Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs) 

and many-core processors (GPUs).



The shift to multi-core



Generic multi-core CPU
Hardware threads 

SIMD units (vector lanes)

L1 and L2

dedicated 

caches 

Shared L3 cache

Main memory, I/O

Peak 

performance

Bandwidth



CPU levels of parallelism

• Instruction-level parallelism (e.g., superscalar processors) (fine)
• Multiple operations of different kinds per cycle

• Implemented/supported by the instruction scheduler
• typically in hardware 

• SIMD parallelism = data parallelism (fine)
• Multiple operations *of the same kind* per cycle  

• Run same instruction on vector data 

• Sensitive to divergence 

• Implemented by programmer OR compiler 

• Multi-Core parallelism ~ task/data parallelism (coarse)
• 10s of powerful cores 

• Hardware hyperthreading (2x)

• Local caches 

• Symmetrical or asymmetrical threading model 

• Implemented by programmer  

No programmer’s intervention! 

Some programmer/compiler 

intervention! 

Programer’s intervention and OS 

support 



Accelerators: a generic GPU

Streaming

Multi-

processor

(SM)

CUDA 

cores

Special 

function units

Local memory



Inside an NVIDIA GPU architecture



GPU Integration into the host system

• Typically based on a PCI Express bus

• Transfer speed (effectively, CPU-to-GPU):

 16 GT/s per lane x 16 lanes

• Can be NVLink (~10x faster) for specialized motherboards



GPU Levels or Parallelism 

• Data parallelism (fine-grain) 
• Write 1 thread, instantiate a lot of them 

• SIMT (Single Instruction Multiple Thread) execution
• Many threads execute concurrently

• Same instruction

• Different data elements

• HW automatically handles divergence

• Not same as SIMD because of multiple register sets, addresses, and flow paths* 

• Hardware multithreading
• HW resource allocation & thread scheduling

• Excess of threads to hide latency

• Context switching is (basically) free

• Task parallelism is “emulated” (coarse-grain) 
• Hardware mechanisms exist 

• Specific programming constructs to execute multiple tasks.  

• Heterogeneous computing 
• CPU is always present … 

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

Programmer’s (or some compiler’s) 

intervention!

Programer’s intervention!

Programmer’s intervention!



Theoretical peak performance

Throughput[GFLOP/s] = chips * cores * vectorWidth * 

     FLOPs/cycle * clockFrequency 

Cores Threads/ALUs Throughput Bandwidth

Intel Core i7 4 16 85

AMD Barcelona 4 8 37

AMD Istanbul 6 6 62.4

NVIDIA GTX 580 16 512 1581

NVIDIA GTX 680 8 1536 3090

AMD HD 6970 384 1536 2703

AMD HD 7970 32 2048 3789

Intel Xeon Phi 7120 61 240 2417



*multi* vs *many* cores (SP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



*multi* vs *many* cores (DP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



The memory 

• Typically organized as linear spaces

• Some word-size granularity  

• Code and data are stored in memory 

• Everything that lives in memory has an “address” 

• Visible at assembly level 

• Accessible via pointers/variable names/… from the program itself 

• Memory operations are slow!

• Off-chip 

• Request read/write

• Search and find

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions 
Data 
…

Addresses

Data

Instructions

Information 

transfer

Bus

Lots of memory traffic => CPUs idle 

=> waste! 



The CPU-Memories Gap
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The gap widens between DRAM, 

disk, and CPU speeds. 

SRAM

These gaps are the main 

reason for using a memory 

hierarchy.

Data takes longer and longer to load 

to the CPU! 



Memory hierarchy 

• A single memory for the entire system is not efficient!  

• Several memory spaces
• Large size, low cost, high latency – main memory 

• Small size, high cost, low latency – caches / registers

• Main idea: Bring some of the data closer to the processor
• Smaller latency => faster access 

• Smaller capacity  => not all data fits! 

• Who can benefit? 

• Applications with locality in their data accesses

• Spatial locality 

• Temporal locality 

This data is "cached” – that 

is, stored in a cache. 



Memory hierarchy and caches

• Cache: A smaller, faster storage device that acts as a staging area for a 

subset of the data in a larger, slower device.

• Memory hierarchy

• Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)

• For each k, the faster, smaller device at level k is a cache for the larger, slower device at 

level k+1.

• How/why do memory hierarchies work?

• Locality => data at level k is used more often than data at level k+1. 

• Level k+1 can be slower, and thus larger and cheaper.



Memory hierarchy Regs

L1 cache 

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,  

slower, 

and 

cheaper 

(per byte)

storage

devices

Remote secondary storage

(e.g., Web servers)

Local disks hold files 

retrieved from disks 
on remote servers

L2 cache 

(SRAM)

L1 cache holds cache lines 

retrieved from the L2 cache.

CPU registers hold words 

retrieved from the L1 cache.

L2 cache holds cache lines

 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and 

costlier

(per byte)

storage 

devices
L3 cache 

(SRAM)
L3 cache holds cache lines

 retrieved from main memory.

L6:

Main memory holds disk 

blocks retrieved from 
local disks.



Matrix Multiplication

Good vs bad locality / caching … 

for (i=0; i<n; i++) {

  for (j=0; j<n; j++) {

   sum = 0.0;

   for (k=0; k<n; k++) 

     sum += a[i][k] * b[k][j];

   c[i][j] = sum;

 }

} 

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

  r = a[i][k];

  for (j=0; j<n; j++)

   c[i][j] += r * b[k][j];   

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

   r = b[k][j];

   for (i=0; i<n; i++)

    c[i][j] += a[i][k] * r;

 }

}
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Theoretical peak performance

Throughput[GFLOP/s] = chips * cores * vectorWidth * 

     FLOPs/cycle * clockFrequency 

Bandwidth[GB/s] = memory bus frequency * bits per cycle * 

bus width

Cores Threads/ALUs Throughput Bandwidth

Intel Core i7 4 16 85 25.6

AMD Barcelona 4 8 37 21.4

AMD Istanbul 6 6 62.4 25.6

NVIDIA GTX 580 16 512 1581 192

NVIDIA GTX 680 8 1536 3090 192

AMD HD 6970 384 1536 2703 176

AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352



*multi* vs *many* cores (GB/s)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



Balance

Throughput[GFLOP/s] = chips * cores * vectorWidth * 

     FLOPs/cycle * clockFrequency 

Bandwidth[GB/s] = memory bus frequency * bits per cycle * 

bus width

Cores Threads/ALUs FLOPS/s Byte/s FLOPS/Byte

Intel Core i7 4 16 85 25.6 3.3

AMD Barcelona 4 8 37 21.4 1.7

AMD Istanbul 6 6 62.4 25.6 2.4

NVIDIA GTX 580 16 512 1581 192 8.2

NVIDIA GTX 680 8 1536 3090 192 16.1

AMD HD 6970 384 1536 2703 176 15.4

AMD HD 7970 32 2048 3789 264 14.4

Intel Xeon Phi 7120 61 240 2417 352 6.9



Balance ? 

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (SP) !



Balance ? 

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (DP) !



Why should we care? 

• Peak performance indicates an absolute bound of the performance that can 

be achieved on a given machine 

• It is *application independent* 

• Such performance is rarely* achievable in practice for real applications. 

• Applications rarely utilize all the machine features. 

• The balance of an application must consistently match the balance of the 

machine to get anywhere near the peak…

• ... or else… different bottlenecks! 

*Empirical studies show this reads as “almost never” .

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master


Sustainability TODO’s 

• Use all CPUs capabilities 

• Maximize parallelism 

• Use SIMD & ILP 

• Use accelerators 

• Maximize parallelism 

• Correct mapping of application to GPU

• Heterogeneous computing 

• Use all memory capabilities 

• Maximize bandwidth 

• Use caching / improve locality 

** non trivial … 

Limit the impact of low utilization 

Reduce impact of unused cores/chips 

Reduce impact of unused bandwidth**



Thousands of Cores

Few 
cores

Heterogeneous computing? 

• A heterogeneous platform = a CPU + a GPU (the starting point)

• An application workload = an application + its input dataset

• Workload partitioning = workload distribution among the processing units of a 

heterogeneous system



Example 1: dot product

• Dot product

• Compute the dot product of 2 (1D) arrays

• Performance 

• TG = execution time on GPU 

• TC = execution time on CPU 

• TD = data transfer time CPU-GPU

• GPU best or CPU best? 

69



Example 1: dot product

70

Waste!



Example 2: separable convolution

• Separable convolution (CUDA SDK)

• Apply a convolution filter (kernel) on a large image.

• Separable kernel allows applying

• Horizontal first

• Vertical second 

• Performance 

• TG = execution time on GPU 

• TC = execution time on CPU 

• TD = data transfer time

• GPU best or CPU best? 



Example 2: separable convolution

Waste!



Example 3: matrix multiply

• Matrix multiply 

• Compute the product of 2 matrices 

• Performance 

• TG = execution time on GPU 

• TC = execution time on CPU 

• TD = data transfer time CPU-GPU

• GPU best or CPU best? 

73



Example 3: matrix multiply

74

Waste!



Determining the partition

• Static partitioning (SP) vs. Dynamic partitioning (DP)

75

Thousands of Cores

Multiple 
Cores

Thousands of Cores

Multiple 
Cores

*Jie Shen et al., IEEE TPDS. 2015 

“Workload partitioning for accelerating applications on heterogeneous platforms”



In summary … 

• Understand the system you use …

• And match applications to hardware 

• Increase utilization 

• Re-design application/algorithm 

• Decrease impact of low utilization

• Share resources 

• DVFS 



Next time: PART 2 – applications & tools 

• Understand applications 

• Tools to quantify and improve sustainability 



Backup slides



(1) ILP (Instruction level parallelism) 

• Multiple instructions issued & executed in the same cycle 

Instr. i
Instr. i+1
.
.
.
.
.
Instr. n

Sequential

No parallelism ILP support

Potentially 

in parallel

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 

http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Implementing ILP

• Super-scalar processors 

• “dynamic scheduling”: instruction reordering and scheduling happens in hardware 

• More complex hardware

• More area, more power …  

• Adopted in most high-end CPUs today 

• VLIW processors 

• ”static scheduling”: instruction reordering and scheduling is done by the compiler 

• Simpler hardware

• Less area, less power

• Adopted in most GPUs and embedded CPUs 

No programmer’s intervention! 



(2) SIMD (single instruction, multiple data)

• Same instruction executed on multiple data items 

a[i]   +=5
a[i+1] +=5
.
.
.
a[i+7] +=5

“vector”

(parallel)

”scalar” 

(sequential)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 

http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Scalar vs SIMD operations

Image: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html



Implementing SIMD 

• SIMD extensions: special registers and functional units 

• Multiple generations of SIMD extensions 
• SSE4.x = 128 bits 

• AVX / AVX2 = 256 bits (most available CPUs, DAS-5 included)

• AVX-512 = 512 bits (Intel Xeon Phi, partial in most recent CPUs)

Requires programmer’s (or compiler’s) 

intervention! 



SIMD programmer intervention 

• Auto-vectorization

• Typically enabled with “-O” compiler flags 

• Compiler directives 

• Specifically add directives in the code to force persuade the compiler to vectorize code  

• C or C++ intrinsics

• Wrappers around ASM instructions 

• Declare vector variables

• Name instruction

• Work on variables, not registers

• Assembly instructions

• Can write assembly to target SIMD



(3) Multi-core parallelism 

• Two (or more cores) to execute different streams of instructions. 

Requires programmer’s (or compiler’s) 

intervention and OS (operating system) support! 

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 

http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Multi-core programmer intervention

• Must define concurrent tasks to be executed in parallel

• Typically called (software) threads 

• Threads are executed per core 

• Under the OS scheduling 

• Some control can be exercised with additional programmer intervention 

for i = 1 … 3*n

 do_something(i) 

for i = 1 … n 

 do_something(i) 

for i = n+1 … 2*n 

 do_something(i) 

for i = 2*n+1 … 3*n 

 do_something(i) 

Core 0

Core 1

Core 2



Computer architecture talk



CPU features for ILP

• Instruction pipelining 

• Multiple instructions “in-flight”

• Superscalar execution 

• Multiple execution units 

• Out-of-order execution

• Any order that does not violate data dependencies 

• Branch prediction 

• Speculative execution 



Superscalar, Out-of-order

• A superscalar processor can issue and execute multiple instructions in one 

cycle. 

• The instructions are retrieved from a sequential instruction stream and are usually 

scheduled dynamically.

• An out-of-order processor can reorder the execution of operations in 

hardware.

• Superscalar, out-of-order processors can take advantage of the instruction 

level parallelism that most programs have.

• Most modern CPUs are superscalar and out-of-order.

• Intel: since Pentium (1993)



Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates



A real CPU … 



SkyLake ® 

Image: https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Multiple execution 

units, some SIMD

Fetch & decode,

producing multiple 

uOps

Optimize, reorder,

schedule uOps 



Hardware multi-threading (or hyperthreading®)

BONUS!



”Are there hardware threads?!” 

• Hardware (supported) multi-threading 

• Core manages thread context 

• Interleaved (temporal multi-threading) – employed in GPUs

• Simultaneous (co-located execution) – e.g., Intel Hyperthreading 



Why bother? 

• Interleave the processing of multiple instruction streams on the same core to 

hide the latency of stalls

• Requires replication of hardware resources

• Each thread uses its own PC to execute the instruction stream

• Requires replication of register file

• Performance improvement: higher throughput



Advantage: increased throughput



Advantage: increased throughput



Advantage: increased throughput



What about the memory? 

• Three levels of cache: L1 (separate I$ and D$, per-core), L2 (per-core), L3 

(=LLC, shared)  



Putting it all together 

• A modern CPU has a mix of all these features… 



SIMD programming

BONUS!



Vectorization/SIMD options

• Auto-vectorization

• Both gcc and icc have support for it 

• Successful for simple loops and data structures

• Compiler directives 

• Both gcc and icc allow for specific pragma’s to enable vectorization

• Pragma’s are used to “force” the compiler to vectorize 

• C or C++: intrinsics

• Declare vector variables

• Name instruction

• Work on variables, not registers

• Assembly instructions

• Execute on vector registers



Using intrinsics

• https://software.intel.com/en-us/articles/introduction-to-intel-advanced-

vector-extensions

• https://software.intel.com/sites/landingpage/IntrinsicsGuide/

• Requirements: 

• Using aligned data structures (aligned to the size of the vector)

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Examples of intrinsics

0.0

0element

value

1 2 3

0.00.00.0

0.0

0element

value

1 2 3

3.02.01.0

float data[1024];

// init: data[0] = 0.0, data[1] = 1.0, data[2] = 2.0, etc.

init(data);

// Set all elements in my vector to zero.

__m128 myVector0 = _mm_setzero_ps();

// Load the first 4 elements of the array into my vector.

__m128 myVector1 = _mm_load_ps(data);

// Load the second 4 elements of the array into my vector.

__m128 myVector2 = _mm_load_ps(data+4);

4.0

0element

value

1 2 3

7.06.05.0



Examples of intrinsics
// Add vectors 1 and 2; instruction performs 4 FLOP.

__m128 myVector3 = _mm_add_ps(myVector1, myVector2);

// Multiply vectors 1 and 2; instruction performs 4 FLOP.

__m128 myVector4 = _mm_mul_ps(myVector1, myVector2);

 

// _MM_SHUFFLE(w,x,y,z) selects w&x from vec1 and y&z from vec2.

__m128 myVector5 = _mm_shuffle_ps(myVector1, myVector2,          

                                  _MM_SHUFFLE(2, 3, 0, 1));

0element

value

1 2 3

4.0 = +6.0 8.0 10.0

0element

value

1 2 3

0.0 1.0 2.0 3.0

0element

value

1 2 3

4.0 5.0 6.0 7.0

0element

value

1 2 3

0.0 = x5.0 12.0 21.0

0element

value

1 2 3

2.0 =3.0 4.0 5.0 s

0element

value

1 2 3

0.0 1.0 2.0 3.0

0element

value

1 2 3

4.0 5.0 6.0 7.0

0element

value

1 2 3

0.0 1.0 2.0 3.0

0element

value

1 2 3

4.0 5.0 6.0 7.0



Steps for vectorization

• Identify (loop) to vectorize 

• Unroll (by the intended SIMD width) 

• Use the correct intrinsics to vectorize computation

• Move data from arrays to vectors 



Vector add

void vectorAdd(int size, float* a, float* b, float* c) {

    for(int i=0; i<size; i++) {

        c[i] = a[i] + b[i];

   }

}



Vector add with SSE: unroll loop

void vectorAdd(int size, float* a, float* b, float* c) {

    for(int i=0; i<size; i += 4) {

        c[i+0] = a[i+0] + b[i+0];

        c[i+1] = a[i+1] + b[i+1];

        c[i+2] = a[i+2] + b[i+2];

        c[i+3] = a[i+3] + b[i+3];

    }

}



Vector add with SSE: vectorize loop

void vectorAdd(int size, float* a, float* b, float* c) {

  for(int i=0; i<size; i += 4) {

      __m128 vecA = _mm_load_ps(a + i); // load 4 elts from a

      __m128 vecB = _mm_load_ps(b + i); // load 4 elts from b

      __m128 vecC = _mm_add_ps(vecA, vecB); // add four elts

     _mm_store_ps(c + i, vecC); // store four elts

  }

}
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