
SUSTAINABLE COMPUTING

Part2: systems, apps, tools

Ana-Lucia Varbanescu

a.l.varbanescu@utwente.nl

mailto:a.l.varbanescu@utwente.nl

Agenda

• Different views on performance

• Towards zero-waste computing

• Understand systems

• Understand systems + applications

• Performance engineering

• Methods and tools for sustainable computing

• Energy consumption and efficiency

• Beyond energy

• Take home message

Part 1

Part 2

Context

• Modern (and future) systems are parallel and heterogeneous

• In many dimensions

• Systems are characterized by peak performance (with various “roofs”)

• All applications want more performance

• Applications must enable parallelism

• One Application => n algorithms => n*m implementations

• Algorithms: characterized by complexity

• Algorithms/implementations: characterized by arithmetic/operation intensity – ops/byte

Raise awareness

• Monitor (energy) efficiency

• Quantify waste

Improve efficiency

• Improve applications for the systems at hand

• Make applications more efficient

• Make applications share systems

• Improve systems for the applications at hand

• Co-design applications and systems

??

Sustainable computing  zero-waste computing

Performance analysis

Performance modeling

Performance optimization

Efficient scheduling and

resource sharing

Application-centric system

design

“Systems at hand”

Making faster/larger systems

Scale-up:

Bigger machine …
and

Scale-out:

More machines …

Sustainability at scale

• Programmer exposes parallelism at
application level
• Job = application + dataset

• Application = set of tasks

• Tasks = execute in some sequential order and/or in
parallel

• Runtime/OS map the tasks on resources
• In both space and time

• Possibly with programmer’s restrictions

• (Job) Scheduler ensures jobs are allocated
resources
• Ideally sufficient and ”localized”

How to split and program the
tasks? How is data accessed?

Knowledge of node architecture is
essential for effective optimization.

What runs where and when?
Decisions by a runtime system
and/or OS; require deep knowledge
system architecture.

What resources are allocated?
Decisions by a job scheduler to
maximize utilization/performance.

Inefficient parallel application design affects all

levels in terms of efficiency and sustainability!

Systems SOTA: Inside the node

Inside the node*

Main

memory
I/O

bridge
Bus interface

ALU.

Register file

CPU core x n

System bus Memory bus

Disk

controller

Graphics

adapter/card

USB

controller

Mouse Keyboard Display

Disk

I/O bus
Expansion slots for

other devices such
as network adapters

PC

Stores your

program

and data

Executes your

program

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron

Cache

memory

Accelerates

part of your

program

Systems performance “metrics”

• Clock frequency [GHz] = absolute hardware speed
• Memories, CPUs, interconnects

• Operational speed [GFLOPs]
• Operations per second

• single AND double precision

• Memory bandwidth [GB/s]
• Memory operations per second

• Can differ for read and write operations !

• Differs a lot between different memories on chip

• Power [Watt]
• The rate of consumption of energy

• Derived metrics
• FLOP/Byte, FLOP/Watt

CPU

• Computations are executed by the ALU

• Integer, single/double precision arithmetic, …

• Comparisons, logical operations, …

• ALU runs at its own “clock speed” / frequency
• Defines how many cycles/s can be executed by the CPU

• Each operation takes 1 or more cycles

• Scale-up CPUs
• Make a faster/smarter ALU

• More operations per cycle

• Make faster CPUs

• More cycles/s

• Multiple cores

• Even more operations per cycle!

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data
…

Addresses

Data

Instructions

Information

transfer

Bus

All these are powered!

Unused => low efficiency => waste!

CPU levels of parallelism

• Instruction-level parallelism (e.g., superscalar processors) (fine)
• Multiple operations of different kinds per cycle

• Implemented/supported by the instruction scheduler
• typically in hardware

• SIMD parallelism = data parallelism (fine)
• Multiple operations *of the same kind* per cycle

• Run same instruction on vector data

• Sensitive to divergence

• Implemented by programmer OR compiler

• Multi-Core parallelism ~ task/data parallelism (coarse)
• 10s of powerful cores

• Hardware hyperthreading (2x)

• Local caches

• Symmetrical or asymmetrical threading model

• Implemented by programmer

No programmer’s intervention!

Some programmer/compiler

intervention!

Programer’s intervention and OS

support

Acc: a generic GPU

Streaming

Multi-

processor

(SM)

CUDA

cores

Special

function units

Local memory

GPU Levels or Parallelism

• Data parallelism (fine-grain)
• Write 1 thread, instantiate a lot of them

• SIMT (Single Instruction Multiple Thread) execution
• Many threads execute concurrently

• Same instruction

• Different data elements

• HW automatically handles divergence

• Not same as SIMD because of multiple register sets, addresses, and flow paths*

• Hardware multithreading
• HW resource allocation & thread scheduling

• Excess of threads to hide latency

• Context switching is (basically) free

• Task parallelism is “emulated” (coarse-grain)
• Hardware mechanisms exist

• Specific programming constructs to execute multiple tasks.

• Heterogeneous computing
• CPU is always present …

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

Programmer’s (or some compiler’s)

intervention!

Programer’s intervention!

Programmer’s intervention!

Theoretical peak performance

Throughput[GFLOP/s] = chips * cores * vectorWidth *

 FLOPs/cycle * clockFrequency

Cores Threads/ALUs Throughput Bandwidth

Intel Core i7 4 16 85

AMD Barcelona 4 8 37

AMD Istanbul 6 6 62.4

NVIDIA GTX 580 16 512 1581

NVIDIA GTX 680 8 1536 3090

AMD HD 6970 384 1536 2703

AMD HD 7970 32 2048 3789

Intel Xeon Phi 7120 61 240 2417

multi vs *many* cores (SP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

multi vs *many* cores (DP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Memory

• Typically organized as linear spaces

• Some word-size granularity

• App’s code and data are stored in memory

• Memory layout = how code/data is laid-out in memory

• Access pattern(s) = what code/data is accessed and when

• Memory operations are slow!

• Off-chip

• Request read/write

• Search and find

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data
…

Addresses

Data

Instructions

Information

transfer

Bus

Lots of memory traffic => CPUs idle

=> waste!

The CPU-Memories Gap

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

The gap widens between DRAM,

disk, and CPU speeds.

SRAM

These gaps are the main

reason for using a memory

hierarchy.

Data takes longer and longer to load

to the CPU!

Memory hierarchy and caches

• Cache: A smaller, faster storage device that acts as a staging area for a

subset of the data in a larger, slower device.

• Memory hierarchy

• Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)

• For each k, the faster, smaller device at level k is a cache for the larger, slower device at

level k+1.

• How/why do memory hierarchies work?

• Predict what the app uses next & prefetch  principle of locality

• Locality <=> data at level k is used more often than data at level k+1.

• Level k+1 can be slower, and thus larger and cheaper.

Memory hierarchy Regs

L1 cache

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,

slower,

and

cheaper

(per byte)

storage

devices

Remote secondary storage

(e.g., Web servers)

Local disks hold files

retrieved from disks
on remote servers

L2 cache

(SRAM)

L1 cache holds cache lines

retrieved from the L2 cache.

CPU registers hold words

retrieved from the L1 cache.

L2 cache holds cache lines

 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and

costlier

(per byte)

storage

devices
L3 cache

(SRAM)
L3 cache holds cache lines

 retrieved from main memory.

L6:

Main memory holds disk

blocks retrieved from
local disks.

Matrix Multiplication

Good vs bad locality / caching …

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

ijk / jik

jki / kji

kij / ikj

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
y
c

le
s

 p
e

r
in

n
e

r
lo

o
p

 i
te

ra
ti

o
n

Array size (n)

jki

kji

ijk

jik

kij

ikj

ijk / jik

jki / kji

kij / ikj

Theoretical peak performance

Throughput[GFLOP/s] = chips * cores * vectorWidth *

 FLOPs/cycle * clockFrequency

Bandwidth[GB/s] = memory bus frequency * bits per cycle * bus width

Cores Threads/ALUs Throughput Bandwidth

Intel Core i7 4 16 85 25.6

AMD Barcelona 4 8 37 21.4

AMD Istanbul 6 6 62.4 25.6

NVIDIA GTX 580 16 512 1581 192

NVIDIA GTX 680 8 1536 3090 192

AMD HD 6970 384 1536 2703 176

AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352

multi vs *many* cores (GB/s)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

What about energy?

• Multi-core CPU
• Multi-core energy consumption != N * energy/core

• Complex architecture, different clocks, shared resources

• Various ways to implements DVFS + power reduction techniques

• Non-trivial correlation with performance

• GPU
• Power is significantly impacted by the type of workload and occupancy

• Always check the power cap, too!

• Heterogeneous computing
• Sum of energy by components works well

• Multi-node computing:
• Sum of energy works OK

• Missing networking energy

Hybrid

CPU C-states/P-states

• P-states = power performance states

• scale the frequency and voltage at which the processor runs

• reduce the power consumption of the CPU.

• Number of available P-states can be different for each model of CPU

• C-states = idle sleep states

• reduced or turned off selected functions

• Higher is … more => more of the CPU is shut-off

• Number of available C-states can be different for each model of CPU

https://hardwaresecrets.com/everything-you-need-to-know-about-the-cpu-c-states-power-saving-modes/

https://hardwaresecrets.com/everything-you-need-to-know-about-the-cpu-c-states-power-saving-modes/

An example

• AMD EPYC CPU

• Running SGEMM

• Different frequencies

(P-states)

An example:

GPU SMs Cores/SM Total Cores Max Power [W] Idle Power [W]

A4000 48 128 6144 140 39.5

A6000 84 128 10572 300 71.5

A2 10 128 1280 60 18.1

A100 108 64 6912 250 37.9

A4000 A6000 A2 A100

Same example

• Caching patterns make

a significant difference

• Compute vs memory

intensive – mem

consumes more.

• Memory coalescing,

negligible

• Data types &

instruction mix show

some differences

Performance vs. sustainability

• Low performance ➔ waste in computing

• We power resources that are not needed

• High performance ➔ faster execution ➔ less energy consumed

• Max energy efficiency  max performance (i.e., lowest runtime…)

• Strong assumption that power is constant

• DVFS is a technique to reduce the impact of underutilized hardware

• Non-linear effects on performance

• In the context of multi-core and heterogeneous systems, maximizing execution

time might not guarantee lowest energy consumption.

Goel and McKee – “A Methodology for Modeling Dynamic and Static Power Consumption for Multicore Processors”

https://doi-org.ezproxy2.utwente.nl/10.1109/IPDPS.2016.118

Example 1: Energy harvesting

• Basic assumptions
• Tasks run on different processors

• Idle processors waste energy

• Higher/lower operating frequencies

• => more/less power respectively

• => reduce or increase runtime respectively

• Opportunities
• Dynamic Voltage and Frequency Scaling (DVFS)

• Reducing operating frequencies in idle states may save energy

• No active task => no runtime increase

• Increasing operating frequencies in busy states may save energy

• Lower runtime => less time to consume energy

GPU-bound
(Matrix Multiply)

CPU-bound
(K-Means)

Results

Example 2: Smaller GPUs, anyone?

Applications:

• 5 Rodinia kernels:
• Compute-bound: hotspot, k-means (2)

• Memory-bound: k-means (1)
 backpropagation (1), backpropagation (2)

Systems:

• Baseline: RTX 2060 Super

• Variables:
• SMs: 25, 30, …., 40

• Core clock: 1000, 1150, …., 1900

• Memory clock: 800, 1250, …, 3500

Simulation run-time ≈ 24-40 hours

Simulated with:

Ask me

more!

https://github.com/romnn/gpucachesim

Varying SMs

35

waste

waste

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

More resources ≠

better performance

Core clock

36

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

The core-level static

energy model in

AccelSim seems to be

broken.

??

??

Memory clock

37

Compute-bound:

● Hotspot

● K-means (2)

Memory-bound:

● K-means (1)

● Backprop (1)

● Backprop (2)

waste

waste

Sustainability TODO’s

• Use all CPUs capabilities

• Maximize parallelism

• Use SIMD & ILP

• Use accelerators – if needed!

• Maximize parallelism

• Efficient mapping

• Heterogeneous computing

• Use all memory capabilities

• Maximize bandwidth

• Use caching / improve locality

** non trivial …

Limit the impact of low utilization

Reduce impact of unused cores/chips

Reduce impact of unused bandwidth**

Applications

A Method for Parallel Application Design*

• Decompose (partition)

• What is the computation? Which data?

• Cluster (communicate & agglomerate)

• What granularity ?

• Implement in programming model

• Which model ?

• Implement tasks as processes or threads

• Add communication and synchronization constructs

• Map units of work to processors

• Might be transparent.

Decompose

Cluster

Implement

Map to HW*In Foster - ”Designing and Building Parallel Programs”

 http://www.mcs.anl.gov/dbpp

http://www.mcs.anl.gov/dbpp

Models of Parallel Computation

• Conceptual level : defining tasks and data interactions
• Recipes that typically cover “decompose” and “cluster”

• (may) Provide
• More parallelism in the application

• Better load-balancing

• Systematic performance analysis

• Examples
• Trivially/embarrassingly parallel

• Data parallelism

• Task parallelism

• Farmer/worker

• Divide and conquer

• Bulk synchronous

Decompose

Cluster

Implement

Map to HW

Implementation matters

• Efficient parallelization

• Memory bandwidth utilization

• Programming models/languages

• Compilers

• Libraries and additional tools

The programming language

• C/C++ remain faster than most

alternatives

• And benefits from most low-level tools

• Python is slower, but libraries and

ecosystem around it is improving

• Julia/Go/Rust picking up, but limited

support with libraries and tools

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

What about energy?

• Same experiment, with energy consumption

metrics

• In most cases …

• Correlation between time and energy

• Depends a lot on the characteristics of

applications

https://sites.google.com/view/energy-efficiency-

languages/updated-functional-results-2020?authuser=0

https://sites.google.com/view/energy-efficiency-languages/updated-functional-results-2020?authuser=0
https://sites.google.com/view/energy-efficiency-languages/updated-functional-results-2020?authuser=0

Adding parallelism, acceleration, distribution

• Pthreads/CUDA/OpenCL/SyCL are relevant low-level options
• Challenging to code, high-performance

• OpenMP is mucht more programmer friendly
• Support for accelerators

• Support for SIMD

• OpenACC and alternative directive-based tools are still limited for complex
applications

• Kokkos / Raja / others focus on portability and performance
• Popular for scientific applications

• Distributed computing => often some form of lock-in
• De-facto standard remains MPI

• Alternative models exist, but steep learning curve

What about (energy) efficiency?

• How well do we utilize the system for parallel applications?

• Amdahl’s law

• Roofline model

• Performance modelling

• Analytical

• Machine learning

• (micro)Benchmarking

• Simulators

• How well do we utilize the system for distributed applications?

• Analytical models (LogP)

• Tools for performance estimation (Scalasca, ScoreP, Vampir, …)

Balance

Throughput[GFLOP/s] = chips * cores * vectorWidth *

 FLOPs/cycle * clockFrequency

Bandwidth[GB/s] = memory bus frequency * bits per cycle * bus width

Bandwidth[FLOP/byte] = throughput / bandwidth

Cores Threads/ALUs FLOPS/s Byte/s FLOPS/Byte

Intel Core i7 4 16 85 25.6 3.3

AMD Barcelona 4 8 37 21.4 1.7

AMD Istanbul 6 6 62.4 25.6 2.4

NVIDIA GTX 580 16 512 1581 192 8.2

NVIDIA GTX 680 8 1536 3090 192 16.1

AMD HD 6970 384 1536 2703 176 15.4

AMD HD 7970 32 2048 3789 264 14.4

Intel Xeon Phi 7120 61 240 2417 352 6.9

Balance ?

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (SP) !

Balance ?

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (DP) !

Application arithmetic (operational) intensity

• The number of arithmetic (floating point) operations per byte of memory that is
accessed
• Compute-intensive?

• i.e., adding more compute power increases performance.

• Memory-intensive?

• i.e., adding more memory bandwidth increases performance.

• It is an application characteristic!

• To measure:

• Count useful operations

• Ignore “overheads”

• Loop counters

• Array index calculations

• Branches

50

Compute or memory intensive?

51

AI = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sun Niagara 2
IBM bg/p

IBM Power 7
Intel Core i7

AMD Barcelona
AMD Istanbul

AMD Magny-Cours
Cell/B.E.

NVIDIA GTX 580
NVIDIA GTX 680

AMD HD 6970
Intel Xeon Phi 7120
Intel Xeon Phi 3120

“A multi-/many-core processor is a

device built to turn a compute-intensive

application into a memory-intensive

one”

Kathy Yelick, UC Berkeley

Attainable performance

• Attainable GFlops/sec

= min(Peak Floating-Point Performance,

 Peak Memory Bandwidth * Arithmetic Intensity)

• Peak iff AI_app ≥ PeakFLOPs / PeakBW

• Compute-intensive iff AI_app ≥ (FLOPs/Byte)platform

• Memory-intensive iff AI_app < (FLOPs/Byte)platform

52

Compute intensive

Memory intensive

Attainable performance (cont’d)

• Typical case: application A runs on platform X in Texec_A :

• Rules of thumb:

PeakCompute(X) = maxFLOP GLOPS/s (catalogue)

PeakBW(X) = maxBW GB/s (catalogue)

RooflineCompute(A,X) = min(AI(A)*maxBW, maxFLOP) (model)

AchievedCompute(A,X) = FLOPs(A)/Texec_A (real execution)

AchievedBW(A,X) = MemOPs(A)/Texec_A (real execution)

UtilizationCompute = AchievedCompute(A,X)/PeakCompute(X) < 1

UtilizationBW = AchievedBW(A,X)/PeakBW(X) ? 1

PeakCompute >= Roofline > AchievedCompute

PeakBW ? AchievedBW
 Note: AchievedBW > PeakBW <=> faster memories on the chip play a role.

The Roofline model

• Takes the application into account

• Via Operational intensity

• Takes the platform into account

• Via hardware specifications

• Determines the performance bounds of an application when executed on

different processors.

• Hints to optimization strategies.

The Roofline model

55

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

Roofline: comparing architectures

56

AMD Opteron X2: 17.6 gflops, 15 GB/s, ops/byte = 1.17 AMD Opteron X4: 73.6 gflops, 15 GB/s, ops/byte = 4.9

Roofline: computational ceilings

57

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

Roofline: bandwidth ceilings

58

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

Roofline: optimization regions

59

Use the Roofline model

• Determine what to do first to gain performance

• Increase memory streaming rate

• Apply in-core optimizations

• Increase arithmetic intensity

• Showcases limitations in utilization

• Can indicate upper bounds of energy efficiency as well

• Read:

Samuel Williams, Andrew Waterman, David Patterson

“Roofline: an insightful visual performance model for multicore architectures”

60

Hands-on: try them out!

Methods and tools

• Understanding/Monitoring the hardware
• hwloc, scpu

• cpupower -c 0 frequency-info

• Nvidia: nvidia-smi (and upgrades), nsight systems

• Intel: Intel Vtune, various RAPL interfaces

• AMD: uProf (AMDuProfCLI)

• Performance counters and derivatives
• PAPI

• LIKWID

• Tau

• … many others

• Larger-scale systems
• Vampir, Scalasca, Tau, …

• Various simulators

https://inria.hal.science/hal-04030223/file/_CCGrid23__An_experimental_comparison_of_software_based_power_meters__from_CPU_to_GPU.pdf

In summary

Take home to-the-office message [1]

• Computing demands increasing significantly

• We build more efficient machines

• We use them more and more (the rebound effect, Jevon’s paradox, …)

• Systems scale-up and scale-out
• Scale-up: more machinery in the box

• More complex to use efficiently, more difficult to estimate their performance

• Require multiple levels of parallelism & heterogeneity

• Scale-out: increasingly large (possibly distributed) clusters

• Significant carbon footpring, embodied and operational

• High utilization is mandatory for efficiency

• Schedulers and resource managers help

• Efficient applications with understandable performance are fundamental for the
efficiency of these systems.

Take home to-the-office message [2]

• Assess what is feasible in terms of performance, efficiency, energy

consumption

• To reduce energy consumption

• Power-off what is not needed

• “donate” what is not needed

• To increase efficiency

• Assess feasible performance and aim to reach it

• Maximize utilization of hardware

• Always select algorithms, implementation tools, and platforms

Take home to-the-office message [3]

• Most tool targets …

• Benchmarking

• Performance analysis & prediction

• Upper bounds estimates

• Bottlenecks

• Emerging tools for sustainability

• Various LCA models

• Various carbon footprint models

• Still rely on very basic utilization models

• We need to work on bridging the gap ☺

	Slide 1: Sustainable Computing
	Slide 2: Agenda
	Slide 3: Context
	Slide 4: Sustainable computing  zero-waste computing
	Slide 5: “Systems at hand”
	Slide 6: Making faster/larger systems
	Slide 7: Sustainability at scale
	Slide 8: Systems SOTA: Inside the node
	Slide 9: Inside the node*
	Slide 10: Systems performance “metrics”
	Slide 11: CPU
	Slide 12: CPU levels of parallelism
	Slide 13: Acc: a generic GPU
	Slide 15: GPU Levels or Parallelism
	Slide 16: Theoretical peak performance
	Slide 17: *multi* vs *many* cores (SP-FLOPs)
	Slide 18: *multi* vs *many* cores (DP-FLOPs)
	Slide 19: Memory
	Slide 20: The CPU-Memories Gap
	Slide 21: Memory hierarchy and caches
	Slide 22: Memory hierarchy
	Slide 23: Matrix Multiplication
	Slide 24: Theoretical peak performance
	Slide 25: *multi* vs *many* cores (GB/s)
	Slide 26: What about energy?
	Slide 27: CPU C-states/P-states
	Slide 28: An example
	Slide 29: An example:
	Slide 30: Same example
	Slide 31: Performance vs. sustainability
	Slide 32: Example 1: Energy harvesting
	Slide 33: Results
	Slide 34: Example 2: Smaller GPUs, anyone?
	Slide 35: Varying SMs
	Slide 36: Core clock
	Slide 37: Memory clock
	Slide 38: Sustainability TODO’s
	Slide 39: Applications
	Slide 40: A Method for Parallel Application Design*
	Slide 41: Models of Parallel Computation
	Slide 42: Implementation matters
	Slide 43: The programming language
	Slide 44: What about energy?
	Slide 45: Adding parallelism, acceleration, distribution
	Slide 46: What about (energy) efficiency?
	Slide 47: Balance
	Slide 48: Balance ?
	Slide 49: Balance ?
	Slide 50: Application arithmetic (operational) intensity
	Slide 51: Compute or memory intensive?
	Slide 52: Attainable performance
	Slide 53: Attainable performance (cont’d)
	Slide 54: The Roofline model
	Slide 55: The Roofline model
	Slide 56: Roofline: comparing architectures
	Slide 57: Roofline: computational ceilings
	Slide 58: Roofline: bandwidth ceilings
	Slide 59: Roofline: optimization regions
	Slide 60: Use the Roofline model
	Slide 61: Hands-on: try them out!
	Slide 62: Methods and tools
	Slide 63
	Slide 64: In summary
	Slide 65: Take home to-the-office message [1]
	Slide 66: Take home to-the-office message [2]
	Slide 67: Take home to-the-office message [3]

