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Agenda

• Different views on performance

• Towards zero-waste computing

• Understand systems

 

• Understand systems + applications 

• Performance engineering 

• Methods and tools for sustainable computing 

• Energy consumption and efficiency 

• Beyond energy 

• Take home message

Part 1

Part 2



Context

• Modern (and future) systems are parallel and heterogeneous

• In many dimensions 

• Systems are characterized by peak performance (with various “roofs”)

• All applications want more performance 

• Applications must enable parallelism 

• One Application => n algorithms => n*m implementations

• Algorithms: characterized by complexity

• Algorithms/implementations: characterized by arithmetic/operation intensity – ops/byte



Raise awareness 

• Monitor (energy) efficiency

• Quantify waste 

Improve efficiency 

• Improve applications for the systems at hand 

• Make applications more efficient 

• Make applications share systems  

• Improve systems for the applications at hand 

• Co-design applications and systems 

??

Sustainable computing  zero-waste computing  

Performance analysis

Performance modeling

Performance optimization

Efficient scheduling and 

resource sharing

Application-centric system 

design



“Systems at hand” 



Making faster/larger systems

Scale-up:

Bigger machine … 
and

Scale-out:

More machines … 



Sustainability at scale

• Programmer exposes parallelism at 
application level 
• Job = application + dataset 

• Application = set of tasks 

• Tasks = execute in some sequential order and/or in 
parallel  

• Runtime/OS map the tasks on resources 
• In both space and time 

• Possibly with programmer’s restrictions 

• (Job) Scheduler ensures jobs are allocated 
resources 
• Ideally sufficient and ”localized” 

How to split and program the 
tasks? How is data accessed? 

Knowledge of node architecture is 
essential for effective optimization. 

What runs where and when?
Decisions by a runtime system 
and/or OS; require deep knowledge 
system architecture. 

What resources are allocated?
Decisions by a job scheduler to 
maximize utilization/performance.

Inefficient parallel application design affects all 

levels in terms of efficiency and sustainability! 



Systems SOTA: Inside the node



Inside the node*

Main

memory
I/O 

bridge
Bus interface

ALU.

Register file

CPU core x n

System bus Memory bus

Disk 

controller

Graphics

adapter/card

USB

controller

Mouse Keyboard Display

Disk

I/O bus
Expansion slots for

other devices such
as network adapters

PC

Stores your 

program 

and data 

Executes your 

program

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron

Cache 

memory

Accelerates 

part of your 

program



Systems performance “metrics” 

• Clock frequency [GHz] = absolute hardware speed
• Memories, CPUs, interconnects

• Operational speed [GFLOPs]
• Operations per second

• single AND double precision 

• Memory bandwidth [GB/s]
• Memory operations per second

• Can differ for read and write operations ! 

• Differs a lot between different memories on chip

• Power [Watt] 
• The rate of consumption of energy 

• Derived metrics
• FLOP/Byte, FLOP/Watt



CPU

• Computations are executed by the ALU

• Integer, single/double precision arithmetic, … 

• Comparisons, logical operations, … 

• ALU runs at its own “clock speed” / frequency
• Defines how many cycles/s can be executed by the CPU  

• Each operation takes 1 or more cycles 

• Scale-up CPUs 
• Make a faster/smarter ALU 

• More operations per cycle 

• Make faster CPUs 

• More cycles/s 

• Multiple cores 

• Even more operations per cycle!  

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions 
Data 
…

Addresses

Data

Instructions

Information 

transfer

Bus

All these are powered! 

Unused => low efficiency => waste!



CPU levels of parallelism

• Instruction-level parallelism (e.g., superscalar processors) (fine)
• Multiple operations of different kinds per cycle

• Implemented/supported by the instruction scheduler
• typically in hardware 

• SIMD parallelism = data parallelism (fine)
• Multiple operations *of the same kind* per cycle  

• Run same instruction on vector data 

• Sensitive to divergence 

• Implemented by programmer OR compiler 

• Multi-Core parallelism ~ task/data parallelism (coarse)
• 10s of powerful cores 

• Hardware hyperthreading (2x)

• Local caches 

• Symmetrical or asymmetrical threading model 

• Implemented by programmer  

No programmer’s intervention! 

Some programmer/compiler 

intervention! 

Programer’s intervention and OS 

support 



Acc: a generic GPU

Streaming

Multi-

processor

(SM)

CUDA 

cores

Special 

function units

Local memory



GPU Levels or Parallelism 

• Data parallelism (fine-grain) 
• Write 1 thread, instantiate a lot of them 

• SIMT (Single Instruction Multiple Thread) execution
• Many threads execute concurrently

• Same instruction

• Different data elements

• HW automatically handles divergence

• Not same as SIMD because of multiple register sets, addresses, and flow paths* 

• Hardware multithreading
• HW resource allocation & thread scheduling

• Excess of threads to hide latency

• Context switching is (basically) free

• Task parallelism is “emulated” (coarse-grain) 
• Hardware mechanisms exist 

• Specific programming constructs to execute multiple tasks.  

• Heterogeneous computing 
• CPU is always present … 

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

Programmer’s (or some compiler’s) 

intervention!

Programer’s intervention!

Programmer’s intervention!



Theoretical peak performance

Throughput[GFLOP/s] = chips * cores * vectorWidth * 

     FLOPs/cycle * clockFrequency 

Cores Threads/ALUs Throughput Bandwidth

Intel Core i7 4 16 85

AMD Barcelona 4 8 37

AMD Istanbul 6 6 62.4

NVIDIA GTX 580 16 512 1581

NVIDIA GTX 680 8 1536 3090

AMD HD 6970 384 1536 2703

AMD HD 7970 32 2048 3789

Intel Xeon Phi 7120 61 240 2417



*multi* vs *many* cores (SP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



*multi* vs *many* cores (DP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



Memory

• Typically organized as linear spaces

• Some word-size granularity  

• App’s code and data are stored in memory 

• Memory layout = how code/data is laid-out in memory

• Access pattern(s) = what code/data is accessed and when 

• Memory operations are slow!

• Off-chip 

• Request read/write

• Search and find 

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions 
Data 
…

Addresses

Data

Instructions

Information 

transfer

Bus

Lots of memory traffic => CPUs idle 

=> waste! 



The CPU-Memories Gap
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These gaps are the main 

reason for using a memory 

hierarchy.

Data takes longer and longer to load 

to the CPU! 



Memory hierarchy and caches

• Cache: A smaller, faster storage device that acts as a staging area for a 

subset of the data in a larger, slower device.

• Memory hierarchy

• Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)

• For each k, the faster, smaller device at level k is a cache for the larger, slower device at 

level k+1.

• How/why do memory hierarchies work?

• Predict what the app uses next & prefetch  principle of locality 

• Locality <=> data at level k is used more often than data at level k+1. 

• Level k+1 can be slower, and thus larger and cheaper.



Memory hierarchy Regs

L1 cache 

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,  

slower, 

and 

cheaper 

(per byte)

storage

devices

Remote secondary storage

(e.g., Web servers)

Local disks hold files 

retrieved from disks 
on remote servers

L2 cache 

(SRAM)

L1 cache holds cache lines 

retrieved from the L2 cache.

CPU registers hold words 
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Matrix Multiplication

Good vs bad locality / caching … 

for (i=0; i<n; i++) {

  for (j=0; j<n; j++) {

   sum = 0.0;

   for (k=0; k<n; k++) 

     sum += a[i][k] * b[k][j];

   c[i][j] = sum;

 }

} 

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

  r = a[i][k];

  for (j=0; j<n; j++)

   c[i][j] += r * b[k][j];   

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

   r = b[k][j];

   for (i=0; i<n; i++)

    c[i][j] += a[i][k] * r;

 }

}
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Theoretical peak performance

Throughput[GFLOP/s] = chips * cores * vectorWidth * 

     FLOPs/cycle * clockFrequency 

Bandwidth[GB/s] = memory bus frequency * bits per cycle * bus width

Cores Threads/ALUs Throughput Bandwidth

Intel Core i7 4 16 85 25.6

AMD Barcelona 4 8 37 21.4

AMD Istanbul 6 6 62.4 25.6

NVIDIA GTX 580 16 512 1581 192

NVIDIA GTX 680 8 1536 3090 192

AMD HD 6970 384 1536 2703 176

AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352



*multi* vs *many* cores (GB/s)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



What about energy? 

• Multi-core CPU
• Multi-core energy consumption != N * energy/core 

• Complex architecture, different clocks, shared resources 

• Various ways to implements DVFS + power reduction techniques 

• Non-trivial correlation with performance 

• GPU
• Power is significantly impacted by the type of workload and occupancy 

• Always check the power cap, too! 

• Heterogeneous computing
• Sum of energy by components works well

• Multi-node computing: 
• Sum of energy works OK 

• Missing networking energy 

Hybrid



CPU C-states/P-states 

• P-states = power performance states 

• scale the frequency and voltage at which the processor runs 

• reduce the power consumption of the CPU. 

• Number of available P-states can be different for each model of CPU

• C-states = idle sleep states

• reduced or turned off selected functions

• Higher is … more => more of the CPU is shut-off 

• Number of available C-states can be different for each model of CPU

https://hardwaresecrets.com/everything-you-need-to-know-about-the-cpu-c-states-power-saving-modes/

https://hardwaresecrets.com/everything-you-need-to-know-about-the-cpu-c-states-power-saving-modes/


An example

• AMD EPYC CPU 

• Running SGEMM 

• Different frequencies 

(P-states) 



An example: 

GPU SMs Cores/SM Total Cores Max Power [W] Idle Power [W]

A4000 48 128 6144 140 39.5

A6000 84 128 10572 300 71.5

A2 10 128 1280 60 18.1

A100 108 64 6912 250 37.9

A4000 A6000 A2 A100



Same example

• Caching patterns make 

a significant difference 

• Compute vs memory 

intensive – mem 

consumes more.

• Memory coalescing, 

negligible

• Data types & 

instruction mix show 

some differences 



Performance vs. sustainability 

• Low performance ➔ waste in computing 

• We power resources that are not needed 

• High performance ➔ faster execution ➔ less energy consumed 

• Max energy efficiency  max performance (i.e., lowest runtime…) 

• Strong assumption that power is constant 

• DVFS is a technique to reduce the impact of underutilized hardware

• Non-linear effects on performance  

• In the context of multi-core and heterogeneous systems, maximizing execution 

time might not guarantee lowest energy consumption. 

Goel and McKee – “A Methodology for Modeling Dynamic and Static Power Consumption for Multicore Processors”

https://doi-org.ezproxy2.utwente.nl/10.1109/IPDPS.2016.118


Example 1: Energy harvesting 

• Basic assumptions
• Tasks run on different processors

• Idle processors waste energy

• Higher/lower operating frequencies 

• => more/less power respectively

• => reduce or increase runtime respectively

• Opportunities 
• Dynamic Voltage and Frequency Scaling (DVFS)

• Reducing operating frequencies in idle states may save energy

• No active task => no runtime increase

• Increasing operating frequencies in busy states may save energy

• Lower runtime => less time to consume energy

GPU-bound
(Matrix Multiply)

CPU-bound
(K-Means)



Results



Example 2: Smaller GPUs, anyone? 

Applications:

• 5 Rodinia kernels:
• Compute-bound: hotspot, k-means (2)

• Memory-bound: k-means (1)
         backpropagation (1), backpropagation (2)

Systems:

• Baseline: RTX 2060 Super

• Variables:
• SMs: 25, 30, …., 40

• Core clock: 1000, 1150, …., 1900

• Memory clock: 800, 1250, …, 3500 

Simulation run-time ≈ 24-40 hours

Simulated with:

Ask me 

more! 

https://github.com/romnn/gpucachesim



Varying SMs 

35

waste

waste

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

More resources ≠ 

better performance



Core clock

36

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

The core-level static 

energy model in 

AccelSim seems to be 

broken. 

??

??



Memory clock

37

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

waste

waste



Sustainability TODO’s 

• Use all CPUs capabilities 

• Maximize parallelism 

• Use SIMD & ILP 

• Use accelerators – if needed!  

• Maximize parallelism 

• Efficient mapping 

• Heterogeneous computing 

• Use all memory capabilities 

• Maximize bandwidth 

• Use caching / improve locality 

** non trivial … 

Limit the impact of low utilization 

Reduce impact of unused cores/chips 

Reduce impact of unused bandwidth**



Applications 



A Method for Parallel Application Design*

• Decompose (partition) 

• What is the computation?  Which data?

• Cluster (communicate & agglomerate) 

• What granularity ? 

• Implement in programming model 

• Which model ?

• Implement tasks as processes or threads 

• Add communication and synchronization constructs

• Map units of work to processors 

• Might be transparent.

Decompose

Cluster

Implement

Map to HW*In Foster - ”Designing and Building Parallel Programs”

  http://www.mcs.anl.gov/dbpp

http://www.mcs.anl.gov/dbpp


Models of Parallel Computation

• Conceptual level : defining tasks and data interactions 
• Recipes that typically cover “decompose” and “cluster”

• (may) Provide 
• More parallelism in the application 

• Better load-balancing 

• Systematic performance analysis 

• Examples 
• Trivially/embarrassingly parallel

• Data parallelism

• Task parallelism

• Farmer/worker

• Divide and conquer

• Bulk synchronous

Decompose

Cluster

Implement

Map to HW



Implementation matters 

• Efficient parallelization 

• Memory bandwidth utilization 

 

• Programming models/languages 

• Compilers 

• Libraries and additional tools 



The programming language  

• C/C++ remain faster than most 

alternatives 

• And benefits from most low-level tools 

• Python is slower, but libraries and 

ecosystem around it is improving 

• Julia/Go/Rust picking up, but limited 

support with libraries and tools 

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

https://benchmarksgame-team.pages.debian.net/benchmarksgame/


What about energy?

• Same experiment, with energy consumption 

metrics 

• In most cases … 

• Correlation between time and energy 

• Depends a lot on the characteristics of 

applications 

https://sites.google.com/view/energy-efficiency-

languages/updated-functional-results-2020?authuser=0

https://sites.google.com/view/energy-efficiency-languages/updated-functional-results-2020?authuser=0
https://sites.google.com/view/energy-efficiency-languages/updated-functional-results-2020?authuser=0


Adding parallelism, acceleration, distribution 

• Pthreads/CUDA/OpenCL/SyCL are relevant low-level options 
• Challenging to code, high-performance  

• OpenMP is mucht more programmer friendly 
• Support for accelerators 

• Support for SIMD 

• OpenACC and alternative directive-based tools are still limited for complex 
applications 

• Kokkos / Raja / others focus on portability and performance 
• Popular for scientific applications 

• Distributed computing => often some form of lock-in 
• De-facto standard remains MPI 

• Alternative models exist, but steep learning curve 



What about (energy) efficiency? 

• How well do we utilize the system for parallel applications?

• Amdahl’s law 

• Roofline model 

• Performance modelling 

• Analytical 

• Machine learning 

• (micro)Benchmarking 

• Simulators

•  How well do we utilize the system for distributed applications? 

• Analytical models (LogP) 

• Tools for performance estimation (Scalasca, ScoreP, Vampir, … ) 



Balance

Throughput[GFLOP/s] = chips * cores * vectorWidth * 

     FLOPs/cycle * clockFrequency 

Bandwidth[GB/s] = memory bus frequency * bits per cycle * bus width

Bandwidth[FLOP/byte] = throughput / bandwidth

Cores Threads/ALUs FLOPS/s Byte/s FLOPS/Byte

Intel Core i7 4 16 85 25.6 3.3

AMD Barcelona 4 8 37 21.4 1.7

AMD Istanbul 6 6 62.4 25.6 2.4

NVIDIA GTX 580 16 512 1581 192 8.2

NVIDIA GTX 680 8 1536 3090 192 16.1

AMD HD 6970 384 1536 2703 176 15.4

AMD HD 7970 32 2048 3789 264 14.4

Intel Xeon Phi 7120 61 240 2417 352 6.9



Balance ? 

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (SP) !



Balance ? 

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (DP) !



Application arithmetic (operational) intensity

• The number of arithmetic (floating point) operations per byte of memory that is 
accessed
• Compute-intensive? 

• i.e., adding more compute power increases performance.

• Memory-intensive?

• i.e., adding more memory bandwidth increases performance.

• It is an application characteristic!

• To measure: 

• Count useful operations 

• Ignore “overheads”

• Loop counters

• Array index calculations

• Branches 

50



Compute or memory intensive?

51

AI = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sun Niagara 2
IBM bg/p

IBM Power 7
Intel Core i7

AMD Barcelona
AMD Istanbul

AMD Magny-Cours
Cell/B.E.

NVIDIA GTX 580
NVIDIA GTX 680

AMD HD 6970
Intel Xeon Phi 7120
Intel Xeon Phi 3120

“A multi-/many-core processor is a 

device built to turn a compute-intensive 

application into a memory-intensive 

one”

Kathy Yelick, UC Berkeley 



Attainable performance

• Attainable GFlops/sec 

= min(Peak Floating-Point Performance,    

          Peak Memory Bandwidth * Arithmetic Intensity)

• Peak iff  AI_app ≥ PeakFLOPs / PeakBW 

• Compute-intensive iff AI_app ≥ (FLOPs/Byte)platform

• Memory-intensive iff AI_app < (FLOPs/Byte)platform

52

Compute intensive

Memory intensive



Attainable performance (cont’d)

• Typical case:  application A runs on platform X in Texec_A :

• Rules of thumb: 

PeakCompute(X) = maxFLOP GLOPS/s     (catalogue) 

PeakBW(X) = maxBW GB/s       (catalogue) 

RooflineCompute(A,X) = min(AI(A)*maxBW, maxFLOP) (model)

AchievedCompute(A,X) = FLOPs(A)/Texec_A (real execution)

AchievedBW(A,X) = MemOPs(A)/Texec_A  (real execution)

UtilizationCompute = AchievedCompute(A,X)/PeakCompute(X) < 1

UtilizationBW = AchievedBW(A,X)/PeakBW(X) ? 1

PeakCompute >= Roofline > AchievedCompute 

PeakBW ? AchievedBW 
 Note: AchievedBW  > PeakBW  <=> faster memories on the chip play a role. 



The Roofline model

• Takes the application into account 

• Via Operational intensity

• Takes the platform into account 

• Via hardware specifications 

• Determines the performance bounds of an application when executed on 

different processors.

• Hints to optimization strategies.  



The Roofline model

55

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17



Roofline: comparing architectures

56

AMD Opteron X2: 17.6 gflops, 15 GB/s, ops/byte = 1.17                                  AMD Opteron X4: 73.6 gflops, 15 GB/s, ops/byte = 4.9



Roofline: computational ceilings

57

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17



Roofline: bandwidth ceilings

58

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17



Roofline: optimization regions

59



Use the Roofline model

• Determine what to do first to gain performance

• Increase memory streaming rate 

• Apply in-core optimizations

• Increase arithmetic intensity

• Showcases limitations in utilization 

• Can indicate upper bounds of energy efficiency as well 

• Read:

Samuel Williams, Andrew Waterman, David Patterson

“Roofline: an insightful visual performance model for multicore architectures” 

60



Hands-on: try them out!



Methods and tools 

• Understanding/Monitoring the hardware 
• hwloc, scpu

• cpupower -c 0 frequency-info

• Nvidia: nvidia-smi (and upgrades), nsight systems  

• Intel: Intel Vtune, various RAPL interfaces 

• AMD: uProf (AMDuProfCLI) 

• Performance counters and derivatives 
• PAPI 

• LIKWID 

• Tau 

• … many others 

• Larger-scale systems 
• Vampir, Scalasca, Tau, … 

• Various simulators 

https://inria.hal.science/hal-04030223/file/_CCGrid23__An_experimental_comparison_of_software_based_power_meters__from_CPU_to_GPU.pdf





In summary 



Take home to-the-office message [1] 

• Computing demands increasing significantly 

• We build more efficient machines 

• We use them more and more (the rebound effect, Jevon’s paradox, …)

• Systems scale-up and scale-out 
• Scale-up: more machinery in the box 

• More complex to use efficiently, more difficult to estimate their performance 

• Require multiple levels of parallelism & heterogeneity 

• Scale-out: increasingly large (possibly distributed) clusters 

• Significant carbon footpring, embodied and operational 

• High utilization is mandatory for efficiency 

• Schedulers and resource managers help 

• Efficient applications with understandable performance are fundamental for the 
efficiency of these systems. 



Take home to-the-office message [2] 

• Assess what is feasible in terms of performance, efficiency, energy 

consumption 

• To reduce energy consumption 

• Power-off what is not needed 

• “donate” what is not needed 

• To increase efficiency

• Assess feasible performance and aim to reach it  

• Maximize utilization of hardware

• Always select algorithms, implementation tools, and platforms



Take home to-the-office message [3] 

• Most tool targets … 

• Benchmarking 

• Performance analysis & prediction 

• Upper bounds estimates 

• Bottlenecks 

• Emerging tools for sustainability 

• Various LCA models 

• Various carbon footprint models 

• Still rely on very basic utilization models 

• We need to work on bridging the gap ☺ 
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