### SUSTAINABLE COMPUTING

Part2: systems, apps, tools

Ana-Lucia Varbanescu a.l.varbanescu@utwente.nl

UNIVERSITY OF TWENTE.

# Agenda

- Different views on performance
  - Towards zero-waste computing
- Understand systems
- Understand systems + applications
  - Performance engineering
- Methods and tools for sustainable computing
  - Energy consumption and efficiency
  - Beyond energy
- Take home message



Part 1



"Larry, do you remember where we buried our hidden agenda?"

# Context

- Modern (and future) systems are parallel and heterogeneous
  - In many dimensions
- Systems are characterized by peak performance (with various "roofs")
- All applications want more performance
  - Applications must enable parallelism
- One Application => *n* algorithms => *n\*m* implementations
  - Algorithms: characterized by complexity
  - Algorithms/implementations: characterized by arithmetic/operation intensity ops/byte

### Sustainable computing $\Leftrightarrow$ zero-waste computing

### **Raise awareness**

- Monitor (energy) efficiency
- Quantify waste

**Improve efficiency** 

Improve applications for the systems at hand

- Make applications more efficient
- Make applications share systems
- Improve systems for the applications at hand ...
- Co-design applications and systems -

Performance optimization

Performance analysis

Performance modeling

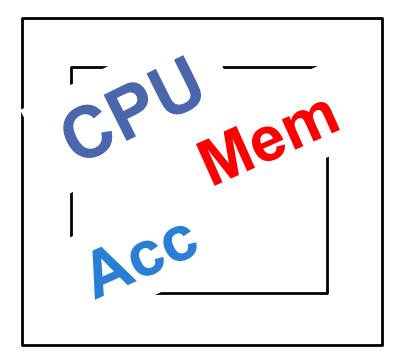
Efficient scheduling and resource sharing

Application-centric system design





# Making faster/larger systems



cpu Mem Accel CPU Mem GPU CPU Mem Accel CPU Mem GPU

Scale-up: Bigger machine ...

Scale-out: More machines ...

# Sustainability at scale

- Programmer exposes parallelism at application level
  - Job = application + dataset
  - Application = set of tasks
  - Tasks = execute in some sequential order and/or in parallel

How to split and program the tasks? How is data accessed? *Knowledge of node architecture is essential for effective optimization.* 

- Runtime/OS map the tasks on resources
  - In both space and time
  - Possibly with programmer's restrictions

What runs where and when? Decisions by a runtime system and/or OS; require deep knowledge system architecture.

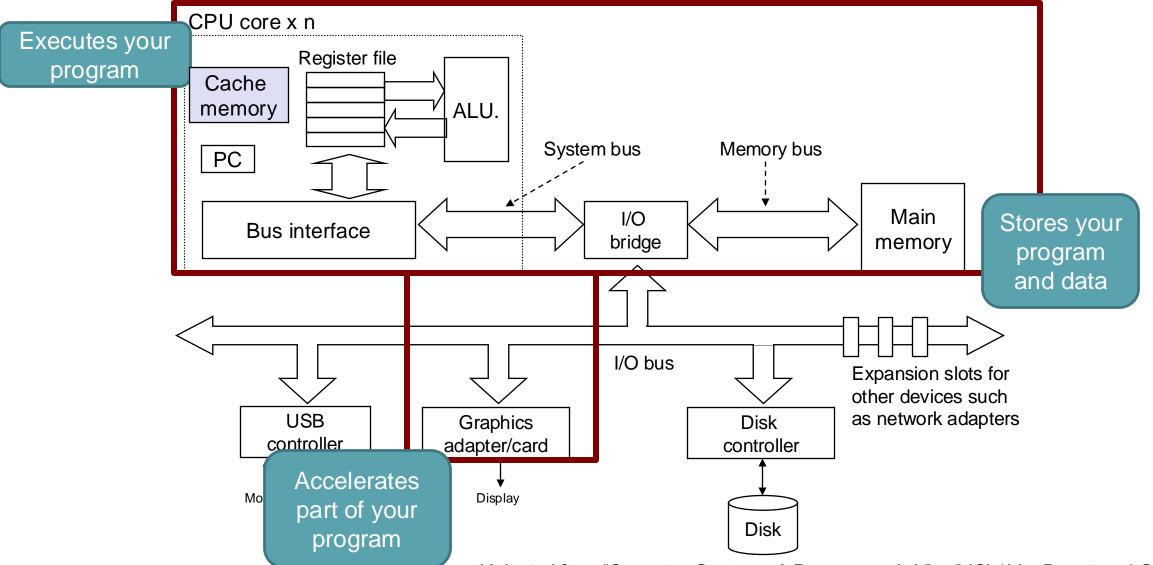
- (Job) Scheduler en resources
  - Ideally sufficient and

Inefficient parallel application design affects all levels in terms of efficiency and sustainability!

CPU Mem Acc

# Systems SOTA: Inside the node

# Inside the node\*



\*Adapted from "Computer Systems: A Programmer's View" (Ch1) by Bryant and O'Hallaron

# Systems performance "metrics"

- Clock frequency [GHz] = absolute hardware speed
  - Memories, CPUs, interconnects

#### Operational speed [GFLOPs]

- Operations per second
- single AND double precision

#### Memory bandwidth [GB/s]

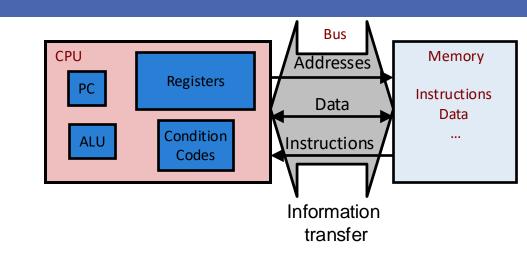
- Memory operations per second
  - Can differ for read and write operations !
- Differs a lot between different memories on chip
- Power [Watt]
  - The rate of consumption of energy
- Derived metrics
  - FLOP/Byte, FLOP/Watt

| Name       | FLOPS            |
|------------|------------------|
| yottaFLOPS | 10 <sup>24</sup> |
| zettaFLOPS | 10 <sup>21</sup> |
| exaFLOPS   | 10 <sup>18</sup> |
| petaFLOPS  | 10 <sup>15</sup> |
| teraFLOPS  | 10 <sup>12</sup> |
| gigaFLOPS  | 10 <sup>9</sup>  |
| megaFLOPS  | 10 <sup>6</sup>  |
| kiloFLOPS  | 10 <sup>3</sup>  |
|            |                  |

## CPU

- Computations are executed by the ALU
  - Integer, single/double precision arithmetic, ...
  - Comparisons, logical operations, …
- ALU runs at its own "clock speed" / frequency
  - Defines how many cycles/s can be executed by the CPU
  - Each operation takes 1 or more cycles
- Scale-up CPUs
  - Make a faster/smarter ALU
    - More operations per cycle
  - Make faster CPUs
    - More cycles/s
  - Multiple cores
    - Even more operations per cycle!





# **CPU** levels of parallelism

#### • Instruction-level parallelism (e.g., superscalar processors) (fine)

- Multiple operations of different kinds per cycle
- Implemented/supported by the instruction scheduler
  - typically in hardware
- **SIMD** parallelism = data parallelism (fine)
  - Multiple operations \*of the same kind\* per cycle
  - Run same instruction on vector data
  - Sensitive to divergence
  - Implemented by programmer OR compiler

#### • Multi-Core parallelism ~ task/data parallelism (coarse)

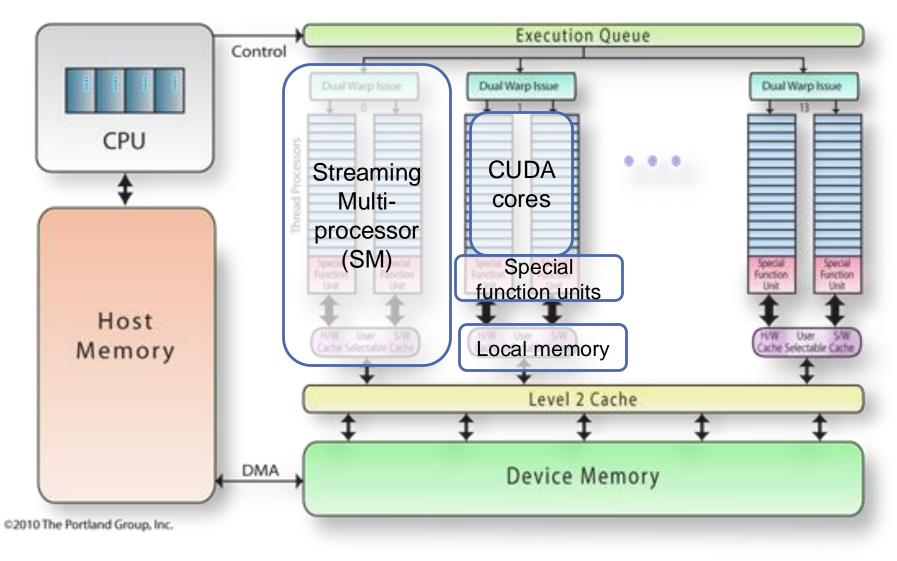
- 10s of powerful cores
  - Hardware hyperthreading (2x)
- Local caches
- Symmetrical or asymmetrical threading model
- Implemented by programmer

No programmer's intervention!

Some programmer/compiler intervention!

Programer's intervention and OS support

### Acc: a generic GPU



# **GPU Levels or Parallelism**

#### • Data parallelism (fine-grain)

- Write 1 thread, instantiate a lot of them
- SIMT (Single Instruction Multiple Thread) execution
  - Many threads execute concurrently
    - Same instruction
    - Different data elements
    - HW automatically handles divergence
  - Not same as SIMD because of multiple register sets, addresses, and flow paths\*
- Hardware multithreading
  - HW resource allocation & thread scheduling
    - Excess of threads to hide latency
    - Context switching is (basically) free

### Task parallelism is "emulated" (coarse-grain)

- Hardware mechanisms exist
- Specific programming constructs to execute multiple tasks.
- Heterogeneous computing
  - CPU is always present ...

Programmer's (or some compiler's) intervention!

Programmer's intervention!

#### Programer's intervention!

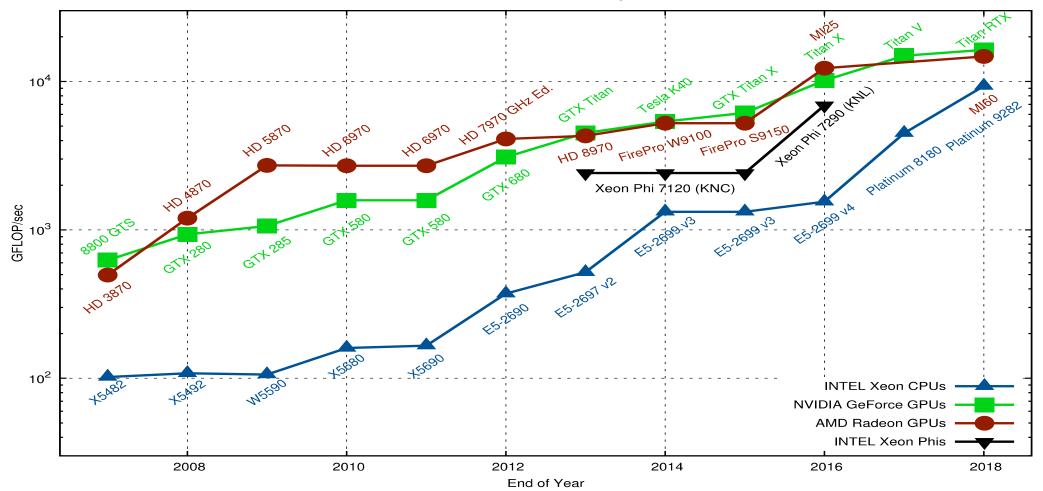
\*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

### Theoretical peak performance

|                     | Cores | Threads/ALUs Throughput |      | Bandwidth |
|---------------------|-------|-------------------------|------|-----------|
| Intel Core i7       | 4     | 16                      | 85   |           |
| AMD Barcelona       | 4     | 8                       | 37   |           |
| AMD Istanbul        | 6     | 6                       | 62.4 |           |
| NVIDIA GTX 580      | 16    | 512                     | 1581 |           |
| NVIDIA GTX 680      | 8     | 1536                    | 3090 |           |
| AMD HD 6970         | 384   | 1536                    | 2703 |           |
| AMD HD 7970         | 32    | 2048                    | 3789 |           |
| Intel Xeon Phi 7120 | 61    | 240                     | 2417 |           |

# \*multi\* vs \*many\* cores (SP-FLOPs)

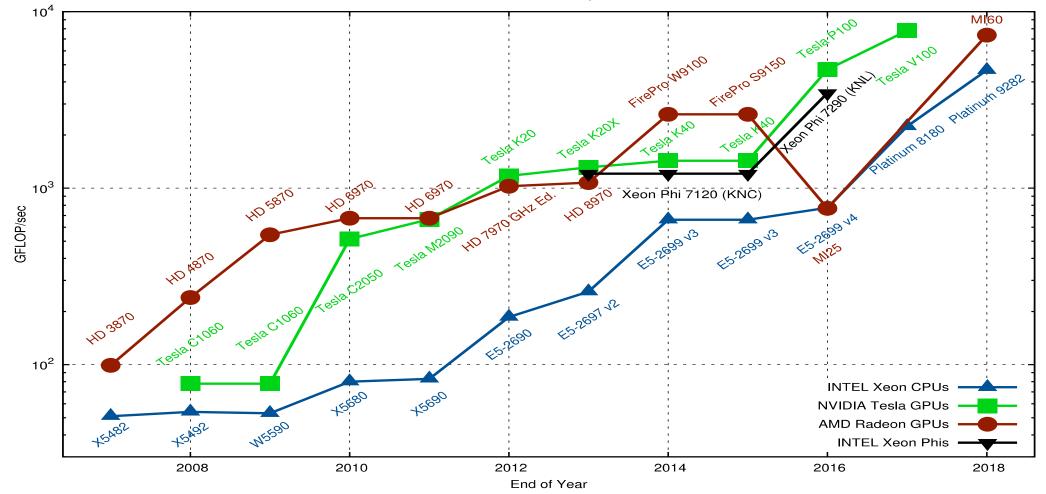
Theoretical Peak Performance, Single Precision



https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

# \*multi\* vs \*many\* cores (DP-FLOPs)

Theoretical Peak Performance, Double Precision

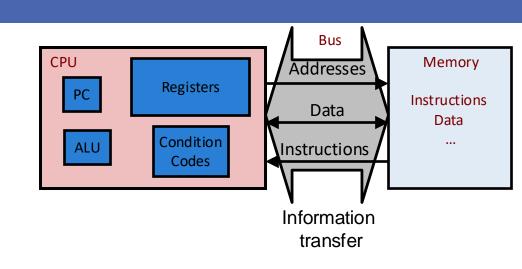


https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

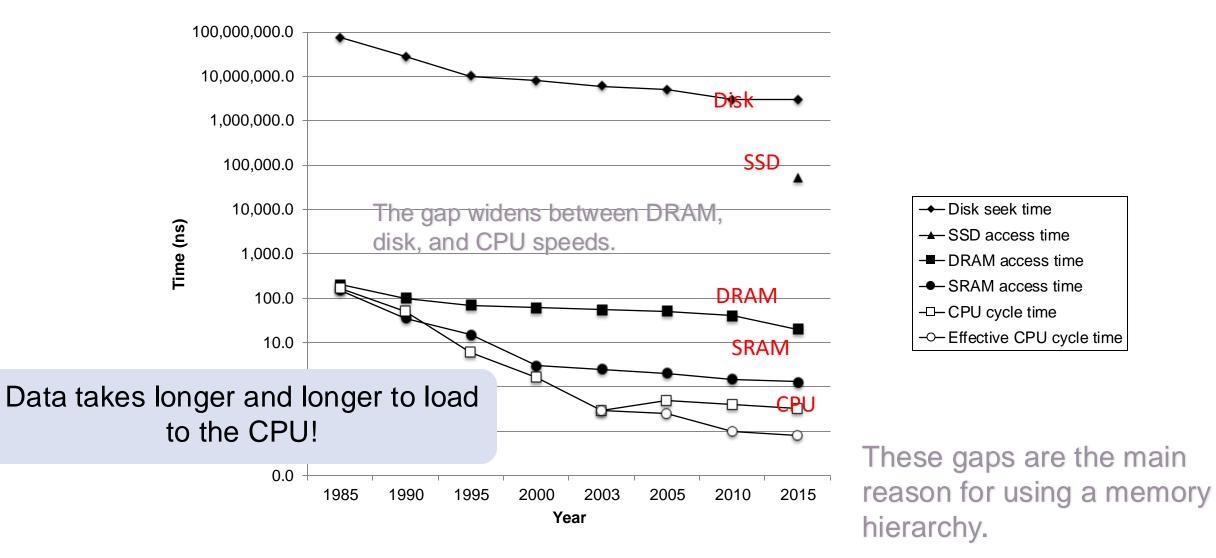
# Memory

- Typically organized as linear spaces
  - Some word-size granularity
- App's code and data are stored in memory
  - Memory layout = how code/data is laid-out in memory
  - Access pattern(s) = what code/data is accessed and when
- Memory operations are slow!
  - Off-chip
  - Request read/write
  - Search and find





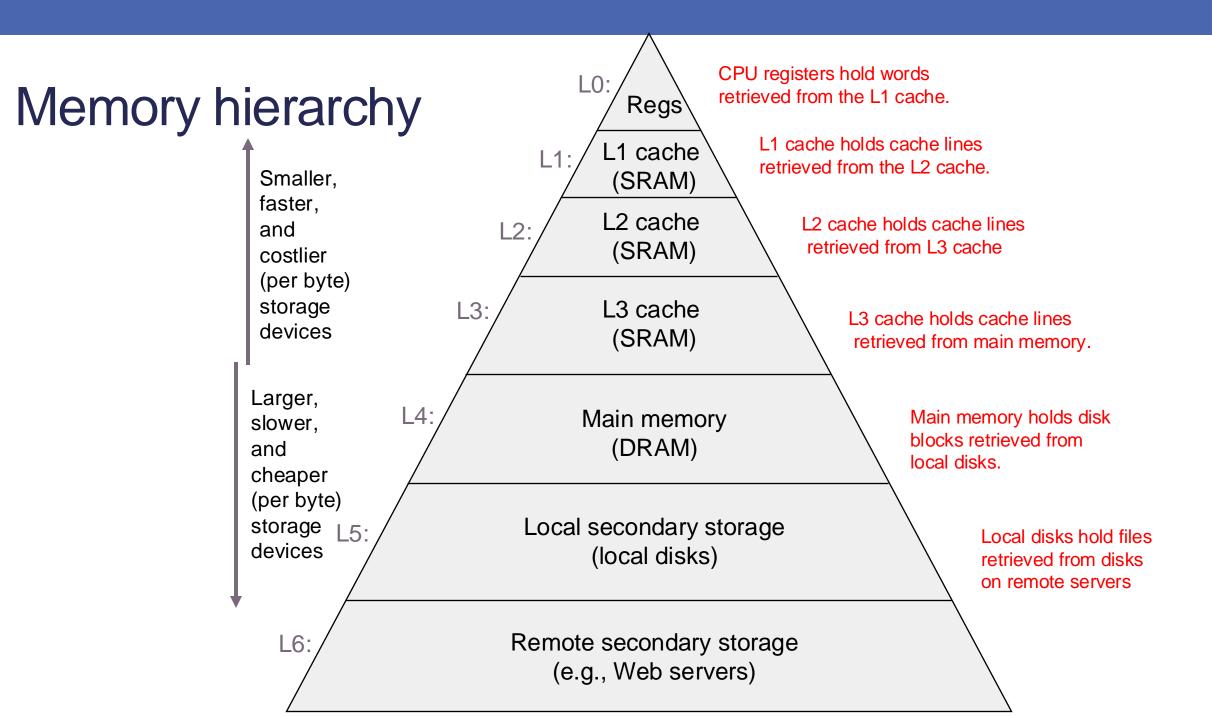
# The CPU-Memories Gap



### Memory hierarchy and caches

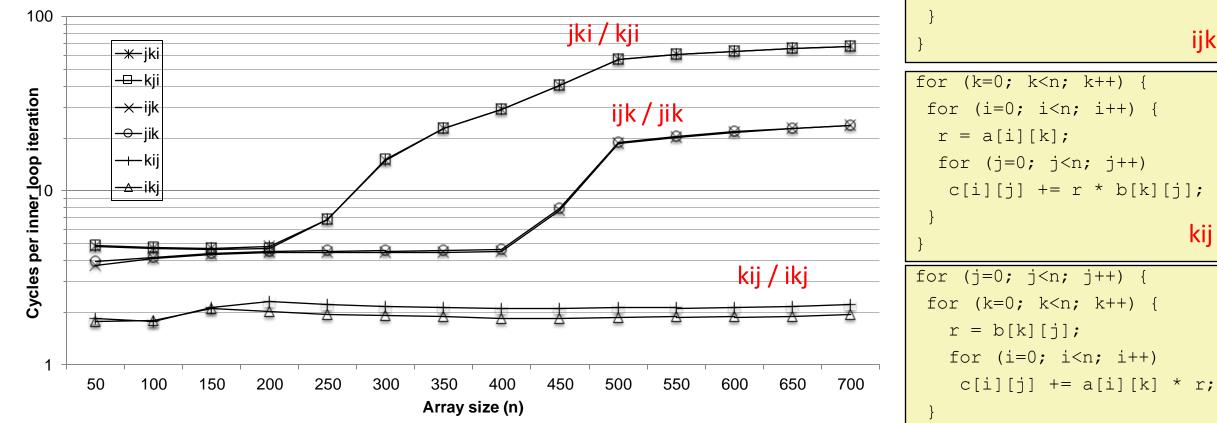
- Cache: A smaller, faster storage device that acts as a staging area for a subset of the data in a larger, slower device.
- Memory hierarchy
  - Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)
  - For each k, the faster, smaller device at level k is a cache for the larger, slower device at level k+1.
- How/why do memory hierarchies work?

  - Locality <=> data at level k is used more often than data at level k+1.
    - Level k+1 can be slower, and thus larger and cheaper.



### **Matrix Multiplication**

Good vs bad locality / caching ...



for (j=0; j<n; j++) {</pre> sum = 0.0;for (k=0; k<n; k++) sum += a[i][k] \* b[k][j]; c[i][j] = sum;

for (i=0; i<n; i++) {</pre>

ijk / jik

kij / ikj

jki / kji

### Theoretical peak performance

#### **Throughput**[GFLOP/s] = chips \* cores \* vectorWidth \*

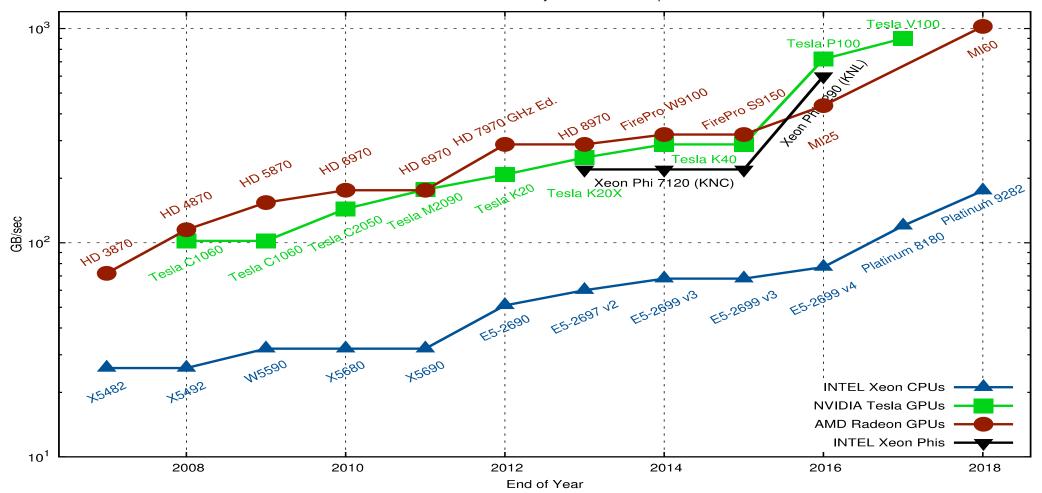
FLOPs/cycle \* clockFrequency

**Bandwidth**[GB/s] = memory bus frequency \* bits per cycle \* bus width

|                     | Cores | Threads/ALUs | Throughput | Bandwidth |
|---------------------|-------|--------------|------------|-----------|
| Intel Core i7       | 4     | 16           | 85         | 25.6      |
| AMD Barcelona       | 4     | 8            | 37         | 21.4      |
| AMD Istanbul        | 6     | 6            | 62.4       | 25.6      |
| NVIDIA GTX 580      | 16    | 512          | 1581       | 192       |
| NVIDIA GTX 680      | 8     | 1536         | 3090       | 192       |
| AMD HD 6970         | 384   | 1536         | 2703       | 176       |
| AMD HD 7970         | 32    | 2048         | 3789       | 264       |
| Intel Xeon Phi 7120 | 61    | 240          | 2417       | 352       |

# \*multi\* vs \*many\* cores (GB/s)

Theoretical Peak Memory Bandwidth Comparison



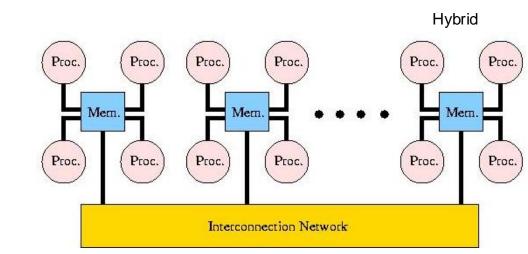
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

# What about energy?

- Multi-core CPU
  - Multi-core energy consumption != N \* energy/core
    - Complex architecture, different clocks, shared resources
  - Various ways to implements DVFS + power reduction techniques
  - Non-trivial correlation with performance

#### • GPU

- Power is significantly impacted by the type of workload and occupancy
- Always check the power cap, too!
- Heterogeneous computing
  - Sum of energy by components works well
- Multi-node computing:
  - Sum of energy works OK
  - Missing networking energy



### **CPU C-states/P-states**

### • P-states = power performance states

- scale the frequency and voltage at which the processor runs
  - reduce the power consumption of the CPU.
- Number of available P-states can be different for each model of CPU

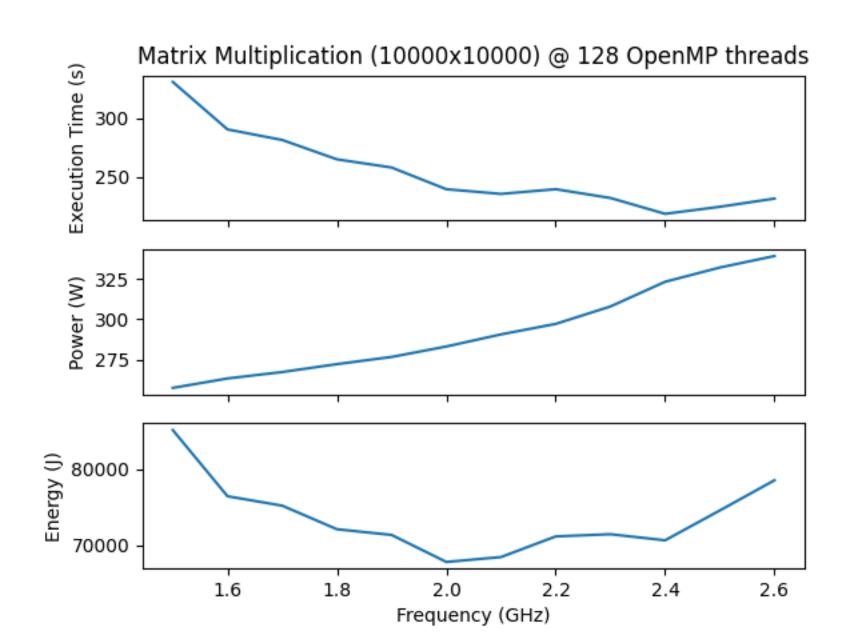
### • C-states = idle sleep states

- reduced or turned off selected functions
  - Higher is ... more => more of the CPU is shut-off
- Number of available C-states can be different for each model of CPU

#### https://hardwaresecrets.com/everything-you-need-to-know-about-the-cpu-c-states-power-saving-modes/

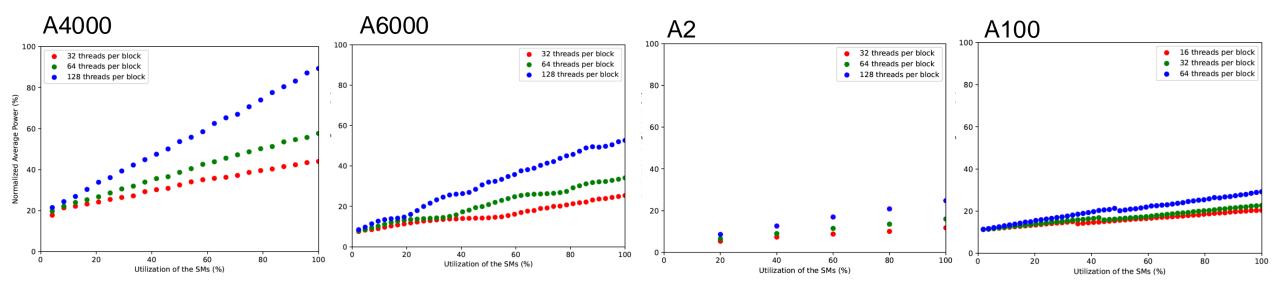
# An example

- AMD EPYC CPU
- Running SGEMM
  - Different frequencies
     (P-states)



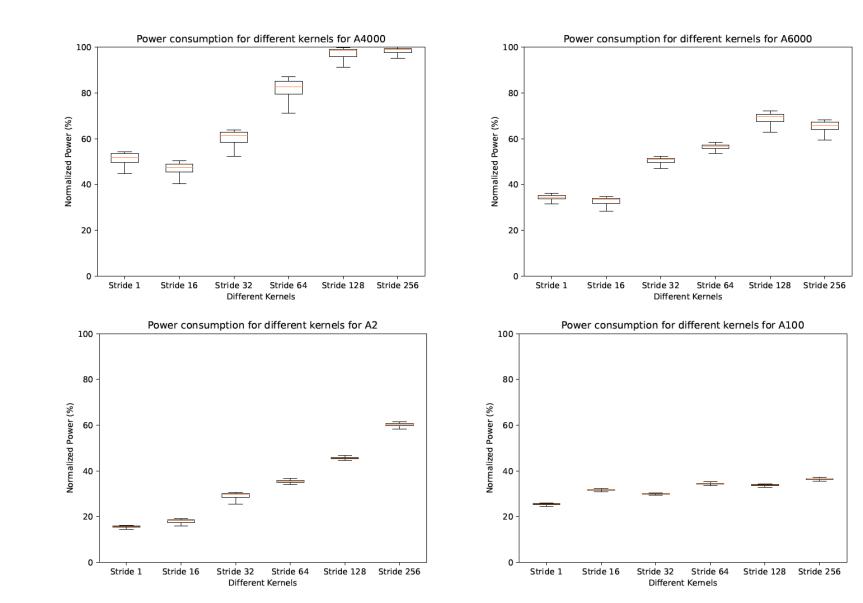
### An example:

| GPU   | SMs | Cores/SM | Total Cores | Max Power [W] | Idle Power [W] |
|-------|-----|----------|-------------|---------------|----------------|
| A4000 | 48  | 128      | 6144        | 140           | 39.5           |
| A6000 | 84  | 128      | 10572       | 300           | 71.5           |
| A2    | 10  | 128      | 1280        | 60            | 18.1           |
| A100  | 108 | 64       | 6912        | 250           | 37.9           |



# Same example

- Caching patterns make a significant difference
- Compute vs memory intensive – mem consumes more.
- Memory coalescing, negligible
- Data types & instruction mix show some differences



### Performance vs. sustainability

- Low performance → waste in computing
  - We power resources that are not needed
- High performance  $\rightarrow$  faster execution  $\rightarrow$  less energy consumed
  - Max energy efficiency ⇔ max performance (i.e., lowest runtime...)
    - Strong assumption that power is constant
- DVFS is a technique to reduce the impact of underutilized hardware
  - Non-linear effects on performance
- In the context of multi-core and heterogeneous systems, maximizing execution time might not guarantee lowest energy consumption.

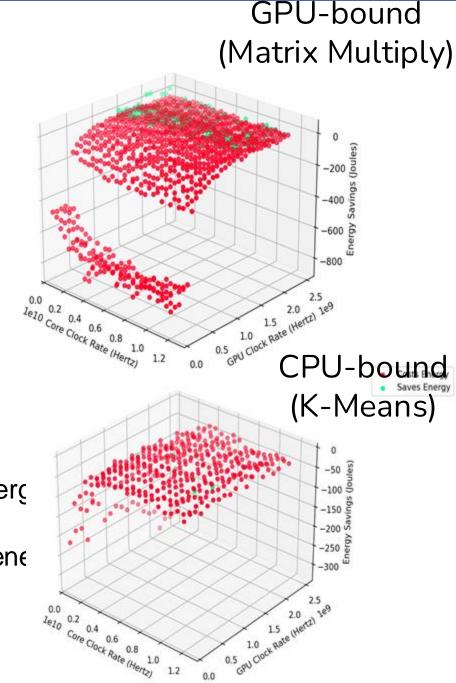
Goel and McKee – "<u>A Methodology for Modeling Dynamic and Static Power Consumption for Multicore Processors</u>"

# Example 1: Energy harvesting

- Basic assumptions
  - Tasks run on different processors
  - Idle processors waste energy
  - Higher/lower operating frequencies
    - => more/less power respectively
    - => reduce or increase runtime respectively

### Opportunities

- Dynamic Voltage and Frequency Scaling (DVFS)
- Reducing operating frequencies in idle states may save energy
  - No active task => no runtime increase
- Increasing operating frequencies in busy states may save ene
  - Lower runtime => less time to consume energy



0.0

# Results

|                       | Best Policy          |        |       |                                   |        |        |
|-----------------------|----------------------|--------|-------|-----------------------------------|--------|--------|
| Applications          | Single Core          |        |       | Multi Core                        |        |        |
|                       | Name                 | Energy | Time  | Name                              | Energy | Time   |
| BFS                   | Scaled<br>MinMax     | -0.5%  | 0.2%  | Ranked<br>MinMax                  | 0.9%   | 1.2%   |
| LavaMD                | Maximum<br>Frequency | -0.7%  | -0.1% | MinMax                            | -6.6%  | 1.0%   |
| NW                    | Ranked<br>MinMax     | 4.8%   | 4.4%  | Ranked<br>MinMax                  | -7.9%  | 21.0%  |
| Particlefilter-float  | Ranked<br>MinMax     | -0.0   | 1.5%  | Ranked *<br>MinMax                | -10.2% | 14.8%  |
| Kmeans                | Ranked<br>MinMax     | 3.7%   | 0.6%  | Ranked<br>MinMax                  | -3.8%  | 4.1%   |
| Bandwidth             | Maximum<br>Frequency | -2.3%  | 0.1%  | Maximum <sub>*</sub><br>Frequency | -2.7%  | 1.2%   |
| UnifiedMemoryPerf     | MinMax               | -1.5%  | -3.8% | Scaled<br>MinMax                  | -16.2% | -2.8%  |
| matrixMul             | Maximum<br>Frequency | 3.5%   | -0.0% | Maximum<br>Frequency              | 8.5%   | -0.2%  |
| Jacobi<br>unoptimized | MinMax               | -3.5%  | -7.4% | Maximum<br>Frequency              | -26.8% | -7.7%  |
| Jacobi<br>optimized   | MinMax               | -2.7%  | -9.4% | Maximum<br>Frequency              | -34.8% | -10.0% |

# Example 2: Smaller GPUs, anyone?

Applications:

- 5 Rodinia kernels:
  - Compute-bound: hotspot, k-means (2)
  - Memory-bound: k-means (1)

backpropagation (1), backpropagation (2)

Systems:

- Baseline: RTX 2060 Super
- Variables:
  - **SMs**: 25, 30, ...., 40
  - **Core clock**: 1000, 1150, ...., 1900
  - **Memory clock**: 800, 1250, ..., 3500

Simulation run-time ≈ 24-40 hours

#### Simulated with:



https://github.com/romnn/gpucachesim

# Varying SMs

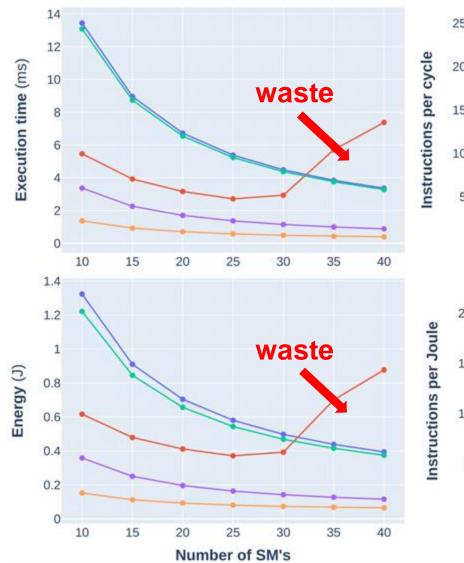
### Compute-bound:

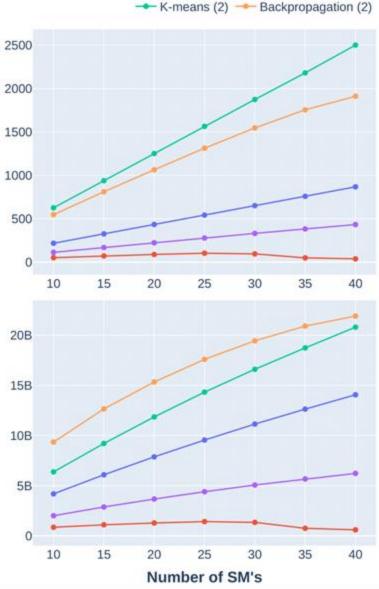
- Hotspot
- K-means (2)

#### Memory-bound:

- K-means (1) •
- Backprop (1)
- Backprop (2)

More resources ≠ better performance





K-means (1) — Backpropagation (1)

--- Hotspot (1)

# Core clock

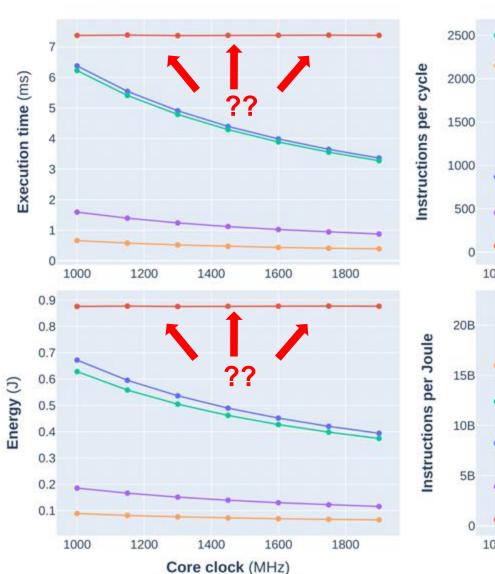
#### Compute-bound:

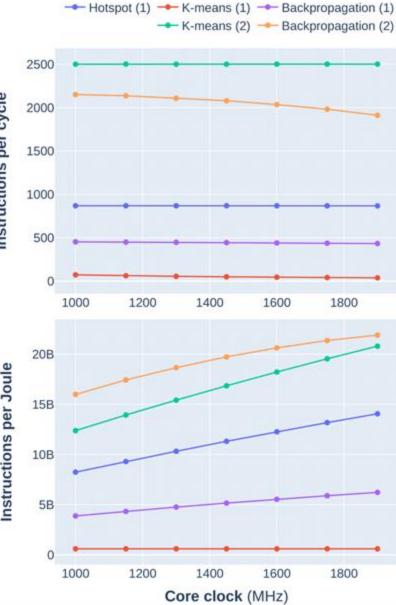
- Hotspot
- K-means (2)

#### Memory-bound:

- K-means (1) •
- Backprop (1)
- Backprop (2)

The core-level static energy model in AccelSim seems to be broken.





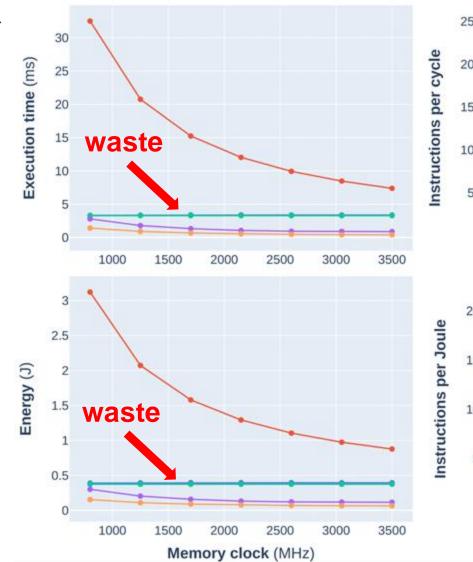
# Memory clock

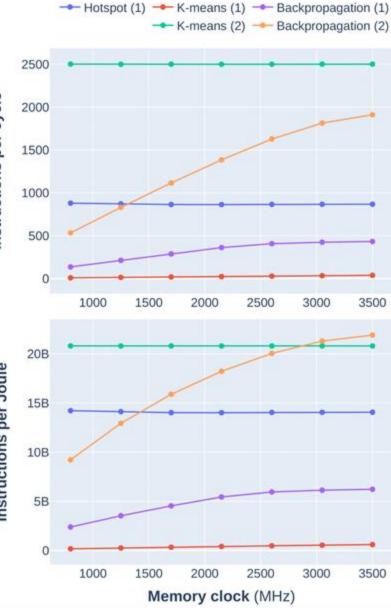
#### Compute-bound:

- Hotspot
- K-means (2)

#### Memory-bound:

- K-means (1)
- Backprop (1)
- Backprop (2)





# Sustainability TODO's

- Use all CPUs capabilities
  - Maximize parallelism
  - Use SIMD & ILP
- Use accelerators if needed!
  - Maximize parallelism
  - Efficient mapping
  - Heterogeneous computing
- Use all memory capabilities
  - Maximize bandwidth
  - Use caching / improve locality

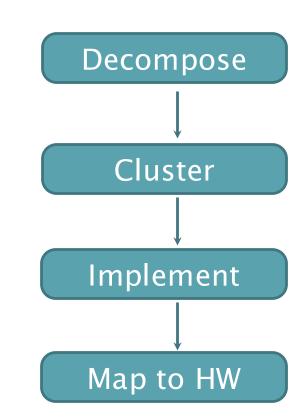
Limit the impact of low utilization Reduce impact of unused cores/chips Reduce impact of unused bandwidth\*\*



# A Method for Parallel Application Design\*

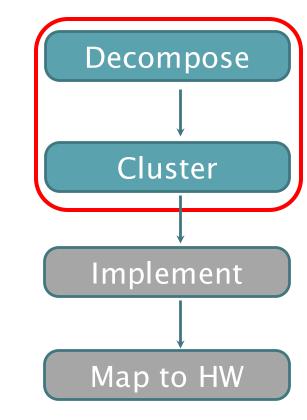
- Decompose (partition)
  - What is the computation? Which data?
- Cluster (communicate & agglomerate)
  - What granularity ?
- Implement in programming model
  - Which model ?
  - Implement tasks as processes or threads
  - Add communication and synchronization constructs
- Map units of work to processors
  - Might be transparent.





# Models of Parallel Computation

- Conceptual level : defining tasks and data interactions
  - Recipes that typically cover "decompose" and "cluster"
- (may) Provide
  - More parallelism in the application
  - Better load-balancing
  - Systematic performance analysis
- Examples
  - Trivially/embarrassingly parallel
  - Data parallelism
  - Task parallelism
  - Farmer/worker
  - Divide and conquer
  - Bulk synchronous



### Implementation matters

- Efficient parallelization
- Memory bandwidth utilization
- Programming models/languages
- Compilers
- Libraries and additional tools

# The programming language

- C/C++ remain faster than most alternatives
  - And benefits from most low-level tools
- Python is slower, but libraries and ecosystem around it is improving
- Julia/Go/Rust picking up, but limited support with libraries and tools

https:/

| //benchmarksgame-team.pages.debian.net/benchmarksgame/ | Pytho |
|--------------------------------------------------------|-------|
| Benerimantegame team.pagee.deblammet/Benerimantegame/  |       |

| n-body            |        |        |      |          |
|-------------------|--------|--------|------|----------|
| source            | secs   | mem    | gz   | cpu secs |
| <u>C++ g++ #0</u> | 2.15   | 19,736 | 1933 | 2.15     |
| <u>C++ g++ #7</u> | 3.96   | 19,736 | 1815 | 3.96     |
| <u>C++ g++ #2</u> | 4.20   | 19,736 | 1884 | 4.20     |
| <u>C++ g++ #3</u> | 5.31   | 19,736 | 1402 | 5.31     |
| <u>C++ g++ #9</u> | 5.44   | 19,736 | 1536 | 5.44     |
| <u>C++ g++ #4</u> | 5.45   | 19,736 | 1434 | 5.45     |
| <u>C++ g++ #5</u> | 6.02   | 19,736 | 1544 | 6.01     |
| <u>C++ g++</u>    | 6.50   | 19,736 | 1666 | 6.50     |
| <u>C++ g++ #8</u> | 6.54   | 19,736 | 1524 | 6.54     |
| <u>C++ g++ #6</u> | 6.91   | 19,736 | 1674 | 6.91     |
| Python 3          | 354.45 | 19,652 | 1201 | 354.43   |
| Python 3 #2       | 360.53 | 19,652 | 1247 | 360.52   |
| Python 3 #8       | 577.27 | 19,440 | 1202 | 577.25   |

# What about energy?

- Same experiment, with energy consumption metrics
- In most cases …
  - Correlation between time and energy
  - Depends a lot on the characteristics of applications

https://sites.google.com/view/energy-efficiencylanguages/updated-functional-results-2020?authuser=0

|                                       | n-body       | T      |                        |          |
|---------------------------------------|--------------|--------|------------------------|----------|
|                                       | Energy       | Time   | $\operatorname{Ratio}$ | Mb       |
| (c) Rust ↓9                           | 37.79        | 3328   | 0.011                  | 6        |
| (c) Fortran                           | 50.34        | 3581   | 0.014                  | 1        |
| (c) Ada $\downarrow_1  \Downarrow_5$  | 51.79        | 4098   | 0.013                  | <b>3</b> |
| (c) C++ $\uparrow_1$                  | 57.30        | 3770   | 0.015                  | 2        |
| (c) C ↑2                              | 59.45        | 4190   | 0.014                  | 2        |
| (c) Chapel $\Downarrow_{18}$          | 60.16        | 5203   | 0.012                  | 42       |
| (c) Pascal ↑ <sub>6</sub>             | 64.87        | 5702   | 0.011                  | 1        |
| (v) Java $\Downarrow_{14}$            | 65.15        | 5839   | 0.011                  | 30       |
| (c) Ocaml ↑3                          | 65.75        | 5857   | 0.011                  | 2        |
| (c) Go <b>↑</b> 5                     | 67.23        | 5899   | 0.011                  | 2        |
| (v) C# $\downarrow_1  \Downarrow_8$   | 68.16        | 6117   | 0.011                  | 26       |
| (c) Swift $\uparrow_1$                | 73.06        | 6036   | 0.012                  | 7        |
| (v) Lisp ↓ <sub>3</sub>               | 75.25        | 6685   | 0.011                  | 15       |
| (i) JavaScript ↓ <sub>6</sub>         | 78.74        | 6763   | 0.012                  | 27       |
| (v) $F \# \downarrow_2  \Downarrow_8$ | 79.41        | 7105   | 0.011                  | 32       |
| (i) TypeScript ↓5                     | 80.11        | 6861   | 0.012                  | 28       |
| (i) Dart $\uparrow_2  \Downarrow_8$   | 84.33        | 6827   | 0.012                  | 47       |
| (c) Haskell ↑7                        | 127.82       | 10037  | 0.013                  | 6        |
| (v) Racket $\uparrow_1$               | 281.87       | 22260  | 0.013                  | 21       |
| (i) Jruby ↓ <sub>7</sub>              | 1,889.85     | 98407  | 0.019                  | 689      |
| (v) Erlang ↑4                         | $1,\!998.66$ | 150698 | 0.013                  | 18       |
| (i) PHP $\downarrow_1 \Uparrow_7$     | 2,468.30     | 179360 | 0.014                  | 14       |
| (i) Hack $\downarrow_1  \Downarrow_3$ | 3,399.70     | 243356 | 0.014                  | 123      |
| (i) Ruby $\downarrow_1 \uparrow_{11}$ | $3,\!870.67$ | 281470 | 0.014                  | 8        |
| (i) Lua $\uparrow_3 \uparrow_{18}$    | 3,981.88     | 177251 | 0.022                  | 2        |
| (i) Perl ↑17                          | 4,663.48     | 335391 | 0.014                  | <b>5</b> |
| (i) Python ↑13                        | $7,\!879.92$ | 559214 | 0.014                  | 8        |

# Adding parallelism, acceleration, distribution

- Pthreads/CUDA/OpenCL/SyCL are relevant low-level options
  - Challenging to code, high-performance
- OpenMP is mucht more programmer friendly
  - Support for accelerators
  - Support for SIMD
- OpenACC and alternative directive-based tools are still limited for complex applications
- Kokkos / Raja / others focus on portability and performance
  - Popular for scientific applications
- Distributed computing => often some form of lock-in
  - De-facto standard remains MPI
  - Alternative models exist, but steep learning curve

# What about (energy) efficiency?

- How well do we utilize the system for parallel applications?
  - Amdahl's law
  - Roofline model
  - Performance modelling
    - Analytical
    - Machine learning
  - (micro)Benchmarking
  - Simulators
- How well do we utilize the system for distributed applications?
  - Analytical models (LogP)
  - Tools for performance estimation (Scalasca, ScoreP, Vampir, ...)

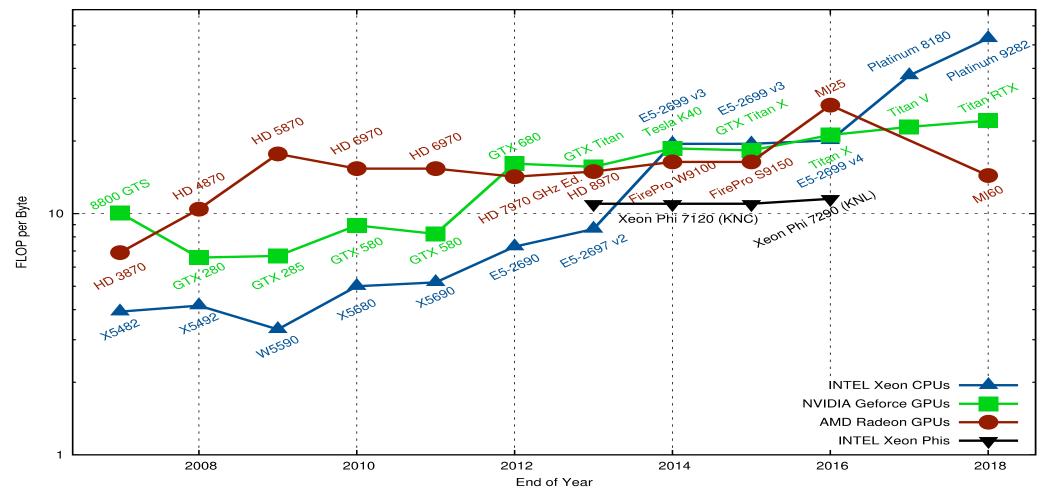
### Balance

|                     | Cores | Threads/ALUs | FLOPS/s | Byte/s | FLOPS/Byte |
|---------------------|-------|--------------|---------|--------|------------|
| Intel Core i7       | 4     | 16           | 85      | 25.6   | 3.3        |
| AMD Barcelona       | 4     | 8            | 37      | 21.4   | 1.7        |
| AMD Istanbul        | 6     | 6            | 62.4    | 25.6   | 2.4        |
| NVIDIA GTX 580      | 16    | 512          | 1581    | 192    | 8.2        |
| NVIDIA GTX 680      | 8     | 1536         | 3090    | 192    | 16.1       |
| AMD HD 6970         | 384   | 1536         | 2703    | 176    | 15.4       |
| AMD HD 7970         | 32    | 2048         | 3789    | 264    | 14.4       |
| Intel Xeon Phi 7120 | 61    | 240          | 2417    | 352    | 6.9        |

### Balance ?

# FLOPs/Byte (SP) !

Theoretical Peak Floating Point Operations per Byte, Single Precision

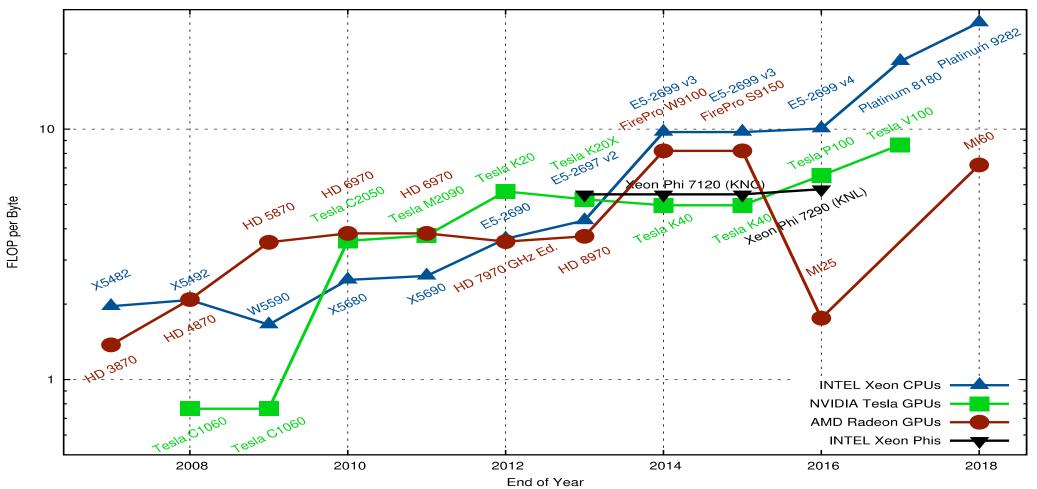


https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

### Balance ?

# FLOPs/Byte (DP) !

Theoretical Peak Floating Point Operations per Byte, Double Precision

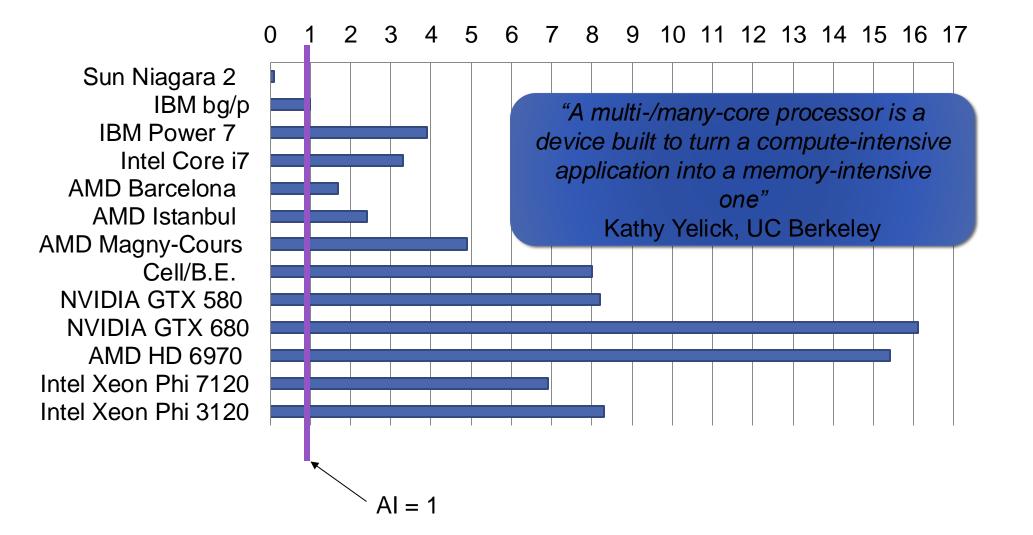


https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

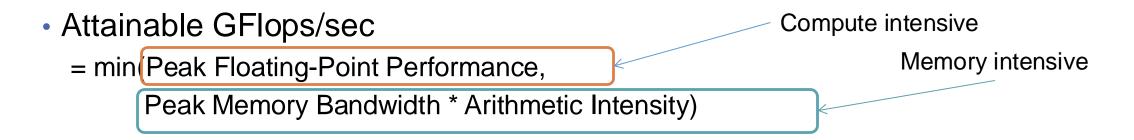
# Application arithmetic (operational) intensity

- The number of arithmetic (floating point) operations per byte of memory that is accessed
  - Compute-intensive?
    - i.e., adding more compute power increases performance.
  - Memory-intensive?
    - i.e., adding more memory bandwidth increases performance.
- It is an application characteristic!
- To measure:
  - Count useful operations
  - Ignore "overheads"
    - Loop counters
    - Array index calculations
    - Branches

### Compute or memory intensive?



### Attainable performance



- Peak iff AI\_app  $\geq$  PeakFLOPs / PeakBW
  - Compute-intensive iff AI\_app ≥ (FLOPs/Byte)platform
  - Memory-intensive iff AI\_app < (FLOPs/Byte)platform</li>

### Attainable performance (cont'd)

• Typical case: application A runs on platform X in Texec\_A :

PeakCompute(X) = maxFLOP GLOPS/s (catalogue)
PeakBW(X) = maxBW GB/s (catalogue)
RooflineCompute(A,X) = min(AI(A)\*maxBW, maxFLOP) (model)
AchievedCompute(A,X) = FLOPs(A)/Texec\_A (real execution)
AchievedBW(A,X) = MemOPs(A)/Texec\_A (real execution)
UtilizationCompute = AchievedCompute(A,X)/PeakCompute(X) < 1
UtilizationBW = AchievedBW(A,X)/PeakBW(X) ? 1</pre>

• Rules of thumb:

### Peakcompute >= Roofline > AchievedCompute

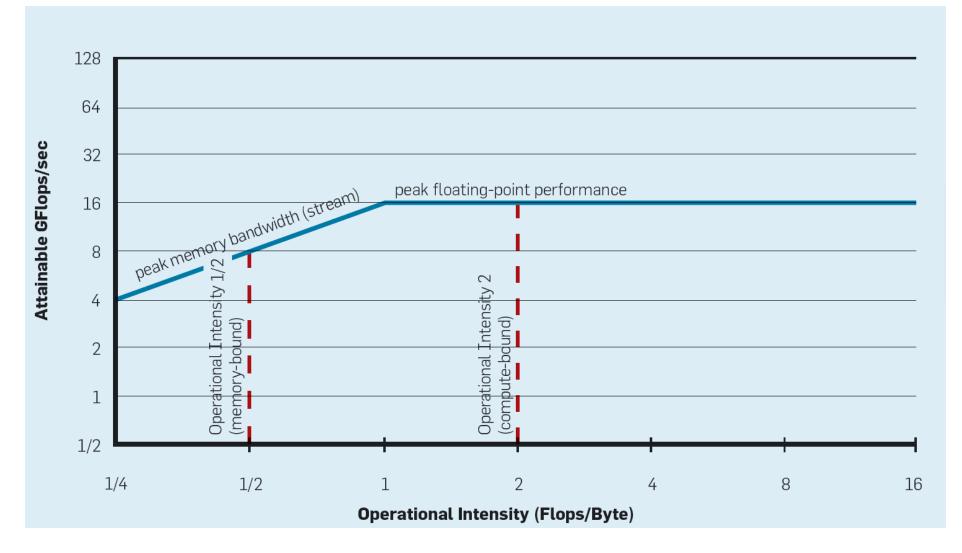
#### Peak<sub>BW</sub> ? Achieved<sub>BW</sub>

*Note: AchievedBW* > *PeakBW* <=> *faster memories on the chip play a role.* 

# The Roofline model

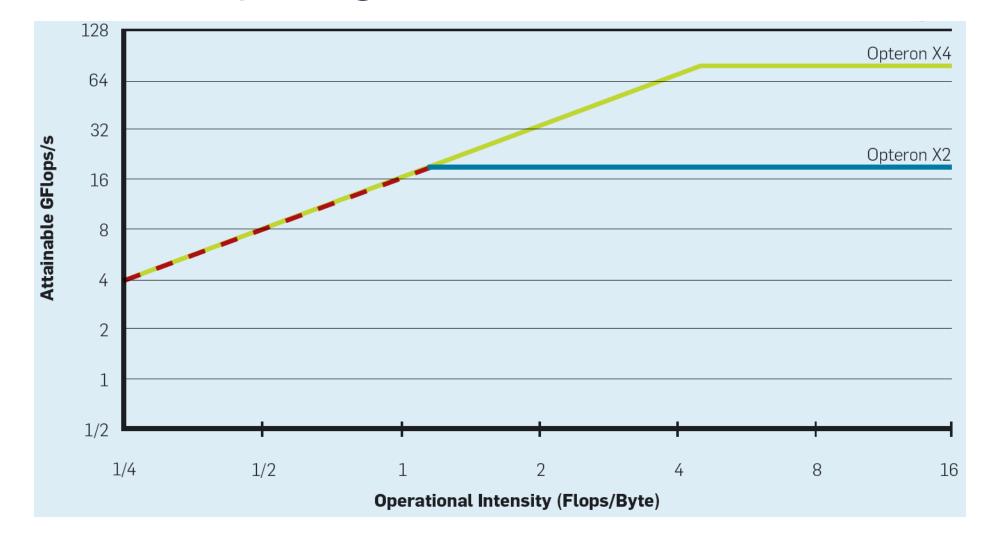
- Takes the application into account
  - Via Operational intensity
- Takes the platform into account
  - Via hardware specifications
- Determines the performance bounds of an application when executed on different processors.
- Hints to optimization strategies.

### The Roofline model



AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

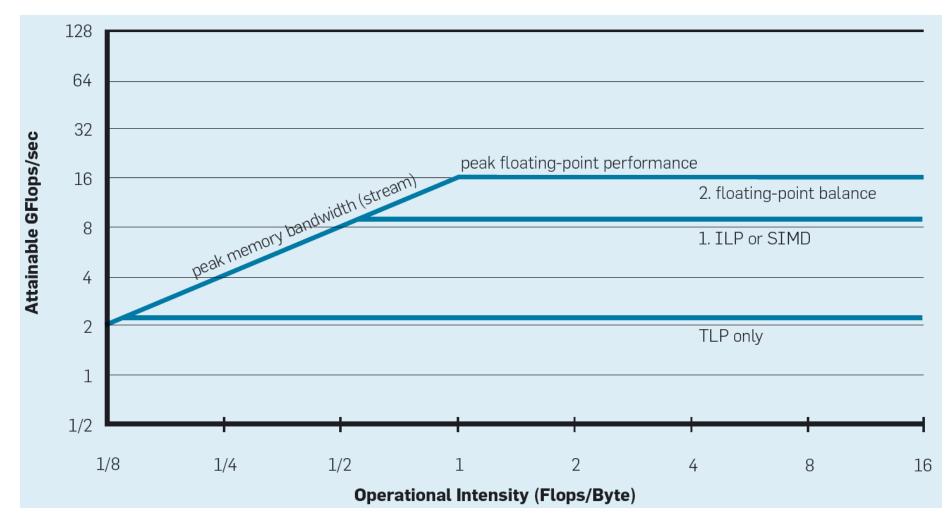
### Roofline: comparing architectures



AMD Opteron X2: 17.6 gflops, 15 GB/s, ops/byte = 1.17

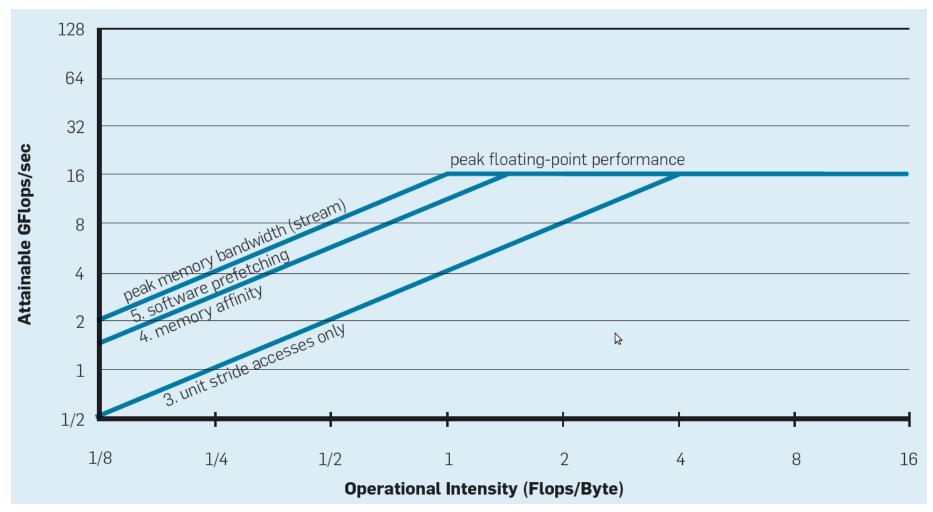
AMD Opteron X4: 73.6 gflops, 15 GB/s, ops/byte = 4.9

### Roofline: computational ceilings



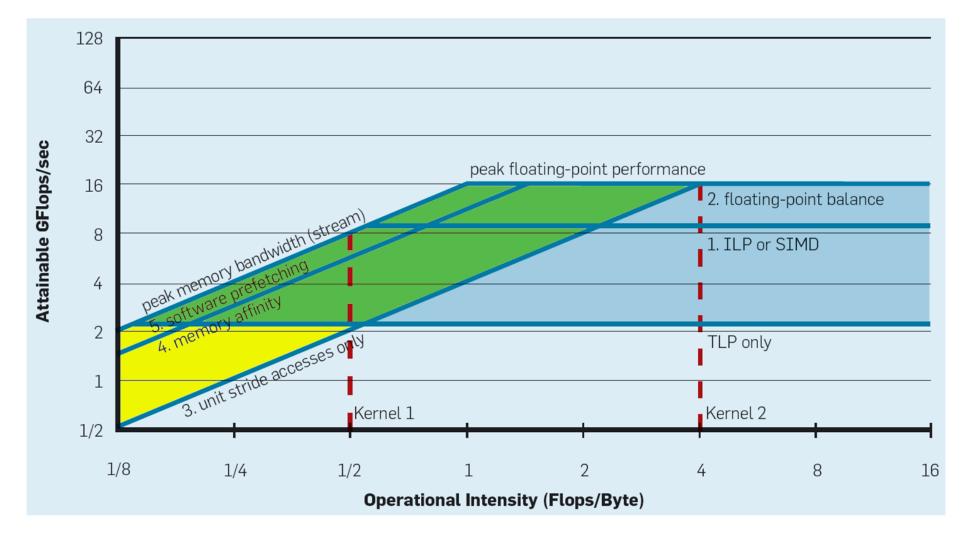
AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

### Roofline: bandwidth ceilings



AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

### **Roofline: optimization regions**



### Use the Roofline model

- Determine what to do first to gain performance
  - Increase memory streaming rate
  - Apply in-core optimizations
  - Increase arithmetic intensity
- Showcases limitations in utilization
  - Can indicate upper bounds of energy efficiency as well
- Read:
  - Samuel Williams, Andrew Waterman, David Patterson
  - "Roofline: an insightful visual performance model for multicore architectures"

Hands-on: try them out!

### Methods and tools

- Understanding/Monitoring the hardware
  - hwloc, scpu
  - cpupower -c 0 frequency-info
  - Nvidia: nvidia-smi (and upgrades), nsight systems
  - Intel: Intel Vtune, various RAPL interfaces
  - AMD: uProf (AMDuProfCLI)
- Performance counters and derivatives
  - PAPI
  - LIKWID
  - Tau
  - ... many others
- Larger-scale systems
  - Vampir, Scalasca, Tau, ...
  - Various simulators

https://inria.hal.science/hal-04030223/file/\_CCGrid23\_\_An\_experimental\_comparison\_of\_software\_based\_power\_meters\_\_from\_CPU\_to\_GPU.pdf

# In summary

# Take home to-the-office message [1]



- Computing demands increasing significantly
  - We build more efficient machines
  - We use them more and more (the rebound effect, Jevon's paradox, ...)
- Systems scale-up and scale-out
  - Scale-up: more machinery in the box
    - More complex to use efficiently, more difficult to estimate their performance
    - Require multiple levels of parallelism & heterogeneity
  - Scale-out: increasingly large (possibly distributed) clusters
    - Significant carbon footpring, embodied and operational
    - High utilization is mandatory for efficiency
      - Schedulers and resource managers help
- Efficient applications with understandable performance are fundamental for the efficiency of these systems.

# Take home to-the-office message [2]



- Assess what is feasible in terms of performance, efficiency, energy consumption
- To reduce energy consumption
  - Power-off what is not needed
  - "donate" what is not needed
- To increase efficiency
  - Assess feasible performance and aim to reach it
  - Maximize utilization of hardware
- Always **select** algorithms, implementation tools, and platforms

# Take home to-the-office message [3]



- Most tool targets ...
  - Benchmarking
  - Performance analysis & prediction
  - Upper bounds estimates
  - Bottlenecks
- Emerging tools for sustainability
  - Various LCA models
  - Various carbon footprint models
  - Still rely on very basic utilization models

- We need to work on bridging the gap  $\ensuremath{\textcircled{\sc o}}$