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Computing is everywhere ... and it's not free!

- Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or
about 400 North America persons)

- Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

- A mid-size datacenter alone consumes as much energy as a small town
- And that is not considering purchasing and secondary operational costs (e.g., cooling)

- In 20
Ut The energy consumption of computing is substantial and

. And constantly increasing!

- The ICT sector Is predicted to reach 21% of the global energy consumption by 2030

*https://en.wikipedia.org/wiki/List_of most-viewed YouTube videos#Top videos



Three types of stakeholders

Developers and users

Improve the energy efficiency
of their own codes, making use
of algorithmic, programming,
and hardware tools

Design and implement
applications able to adapt to
the available system resources

&

o

System integrators

Offer the right mix of resources
for the application developers
and system operators.

Include efficient hardware to
enable different application
mixes.

System operators

Ensure efficient scheduling
of workloads on system
resources.

Harvest energy where
resources/systems are
massively underutilized.



Three types of stakeholders
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Developers and users System integrators System operators
Improve the energy efficiency Offer the right mix of resources | | Ensure efficient scheduling
of their own codes, making use for the application developers of workloads on system

of algorithmic, programming, and system operators. resources.

and hardware tools Include efficient hardware to || Harvest energy where
Design and implement enable different application resources/systems are
applications able to adapt to mixes. massively underutilized.

the available system resources
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- On-premise hardware -
- Flexible, yet often limited in resources

— PRIVATE PUBLIC HYBRID
- Good for development e
- Limited value for production [ N =
. Supercomputers EDGE NODE EDGE NODE EDGE NODE
- Massive machinery, high-performance == = Y == |
- Partially shared £ imm/ -
- Less flexible in terms of infra and programming I pe—

- Datacenters & Cloud computing ]
- Scale-by-credit card (0T DEVICES

- Excellent efficiency il loT DEVICES
- Possible limitations in terms of performance (SLA) A =

- Computing continuum
- New development in distributed computing
- Unclear for scientific computing
- Relevant for complete data analysis (sensor-to-result)




Supercomputing/Data-centers

- Supercomputing is extremely high in carbon emissions, mainly due to scale.

- Embodied carbon: Indirect emissions, e.g., production, shipping, and
disposal of system components.

- Operational carbon: Electricity, heating, cooling, etc. for the site operation.

Frontier Aurora
0.44Exa @30MW 1.2Exa @23MW 2Exa? @60MW?




Acquisition

- New lifecycle assessment & procurement procedures

- Current Goal: Maximize Throughput (Workloads)

- Constraints:
- Budget = Machine Cost + Electricity;
- System Footprint/Weight; CoolingCapacity; PowerSupply; ... Total

Carbon
Budget

- New Constraint: Carbon Budget

Embodied Operational
Carbon Carbon
Budget . . Budget

Tradeoff System Energy
Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain Budget



Extend lifetime

- Extend Lifetime, Reuse, and Recycle

- System Lifetime: Typically 4-6 years
- Extended lifetime -> embodied carbon reduction.
- Reuse & Recycle: Reduce carbon emissions caused by EEmbodied B Operational
disposal & production

- Reuse: e.g., LRZ offers decommissioned machines for free.
- Recycling: accelerators, DRAM chips, heat pipes, cooling infra, J Year

Carbonl/year

Lifetime Extension
Reuse & Recycle

Carbonl/year

Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain H Year



Operation

- Efficient operation
- Schedulers
- Automated tools
- Support/education for users

- Additional opportunities
- Shared resources
- Location shifting
- Time/Peak shifting

Courtesy of: Carsten Trinitis, Sustainability Day @DATE, March 26, 2024, Valencia, Spain



Three types of stakeholders

Developers and users

Improve the energy efficiency
of their own codes, making use
of algorithmic, programming,
and hardware tools

Design and implement
applications able to adapt to
the available system resources
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System integrators

Offer the right mix of resources
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and system operators.

Include efficient hardware to
enable different application
mixes.

System operators

Ensure efficient scheduling
of workloads on system
resources.
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resources/systems are
massively underutilized.



Developers & users

- Measure/Quantify

- Select the right systems

- Select the right implementation tools
- Select the right algorithms

- Tweak and tune ... and iterate



T ——
Agenda

- Different views on performance
Part 1 o
- Towards zero-waste computing

- Understand systems

- Understand applications

- Performance engineering

- Methods and tools for sustainable computing

- Energy consumption and efficiency

GLASBERGEN

. Beyond energy ‘Larry, do you remember where




Context

- Modern (and future) systems are parallel and heterogeneous
- In many dimensions

- Systems are characterized by peak performance (with various “roofs”)

- All applications want more performance
- Applications must enable parallelism

- One Application => n algorithms => n*m implementations
- Algorithms: characterized by complexity
- Algorithms/implementations: characterized by arithmetic/operation intensity — ops/byte



We want more ...

- More speed => “higher performance”

- More pixels =

- More functio

- More ag

- More r



Some relevant performance metrics*

- Speed-up: how much faster do we get with new machines, algorithms, ...

S (workload) = Perf (0l1d)/Perf (New) _ _
High-performance computing

- Efficiency: how efficient are we in getting performance

E (workload) = Perf / Resources

- Energy efficiency: how energy efficient are we in getting performance

EE (workload) = Perf / Energy High-efficiency computing

- Utilization: how efficient are we utilizing our resources

U(resource) = Achieved / Peak

*please accept the naive notation and pseudo-definitions



Waste In computing

Unneccesary time (or energy) spent in (inefficient)
computing Is compute waste.

We all can and must improve software and hardware
efficiency to minimize waste in computing!

To reduce compute waste, we must shift from
time-to-solution towards efficiency-to-solution
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Why Is compute efficiency challenging?

It is a nonfunctional requirement
Focuses on user-“irrelevant” issues like resource utilization, scalability, ...

We all make a lot of excuses

'tSf” ... and new applications and new computing systems
It's | emerge monthly ...

It's easy to fix later
It’s “just engineering”
Requires effort,
and there’s (often) little glory in it.

DON'T
TOUCH!!!

geck & poke



Detecting and reducing waste

- We assume computing waste is a consequence of underutilized resources.

- Informally, assume
systeml >

l = perform gorthm, workl teml
= perforplance alg ithm, work#doad

- “Strict” definition:
if (Pl == .) => waste

Challenges in both
efficiency

- “Relaxed” definition:
if ( abs (Pl - .) < T ) => waste

with T = threshold for performance 10Ss

guantification and
Improvement.




Reducing waste in computing

Raise awareness / Performance analysis
- Monitor (energy) efficiency !

Performance modeling

- Quantify waste -

Improve efficiency

- Improve applications for the systems at h
- Make applications more efficient

- Make applications share systems d/

- Improve systems for the applications at han

-_— e—_—"™——
—————————————————————=x

Performance optimization
Y

Efficient scheduling and
resource sharing

\.

( )
Application-centric system

design

J
N

(
| ?7?

- Co-design applications and systems <

J




Systems SOTA: Supercomputers



Hardware developments: parallel & heterogeneous

- More complex CPUs & GPUs
- See Fugaku, Sunway TaihuLight

- GPUs from different vendors and different capabilities

- DPUs
- Integrated CPUs+GPUs+DPUs (and other forms of HW)

- Al accelerators
- Google’s TPUS

- New machines for A
- GraphCore, Cerebra

And then put them together in supercomputers ...
. Don't forget FPGAs Or datacenters ...



Supercomputers

- Powerful computers used for science, technology/engineering and Al

- Built as extremely large computer systems, with 100K’s “basic” components

and many billion transistors
- “replicate” architectural patterns from nodes to blades to racks/cabinets.
- interconnect each of these components with fast and/or efficient networks.

- All the processors in a supercomputer can perform computations at the same
time => parallel computing.
- Faster progress than sequential systems ...
- ...Iff parallel code exists.



Example: IBM’s BlueGene/Q

3. Compute card:
One chip module,
16 GB DDR3 Memory,
Heat Spreader for H,O Cooling

2. Single Chip Module

5b. IO drawer:
8 10 cards w/16 GB
8 PCle Gen2 x8 slots
BD I/O torus

5a. Midplane:
16 Node Cards

5-

6. Rack: 2 Midplanes

4. Node Card:
32 Compute Cards,
Optical Modules, Link Chips; 5D Torus

7. System:
96 racks, 20PF/s

*Sustained single node perf: 10x P, 20x L

* MF/Watt: (6x) P, (10x) L (~2GF/W, Green 500 criteria)

« Software and hardware support for programming models
for exploitation of node hardware concurrency

© 2011 IBM Corporation
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Example: FUGAKU

:

CMU BoB Shelf Rack System
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Example: SUMMIT

Summit Overview 10.2 PB Total Memory

256 compute racks
4,608 compute nodes

Compute Rack Mellanox EDR IB fabric
‘ OpenPOWER 18 Compute Servers 200 PFLOPS
Warm water (70°F direct-cooled ~13 MW
components) ‘
Compute Node RDHX for air-cooled components
2 x POWERS9
6 x NVIDIA GV100
Components NVMe-compatible PCle 1600 GB SSD
IBM POWER9 o :
+ 22 Cores ; ;
+ 4 Threads/core T r
« NVLink P
25 GBls EDR IB- 2 ports) B Y it wa ok GEES Flle Systens
512 GB DRAM- (DDR4) 250 PB storage
96 GB HBM- (3D Stacked) 2.5 TB/s read, 2.5 TB/s write

Coherent Shared Memory

NVIDIA GV100

< 7TF

- 16 GB @ 0.9 TB/s
« NVLink

¥ OAK RIDGE | s

Nartional Eaboratory | FACILITY




Top500

@dJune’'24

1 Exascale machine

Heterogeneous
AMD, Intel+NVIDIA

1 custom-built machine

Rank

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

DOE/SC/0ak Ridge National Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade,
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz,
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure

United States

Supercomputer Fugaku - Supercomputer Fugaku,
Ab64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Cores

8,699,904

9,264,128

2,073,600

7,630,848

2,752,704

Rmax
(PFlop/s)

1,206.00

1,012.00

561.20

442.01

379.70

Gap:

Rpeak Power
(PFlop/s) (kW)

20 — 30%



Performance Development
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Energy
TOP500 Rmax Power Efficiency

Rank Rank System Cores (PFlop/s] (kW) (GFlops/watts)

1 189 JEDI - BullSequana XH3000, Grace 19,584 4.50 67 72.733
G reen 500 Hopper Superchip 72C 3GHz, NVIDIA
GH200 Superchip, Quad-Rail NVIDIA
InfiniBand NDR200, ParTec/EVIDEN

EuroHPC/FZJ
@\]une 2024 Germany
2 128 Isambard-Al phase 1 - HPE Cray EX254n, 34,272 7.42 117 68.835
NVIDIA Grace 72C 3.1GHz, NVIDIA GH200
None of the top5 o Superchip, Slingshot-11, HPE

University of Bristol
United Kingdom

|_U M | iS #12 3 55 Helios GPU - HPE Cray EX254n, NVIDIA 89,740 19.14 317 66.948

Grace 72C 3.1GHz, NVIDIA GH200
Superchip, Slingshot-11, HPE
Cyfronet
Poland
Aurora, Fugaku > #50
4 328 Henri - ThinkSystem SR670 V2, Intel 8,288 2.88 4a 65.396
Xeon Platinum 8362 32C 2.8GHz, NVIDIA
H100 80GB PCle, Infiniband HDR, Lenovo
Flatiron Institute
United States

5 71 preAlps - HPE Cray EX254n, NVIDIA 81,600 15.47 240 64.381
Grace 72C 3.1GHz, NVIDIA GH200
Superchip, Slingshot-11, HPE
Swiss National Supercomputing Centre
(Cscs)

B e e e e e e a  EEne e o




Shared memory

Parallel System Models e L
- Shared Memory 3

- Multiple compute nodes

- One single shared address space OESTon)

- Typical example: multi-cores
Distributed memory

- Distributed Memory
- Multiple compute nodes I I I

- Multiple, local (disjoint) address spaces o | meodl PR
- Virtual shared memory: software/hardware layer “emulates” shared memory
- Typical example: clusters s

. HybrIdS Hybrid
- Multiple compute nodes, typically heterogeneous
- Mixed address space(s), some shared, some global memory e N *** e
- Typical example: supercomputers

Intecconnection Network




Shared memory

Parallel Machine Models ==

Netw odgc

- Shared Memory
4 A

Programming: multi-threading -
Programming models: OpenMP, pthreads, TBB, ...
\_ ) Distributed memory
- Distributed Memory
g A I I I
Programming: message passing ST E— ceu | | cru
Programming models: MPI, Big-data models, ... es” shared memory
g Y, Netw ode
. HybrIdS Hybrid

Programming: very diverse, depending on the lry

hardware configuration

@
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Main challenge: scaling to ExaFLOPS and beyond

- Peak performance = sum of capabilities of all machines
- E.g.: 100 nodes x {128 cores x 1OOGFLOPs/corS’
I

- Scaling options:
- More nodes = scale'out
- More powerful nodes = scale up (or acceleration/heterogeneity)

Hybrid
- Limitations to actual performance @ @ @ @ @ @
- Memory, I/O, networking bottlenecks
- Load-imbalance m m s o0 m
- Non-uniform behaviour
- Programmability @ @ @ @ @ @

Interconnection Network




How to scale-up/-out?

- Shared Memory model <= typical for scale-up, limited for scale-out
- Interconnect scalability problems & uniform accesses
- Programming challenge: RD/WR Conflicts
- Distributed Memory model <= typical for scale-out, inefficient for scale-up
- Data distribution is mandatory
- Programming challenge: remote accesses, consistency
- Virtual Shared Memory model <= increased programmability and overhead
- Significant virtualization overhead
- Easier programming
- Hybrid models <= trade-offs at different levels!

- Local/remote data more difficult to trace



What about sustainability?

- Efficient use of the system
- Low performance => Low utilization => Low efficiency

- Inefficient resource reservation => Low efficiency
- Application scaling + programming <> system architecture

- E.g.: calculate the histogram of a very large dataset on a (small) number of bins.

CPU

Shared memory

————————— CPU

CPU

CPU

Memocy

Distributed memon

/

————————— CPU

CPuU

Metw ode

Hybrid

p g

‘Lt Lt

€1, 19318 1984

S EEIERCE

Interconnection Network




Programmer vs. runtime/OS vs. job scheduler

- Programmer exposes parallelism at How to split and program the
application level tasks? How is data accessed?
- Job = application + dataset Knowledge of node architecture is
- Application = set of tasks essential for effective optimization.
- Tasks = execute in some sequential order and/or in
parallel

- Runtime/OS map the tasks on resources What runs where and when?

- In both space and time Decisions by a runtime system

and/or OS; require deep knowledge

- Possibly with programmer’s restrictions system architecture.

- (Job) Scheduler e
resources

. Ideally sufficient an Inefficient parallel application design affects all

levels in terms of efficiency and sustainability!




Systems SOTA: Inside the node



. 2 4

But the borders

Inside the node* are blurrier every

year.
CPU core x n

Register file Computer architects: how to build these?
Computer scientists: how to use these?

Executes your
program

Cache
memory

ALU.

System bus Memory bus

et v
> /0 < >
bridge

I/O bus .
Expansion slots for
other devices such

Disk as network adapters

controller
A

PC

ﬁﬂl

AN

Main Stores your
memory program
and data

Bus interface

USB Graphics
cantrolle adapter/card

Accelerates Il

Displ
part of your B _
program

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron



Performance “metrics’

- Clock frequency [GHz] = absolute hardware speed
- Memories, CPUs, interconnects

- Operational speed [GFLOPSs]

: Mame FLOPS
- Operations per second
- single AND double precision yottaFLOPS 1024
: 1
- Memory bandwidth [GB/s] zettaFLOPS 10°
- Memory operations per second sxaFLOPS 4018
- Can differ for read and write operations !
- Differs a lot between different memories on chip petaFLOPS 1012
- Power [Watt] teraFLOPS 1012

- The rate of consumption of energy glgaFLOPS 108

- Derived metrics megaFLOPS 10
- FLOP/Byte, FLOP/Watt
kiloFLOPS 102



A processor’s inner workings

Bus
Addresses Memory
Data Instructions
Data

Instructions

7

» C ey Information
- CPU = executes the “application iransfer

- Manages the execution progress (PC)
- Fetches needed instructions and data (addresses)
- Executes (ALU) operations and manages results
- Memory = stores the executable code of the application and the data
- Receives request + address, replies with data (a bit vector)

- Bus = facilitates information (=bits) movement




Addresses Memory

Instructions
Data

The CPU

- Computations are executed by the ALU
- Integer, single/double precision arithmetic, ... Information
- Comparisons, logical operations, ... transfer

Data

Instructions

- ALU runs at its own “clock speed” / frequency
- Defines how many cycles/s can be executed by the CPU
- Each operation takes 1 or more cycles

- Higher performance CPUs

- Make a faster/smarter ALU
- More operations per cycle

- Make faster CPUs
- More cycles/s

- Multiple cores All these are powered!
» Even more operations per cycle! Unused => low efficiency => waste!




Traditionally ... single core CPUs

- More transistors = more functionality
- Improved technology = faster clocks = more speed

- Every 18 months => better and faster processors.

/éingle core processb\

-

Not anymore!
We no longer gain performance by “growing” sequential
processors ...

o

Individual

Memory (cache)

More individual
memory (cache)

/

Off-chip
components




New ways to use transistors

Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUS)
and many-core processors (GPUSs).




The shift to multi-core

T T T T A
% L 1
10 Transistors
106 i | (thousands)
10° | | Single-Thread
Performance 4
10* F | (SpecINT x 107)
% % :“ Frequency (MHz)
ol 50 o
S @ Typical Power
2 IS ’l* v
10° | B 2.. - (WattS)
1 . _— iy Number of
100 1 - s = o LW | Logical Cores
5 A m " v i vY wvw
10 —‘ * * o SO O WS SINND WHIOND ¢ o -
| | ] 1
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labante, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K, Rupp



Generic multi-core CPU

Hardware threads

. SIMD units (vector lanes
Multi-core Processor ( )

L1 and L2
dedicated
caches

K Bus Interface
Bandwidth —>1 Chip Boundary \

Shared L3 cache

Main memory, 1/0



CPU levels of parallelism

- Instruction-level parallelism (e.g., superscalar processors) (fine)
- Multiple operations of different kinds per cycle
- Implemented/supported by the instruction scheduler

- typically in hardware

- SIMD parallelism = data parallelism (fine)
- Multiple operations *of the same kind* per cycle
- Run same instruction on vector data
- Sensitive to divergence intervention!
- Implemented by programmer OR compiler

- Multi-Core parallelism ~ task/data parallelism (coarse)
- 10s of powerful cores

- Hardware hyperthreading (2x) Programer’s intervention and OS
- Local caches support
- Symmetrical or asymmetrical threading model il

- Implemented by programmer

Some programmer/compiler




€3 By
CPU
- ¥
%

‘ B
Host
Memory

.

©2010 The Portland Group, Inc.

Control

DMA

Accelerators: a generic GPU

Execution Queue )
1
: -
[ \ Dual Warp lssoe Dual Warp e
v 1
Streaming CUDA
Multi- cores
processor
(SM) Special St Ml
functi ni . o
\_ /| Local memory Cace S Cache
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( Level 2 Cache

$

Device Memory
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Inside an NVIDIA GPU architecture

PCI Express 3.0 Host interface

ﬁ'“" A "l‘.' ST

Memory Controller
Jejponuoy Aloweyy

$
g
5
o
»
E
5
=

Jo(onuo) Aoweyy

Memory Controller
sonuo) Aowew

Memory Controller
Monuo) Lowew

o
NVLink




GPU Integration into the host system

- Typically based on a PCI Express bus

- Transfer speed (effectively, CPU-to-GPU):
16 GT/s per lane x 16 lanes

- Can be NVLIink (~10x faster) for specialized motherboards




GPU Levels or Parallelism

- Data parallelism (fine-grain)
- Write 1 thread, instantiate a lot of them

- SIMT (Single Instruction Multiple Thread) execution

- Many threads execute concurrently
« Same instruction
+ Different data elements
« HW automatically handles divergence
- Not same as SIMD because of multiple register sets, addresses, and flow paths*
- Hardware multithreading

- HW resource allocation & thread scheduling
» Excess of threads to hide latency
» Context switching is (basically) free

- Task parallelism is “emulated” (coarse-grain)
- Hardware mechanisms exist

- Specific programming constructs to execute multiple tasks. _

Programmer’s (or some compiler’s)

intervention!

Programmer’s intervention!

- Heterogeneous computing

o -
. CPU is always present ... Programer’s intervention!

*http:/lyosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus. html



Theoretical peak performance

Throughput [GFLOP/s] = chips * cores * vectorWidth *
FLOPs/cycle * clockFrequency

_ TR T

Intel Core i7

AMD Barcelona 4 8 37
AMD Istanbul 6 6 62.4
NVIDIA GTX 580 16 512 1581
NVIDIA GTX 680 8 1536 3090
AMD HD 6970 384 1536 2703
AMD HD 7970 32 2048 3789

Intel Xeon Phi 7120 61 240 2417



*multi* vs *many* cores (SP-FLOPS)

Theoretical Peak Performance, Single Precision
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*multi* vs *many* cores (DP-FLOPS)

Theoretical Peak Performance, Double Precision

10% [ 5 i 5 5 ™ o Mi6O
' ' ' ' \Q’\Q T
! ! ! ! S : ]
1 1 1 Il z\@ [ )\QQ i -
: : \QQ \o_)Q ! rz,.A . .
' N > o aQ
: < Q© S Kl
: «® <@ A N
X AV \’b\\(\ X
: S S O 5 ~
. Q/Q .\&bt N Al %Q '
4 - @ N S QN ~
«QJ%\?;L\ < <<= @ , N &5 :
X o 1
Y. '
103 _________________________________ /\_Q _______ /_\Q___ _______ ! _____________ P _:_____
~ S & S / S AS “Xeon Phi 7120 (KNC) ~
g | o O O L0 P : :
o ' (8 QN ' Oy '
. ) . R ) o () '
9 ' @‘?/Q \3\0 ' ggQ QQA 039/' < '
0 N . o . q© a© < & !
° i Y | & & = |
' Q ' '
X L : |
\ 12 '
o}‘b.c) Q I
I S/ A :
Q;\Q . o O\Q QS)Q) .
S RS > PR <& 1
N o = > '
N\l < 6’?’ !
> <& <~ :
10 - - - - T T .__-__n-_______-__._____n__-__-_______.__-_______-__-__-___: _____
= o INTEL Xeon CPUs =——fle—
' S Q)Q’ ' '
: \@b 1SS : : NVIDIA Tesla GPUs —Jl—
< e S : : : AMD Radeon GPUs —@)—
+© <& > INTEL Xeon Phis ——age—
1 1 1 1 1 1
2008 2010 2012 2014 2016 2018
End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



Addresses Memory

The memory

Instructions

Data Data

Instructions

- Typically organized as linear spaces

- Some word-size granularity Informa;tion
transter

- Code and data are stored in memory

- Everything that lives in memory has an “address”
- Visible at assembly level
- Accessible via pointers/variable names/... from the program itself

- Memory operations are slow!
- Off-chip
- Request read/write
- Search and find

Lots of memory traffic => CPUs idle

=> Wwaste!
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The CPU-Memories Gap

100,000,000.0
10,000,000.0 Disk

1,000,000.0
100,000.0 SSD
A
_ 10,0000 —The-gap-widens-between DRAM,—— —+—Disk seek time
(72} . .
£ disk, and CPU speeds. —+ 55D access fime
GE) 1,000.0 8- DRAM access time
= 100.0 - DRAM —8— SRAM access time
-~ CPU cycle time

10.0 w —O— Effective CPU cycle time
Data takes longer and longer to load WPU

to the CPU!

' ' ' ' ' ' These gaps are the main
1985 1990 1995 2000 2003 2005 2010 2015 .
Year reason for using a memory
hierarchy.



Memory hierarchy

- A single memory for the entire system is not efficient!
- Several memory spaces

- Large size, low cost, high latency — main memory
- Small size, high cost, low latency — caches / registers

- Main idea: Bring some of the data closer to the processor
- Smaller latency => faster access
- Smaller capacity => not all data fits!

- Who can benefit?

- Applications with locality in their data accesses
« Spatial locality
* Temporal locality

This data is "cached” — that

IS, stored In a cache.




Memory hierarchy and caches

- Cache: A smaller, faster storage device that acts as a staging area for a
subset of the data in a larger, slower device.

- Memory hierarchy
- Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)

- For each k, the faster, smaller device at level k is a cache for the larger, slower device at
level k+1.

- How/why do memory hierarchies work?

- Locality => data at level k is used more often than data at level k+1.
- Level k+1 can be slower, and thus larger and cheaper.



CPU registers hold words

M e m O ry h Ie rarChy Regs retrieved from the L1 cache.

retrieved from the L2 cache.

Ll/ L1 cache L1 cache holds cache lines

Smaller, (SRAM)
faster,

and L2 L2 cache L2 cache holds cache lines

costlier ' (SRAM) retrieved from L3 cache

(per byte)

Ztor_age L3: L3 cache L3 cache holds cache lines

evIces (SRAM) retrieved from main memory.
Larger,
slower, L4: Main memory Main memory holds disk
and (DR AM) blocks retrieved from
cheaper local disks.
(per byte)
storage | 5. Local secondary storage Local disks hold files
devices (local disks) retrieved from disks
on remote servers
LG: Remote secondary storage

(e.g., Web servers)




100 -

Cycles per inner_loop iteration

Matrix Multiplication

Good vs bad locality / caching ...

for

for

}
}

(i=0; i<n; 1i++) {
(3=0; 3<n; j++) {
sum = 0.0;
(k=07
sum += a[i] [k]

cli][]] =

k<n; k++)

* blk][J];

for

sumy;

iik / jik

for
fo

(k=0; k<n;

r (i=0;

k++) {

i<n; 1i++) {

; J<n; Jt++)
+=r * b[k][]];

kij / ikj

==jki
—B—Kiji
—>¢ijk
—o—jik
—+—Kij
—A—|K]
kij / ikj
R e e e e e e e e
50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)

for
fo

(J=0; 3j<n;
r (k=0; k<n;
r = blk][J];
for (i=0;

cli][J]

Jt+) |
k++) |

i<n; 1i++)
+= afli] [k] * r;

ki / kji




Theoretical peak performance

Throughput [GFLOP/s] = chips * cores * vectorWidth *
FLOPs/cycle * clockFrequency
Bandwidth [GB/s] = memory bus frequency * bits per cycle *

bus width
_
Intel Core i7 25.6
AMD Barcelona 4 8 37 21.4
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352



*multi* vs *many* cores (GB/s)

Theoretical Peak Memory Bandwidth Comparison

e e
103 p----------- - Tt R i T S
: : N\
1
N 0\8\0
1 31 !
6%10 ‘3\06 S Tesla K40
\% S Xeon Phi 7120 (KNC) o
N SN Tesla K20X o2®
’(66\1
[&] ! '
D
@0 |
B 107 [ 10 M oS ZEPR O EREEEEREE
N |
. @660"0 *6‘%3% *"o“og . I : .
B S ; ; ; INTEL Xeon CPUs ——fe—
* e NVIDIA Tesla GPUs —JIlI—
: : : : AMD Radeon GPUs —@)—
INTEL Xeon Phis ——ege—
1 1 1 1 1 1 1
10
2008 2010 2012 2014 2016 2018
End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



Balance

Throughput [GFLOP/s] = chips * cores * vectorWidth *
FLOPs/cycle * clockFrequency
Bandwidth [GB/s] = memory bus frequency * bits per cycle *

bus width
_

Intel Core i7 25.6

AMD Barcelona 4 8 37 21.4 1.7
AMD Istanbul 6 6 62.4 25.6 2.4
NVIDIA GTX 580 16 512 1581 192 8.2
NVIDIA GTX 680 8 1536 3090 192 16.1
AMD HD 6970 384 1536 2703 176 15.4
AMD HD 7970 32 2048 3789 264 14.4

Intel Xeon Phi 7120 61 240 2417 352 6.9



B
Balance ? FLOPs/Byte (SP) !

Theoretical Peak Floating Point Operations per Byte, Single Precision

)
X
0]
0
o]
T
2
jl
o,
=l
x
Z
e}
g\
%

X *eo(\

FLOP per Byte

INTEL Xeon CPUs ——fe—
NVIDIA Geforce GPUs —{ll—

AMD Radeon GPUs —@)—
INTEL Xeon Phis —_—

1 1
2008 2010 2012 2014 2016 2018
End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



Balance ?

FLOPs/Byte (DP) !

Theoretical Peak Floating Point Operations per Byte, Double Precision

FLOP per Byte

iNTEL Xeon CPUs
NVIDIA Tesla GPUs
AMD Radeon GPUs
INTEL Xeon Phis

2010 2012 2014

End of Year

2016

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/




Why should we care?

- Peak performance indicates an absolute bound of the performance that can

be achieved on a given machine
- It Is *application independent*

- Such performance is rarely* achievable in practice for real applications.
- Applications rarely utilize all the machine features.

- The balance of an application must consistently match the balance of the
machine to get anywhere near the peak...

- ... or else... different bottlenecks!

*Empirical studies show this reads as “almost never” .
https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master



https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

Sustainability TODO'’s

- Use all CPUs capabillities

- Maximize parallelism
- Use SIMD & ILP

- Use accelerators
- Maximize parallelism
- Correct mapping of application to GPU
- Heterogeneous computing

- Use all memory capabilities
- Maximize bandwidth
- Use caching / improve locality

Limit the impact of low utilization
Reduce impact of unused cores/chips
Reduce impact of unused bandwidth**

** non trivial ...



Heterogeneous computing?

- A heterogeneous platform = a CPU + a GPU (the starting point)
- An application workload = an application + its input dataset

- Workload partitioning = workload distribution among the processing units of a
heterogeneous system

Thousands of Cores



. ©
Example 1: dot product

- Dot product
- Compute the dot product of 2 (1D) arrays

- Performance
- Tg = execution time on GPU

- T¢ = execution time on CPU
- Tp = data transfer time CPU-GPU

- GPU best or CPU best?

123x78 58
45 & 2 10

(11 12




Example 1: dot product

o TG mm TD mmm TC —o—TMax
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—
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Example 2: separable convolution

- Separable convolution (CUDA SDK)

- Apply a convolution filter (kernel) on a large image.

- Separable kernel allows applying
- Horizontal first
- Vertical second

- Performance
- T = execution time on GPU

- T = execution time on CPU .
. et

- Tp = data transfer time RN R“**ﬁ“x
g P ANIRANIES

B . B
xHHH_ ;‘“‘*i.:x\xx
- GPU best or CPU best? SN TN

M) [,
kernel M"‘H ™~ H“H H‘HH‘M
xH“a Hahxa S
HH‘RH output RH:HH
‘“&R )

s




Example 2: separable convolution

130 - o TG mm TD mmm TC —o—TMax
~() -
140 -
g 120 -
*z 100 4 Waste!
S 80 -
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O | 1 ‘ 1 1 | | 1 1 | |
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Example 3. matrix multiply

- Matrix multiply
- Compute the product of 2 matrices

- Performance
- Tg = execution time on GPU B
- T¢ = execution time on CPU IS 1
- Tp = data transfer time CPU-GPU

- GPU best or CPU best?




Waste!

o TG mm TD mm TC —e—TMax

150 -
00 -
50

0

T T
R S
AN (N

(Sw) |wiy uonndaxy

450
350 -
300 -

Example 3. matrix multiply




Determining the partition

- Static partitioning (SP) vs. Dynamic partitioning (DP)

v "y
|
- .|. = u
Multiple
Cores
Thousands of Cores

CPU

Multiple +

Cores M

*Jie Shen et al., IEEE TPDS 2015 Thousands of Cores

“Workload partitioning for accelerating applications on heterogeneous platforms”



In summary ...

- Understand the system you use ...
- And match applications to hardware

- Increase utilization
- Re-design application/algorithm

- Decrease impact of low utilization

- Share resources
- DVFS
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Next time: PART 2 — applications & tools

- Understand applications
- Tools to quantify and improve sustainability



Backup slides



(1) ILP (Instruction level parallelism)

- Multiple instructions issued & executed in the same cycle

No parallelism ILP support
- Instr. i
Instr. i+1
ALU Exec Exec
(Execute) 1 2
Seguential -
Instr. n

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn'//15418 cotirses c< cmti edu/sorina?2016/lectiires


http://15418.courses.cs.cmu.edu/spring2016/lectures

No programmer’s intervention!

Implementing ILP

- Super-scalar processors

- “dynamic scheduling”: instruction reordering and scheduling happens in hardware

- More complex hardware
* More area, more power ...

- Adopted in most high-end CPUs today

- VLIW processors

- "static scheduling”: instruction reordering and scheduling is done by the compiler

- Simpler hardware
* Less area, less power

- Adopted in most GPUs and embedded CPUs



(2) SIMD (single instruction, multiple data)

- Same instruction executed on multiple data items

ali+1] +=5 ALU1| |ALU2| |ALU3| |ALU4
ALU - |
(Execute) - ALU5| (ALUG| (ALU7| |ALUSB
scalar”
(sequential) “vector”

ali+7] +=5 (parallel)

==

*Diagrams adapted from CMU'’s course "Parallel Computer Architecture and Programming” —



http://15418.courses.cs.cmu.edu/spring2016/lectures

Scalar vs SIMD operations

SIMD Mode Scalar Mode

I BEEDI L E D
-+

AG+B&

.ﬁSd-q Ad+B4 E* B

Image: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html



Requires programmer’s (or compiler’s)
iIntervention!

Implementing SIMD

- SIMD extensions: special registers and functional units

- Multiple generations of SIMD extensions
- SSE4.x = 128 bits

« AVX [/ AVX2 = 256 bits (most available CPUs, DAS-5 included)
- AVX-512 =512 bits (Intel Xeon Phi, partial in most recent CPUS)

512 0
e 512 bits ~==-=-=======m e >
e 256 bits ~-------~ >

<-- 128 bhits --»




SIMD programmer intervention

- Auto-vectorization

- Typically enabled with “-O” compiler flags
- Compiler directives

- Specifically add directives in the code to feree persuade the compiler to vectorize code
- C or C++ Intrinsics

- Wrappers around ASM instructions
- Declare vector variables
- Name instruction
- Work on variables, not registers

- Assembly instructions
- Can write assembly to target SIMD



Requires programmer’s (or compiler’s)

intervention and OS (operating system) support!

(3) Multi-core parallelism

- Two (or more cores) to execute different streams of instructions.

ALU ALU
(Execute) (Execute)

= || B

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn'//15418 cotirses c< cmti edu/sorina?2016/lectiires


http://15418.courses.cs.cmu.edu/spring2016/lectures

Multi-core programmer intervention

- Must define concurrent tasks to be executed in parallel
- Typically called (software) threads

- Threads are executed per core

- Under the OS scheduling
- Some control can be exercised with additional programmer intervention

Core O
fori=1...n
do_something(i)
Core 1
fori=1...3"n fori=n+1...2*n
do_something(i) do_something(i)
Core 2
fori=2*n+1...3™n
do_something(i)




Computer architecture talk



B
CPU features for ILP

- Instruction pipelining
- Multiple instructions “in-flight”

- Superscalar execution
- Multiple execution units

- Out-of-order execution
- Any order that does not violate data dependencies

- Branch prediction
- Speculative execution



Superscalar, Out-of-order

- A superscalar processor can issue and execute multiple instructions in one
cycle.

- The instructions are retrieved from a sequential instruction stream and are usually
scheduled dynamically.

- An out-of-order processor can reorder the execution of operations in
hardware.

- Superscalar, out-of-order processors can take advantage of the instruction
level parallelism that most programs have.

- Most modern CPUs are superscalar and out-of-order.
- Intel: since Pentium (1993)
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Modern CPU Design

Instruction Control
Control Instruction

: Retirement
Banenes Unit
: Register Instruction  PISIaIe]S caie
— File Decode )
Operations
Register Updates : Prediction OK?
i 1 1 1
Functional
0acC )
Units
S S
i i ‘ \ 4 \ 4 \ 4
Operation Results
Addr. Addr.
Data Data

Execution




Areal CPU ...

—/

36 Entry Reservation Station

Port O

Port 1

Port &

Y Y

h J

Internal Results Bus

128 bits |

Load

Store
128 bits




SkylLake ®

Fetch & decode,
producing multiple
uOps

Optimize, reorder,
schedule uOps

Multiple execution

- [INT Wect ALU[INT Vect ALU|[INT Vect ALU
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Hardware multi-threading (or hyperthreading®)



"Are there hardware threads?!”

- Hardware (supported) multi-threading

- Core manages thread context
- Interleaved (temporal multi-threading) — employed in GPUs

- Simultaneous (co-located execution) — e.g., Intel Hyperthreading
Issue slots

Thread 0
Thread 1
Thread 2
Thread 4

Time
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Why bother?

- Interleave the processing of multiple instruction streams on the same core to
hide the latency of stalls

- Requires replication of hardware resources
- Each thread uses its own PC to execute the instruction stream
- Requires replication of register file

- Performance improvement: higher throughput



Advantage: increased throughput

Thread 1
Elements0...7

1 Core (1 thread)
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Advantage: increased throughput

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8... 15 Elements 16 ... 23 Elements24... 31
OOoO0O0OOOO0 OO0OO0OO0OO0O0OOQ OOOOooooo OoOooooodd

Stall 1 Core (4 hardware threads)

HLUO| ALU1 ﬂLUZI ALU 3|

ALU4 ALU 5| ALU 6| ALU 7|

Runnable _|‘E




Advantage: increased throughput

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8... 15 Elements 16 ... 23 Elements 24 ... 31

OOoOOoOOoOoOoOoo Oooooooo OOoOOoOoOooOoo OoOoooooood

W ° ° °
Stall -

Stall -

"‘J.\[-. “
Runnable ~ Stall “
VNS

1 Core (4 hardware threads)

ALU1 ALU]I AI.U3|

ALUO|
ALU4 ALU5| ALU 6| |ALU 7|

(LI (T | COCCCT ] T
e | e

L = | [ [
T,

N b (LI (TICD | L M

. 3) o | 4)

(T (T OO LT
Done! Runnable
Runnable




What about the memory?

- Three levels of cache: L1 (separate 1$ and D$, per-core), L2 (per-core), L3
(=LLC, shared)

Core1

CoreN

L1 cache
(32 KB)

L2 cache
(256 KB)

—

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

25 GB/sec

)

Memory
DDR3 DRAM

(Gigabytes)
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Putting It all together

- A modern CPU has a mix of all these features...

— O000 | |y 0000 | | [aoy 0000 | | ey DOOD
I I - I | |
L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache
% < On-chip
interconnect
Memory
L3 Cache Controller

Memory Bus l
(to DRAM)



SIMD programming



Vectorization/SIMD options

- Auto-vectorization
- Both gcc and icc have support for it
- Successful for simple loops and data structures
- Compiler directives
- Both gcc and icc allow for specific pragma’s to enable vectorization
- Pragma’s are used to “force” the compiler to vectorize
/- C or C++: intrinsics )
- Declare vector variables
- Name instruction
- Work on variables, not registers
. ssembly INStructions
- Execute on vector registers




Using Intrinsics

- https://software.intel.com/en-us/articles/introduction-to-intel-advanced-
vector-extensions

- https://software.intel.com/sites/landingpage/IntrinsicsGuide/

- Requirements:
- Using aligned data structures (aligned to the size of the vector)



https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Examples of Intrinsics

float data[l1024];
// init: data[0] = 0.0, data[l] = 1.0, data[2] = 2.0, etc.
init (data) ;

// Set all elements in my vector to zero.

element O 1 2 3

~ ml28 myVector0 = mm setzero ps();
Il 0.0 0.0 0.0 0.0

// Load the first 4 elements of the array into my vector.

~ ml28 myVectorl = mm load ps(data); element O 1 2 3
VIR 0.0 1.0 20 3.0

// Load the second 4 elements of the array into my vector.

ml28 myVector2 = mm load ps(data+4) ;
— - - — element O 1 2 3

eIl 40 50 6.0 7.0




// Add vectors 1 and 2; instruction performs 4 FLOP.
_ ml28 myVector3 = mm add ps(myVectorl, myVector2);

clement O 1 2 3

Elllsy 40 6.0 80 10.0

// Multiply vectors 1 and 2; instruction performs 4 FLOP.
~mm mul ps(myVectorl, myVector2);

_ ml28 myVector4

Examples of Intrinsics

element O 1 2 3

il 0.0 1.0 20 3.0

+

clement O

4.0

value

1

5.0

2
6.

element O 1 2 3

Zllsl 0.0 50 120 21.0

clement O 1 2 3

value [oK o I N ¢ I 3.0

!

X

element O

value P ZRe;

1

5.0

2
6

3

!

7.0

// MM SHUFFLE (w,x,y,z) selects w&x from vecl and y&z from vec2.

~ ml28 myVector5 = mm shuffle ps(myVectorl, myVector2,
MM SHUFFLE(2, 3, 0, 1));

VZlllsl 20 3.0 4 5.0

l

clement O 1 2 3 blement O 1 2 3 element O 1 2 3
EvElnE 00 1.0 20 3.0 S Zlllsl 40 50 6.0 7.0




Steps for vectorization

- Identify (loop) to vectorize

- Unroll (by the intended SIMD width)

- Use the correct intrinsics to vectorize computation
- Move data from arrays to vectors



B
Vector add

void vectorAdd(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i++) {
c[i] = a[i] + b[i];
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Vector add with SSE: unroll loop

void vectorAdd(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i += 4) {
c[i+0] = a[i+0] + b[i+0];
c[i+l] = a[i+1l] + b[i+1l];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];



Vector add with SSE: vectorize loop

void vectorAdd(int size, float* a, float* b, float* c) {
for (int i1=0; i<size; 1 += 4) {
~ ml28 vecA = mm load ps(a + i); // load 4 elts from a
~ ml28 vecB = mm load ps(b + i); // load 4 elts from b
~ ml28 vecC = mm add ps(vecA, vecB); // add four elts

~mm _store ps(c + i, vecC); // store four elts
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