HELMHOLTZ Al cSoreramion onr -

CERN School of Computing

Transposed Convolutions and Auto-Encoders

Peter Steinbach
Helmholtz-Zentrum Dresden-Rossendorf / 2024-09-19

www.helmholtz.ai

Today’s Agenda

1. More Convolutions
2. autoencoders

Peter Steinbach | CERN School of Computing HELMHOLTZAI 1/73

More Convolutions

Peter Steinbach | CERN School of Computing HELMHOLTZAI 2/73

Recap a convolution in 1D

Peter Steinbach | CERN School of Computing HELMHOLTZAI 3/73

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

from [Fle22]

m

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

w

Kernel

1 2 0 -1

from [Fle22]

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

Output

Wowd from [Fle22]

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

Output

Wowd from [Fle22]

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

Output

Wowd from [Fle22]

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

from [Fle22]

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

from [Fle22]

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

W-w+l from [Fle22]

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

from [Fle22]

1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

w

Kernel

from [Fle22]

Transposed Convolutions

In the deep-learning field, since it corresponds to transposing the weight matrix
of the equivalent fully-connected layer, it is called a transposed convolution.

k1 0 0 O O

K1 K2 k3 0 0 0 0\ | Ko k1 O 0 O
0 kK1 kp k3 0 O O k3 Kp k1 0 O
0 0 kK1 Ko k3 0 O = 0 kK3 Ko K1 O
0 0 O kw1 kKp w3 O 0 0 k3 Ko K1
0O 0 O O K1 K2 K3 0 0 O kK3 Ky

0 0 0 0 ~3

A convolution can be seen as a series of inner products, a transposed
convolution can be seen as a weighted sum of translated kernels.

from [Fle22]

m

1D Transposed convolution layer

Input

w
Kernel
1 2 -1
w

from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1D Transposed convolution layer

Input
2 3 0 -1
w
1 2 -1
2 4 -2
+
Output
2
W+w-—-1

from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1D Transposed convolution layer

Input
2 3 0 -1
w
1 2 -1
2 4 | 2
3 6 -3
+
Output
2 7
W+w-—-1

from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1D Transposed convolution layer

Input
2 3 0 -1
w
1 2 -1
2 4 -2
3 6 -3
" 0 0 0
Output
2 7 4
w -1
I from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1D Transposed convolution layer

Input
2 3 0 -1
w
1 2 -1
2 4 | 2
3 6 -3
" 0 0 0
-1 -2 1
Output
2 |7 |4 |4]2 |1

Wt from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1D Transposed convolution layer

Input

w
2 4 | 2
3 6 -3
" 0 0 0
-1 -2 1
Output
2 |7 |4 |4]2 |1

Wt from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1D Transposed convolution layer

Input

Kernel

1 2 -1

Output

2 |7 |4 |4 |21

W+w-1

from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

Pytorch

F.conv_transposeld implements the operation we just described. It takes as
input a batch of multi-channel samples, and produces a batch of multi-channel
samples.

We can compare on a simple 1d example the results of a standard and a
transposed convolution:

>>> x = torch.tensor([[[0., 0., 1., 0., 0., 0., 0.]111)
>>> k = torch.tensor([[[1., 2., 3.11])

>>> F.convld(x, k)

tensor([[[3., 2., 1., 0., 0.111

LAl I

>>> F.conv_transposeld(x, k)
tensor([[[0., oO0., 1., 2., 3., 0., 0., 0., 0.111

SR 1|) |

from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

stride, padding, dilation in transposed convolition

Transposed convolutions also have a dilation parameter that behaves as for
convolution and expends the kernel size without increasing the number of
parameters by making it sparse.

They also have a stride and padding parameters, however, due to the relation
between convolutions and transposed convolutions:

map, for transposed convolutions these parameters are defined in the

f While for convolutions stride and padding are defined in the input
output map, and the latter modulates a cropping operation.

from [Fle22]

1 D: With Strides Transposed convolution layer (stride = 2)

Input

Kernel

1 2 -1

Output

(W=D tw from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1 D: With Strides Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 | 4 | 2
+
Output
2 | 4
(W=D tw from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1 D: With Strides Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 | 4 | 2
s
3 6 -3
+
Output
2 |4 |1 |6
(W=D tw from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1 D: With Strides Transposed convolution layer (stride = 2)

Input

w

1 2 -1
2 4 -2
s
3 6 -3
s
4 0 0 0
Output

(W=D tw from [Fle22]

Deep learning / 7.1. Transposed convoluti

Francois Fleuret

1 D: With Strides Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 4 -2
s
3 6 -3
s
4 0 0 0
s
-1 -2 1
Output
2 4 1 6 -3 0 -1 -2 1

(W=D tw from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1 D: With Strides Transposed convolution layer (stride = 2)

Input

w
2 4 -2
s
3 6 -3
s
4 0 0 0
s
-1 -2 1
Output
2 4 1 6 -3 0 -1 -2 1

(W=D tw from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

1 D: With Strides Transposed convolution layer (stride = 2)

Input

Kernel

1 2 -1

Output

(W=D tw from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti

Convolution and Transposed Convolition back-to-back

Francois Fleuret

The composition of a convolution and a transposed convolution of same
parameters keep the signal size [roughly] unchanged.

signal. Its composition with the corresponding transposed convolution

2 A convolution with a stride greater than one may ignore parts of the
generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size w and stride s composed with the
transposed convolution of same parameters maintains the signal size W, only if

dgeN, W=w+sgq.

Deep learning / 7.1. Transposed convoluti

from [Fle22]

Artefacts
It has been observed that transposed convolttions may create some
grid-structure artifacts, since generated pixels are not all covered similarly.

For instance with a 4 x 4 kernel and stride 3

from [Fle22]

Equivalent Operations: Transposed Conv or Conv+Interpolation

An alternative is to use an analytic up-scaling, implemented in the PyTorch
functional F.interpolate.

>>> x = torch.tensor ([[[[1., 2. 1,
scale_factor =

>>> F.interpolate(x,

tensor ([[[[1
[1
[1

[3.
[3.

.0000,
.0000,
.6667,
2.

3333,
0000,
0000,

>>> F.interpolate(x,

tensor ([[[[1.
[1.
[1.
[3.
[3.
[3.

, 1.

W w W=

El

1
1
1
2.
3
3

1
1
1
3.
3
3

[3.,4.111D
3,

mode = 'bilinear')
.0000, 1.3333, 1.6667, 2.0000, 2.0000],
.0000, 1.3333, 1.6667, 2.0000, 2.0000],
.6667, 2.0000, 2.3333, 2.6667, 2.6667],
3333, 2.6667, 3.0000, 3.3333, 3.3333],
.0000, 3.3333, 3.6667, 4.0000, 4.0000],
.0000, 3.3333, 3.6667, 4.0000, 4.0000]1111)
scale_factor = 3, mode = 'nearest')
L, 2.0, 2., 2.7,
, 2., 2., 2.7,
, 2., 2., 2.1,
, 4., 4., 4.7,
, 4., 4., 4.7,
, 4., 4., 4.111D)

from [Fle22]

autoencoders

Peter Steinbach | CERN School of Computing HELMHOLTZAI 34/73

autoencoders: Goals

Many applications such as image synthesis, denoising,
super-resolution, speech synthesis, compression, etc. require to go
beyond classification and regression, and model explicitly a high
dimension signal.

HELMHOLTZAI 35/73

Peter Steinbach ERN School of Computing

autoencoders: Goals

Many applications such as image synthesis, denoising,
super-resolution, speech synthesis, compression, etc. require to go
beyond classification and regression, and model explicitly a high
dimension signal.

This modeling consists of finding “meaningful degrees of
freedom” that describe the signal, and are of lesser dimension.

HELMHOLTZAI 35/73

Peter Steinbach ERN School of Computing

A complex signal

.
.
.
.
.
.0..’0
. .
.
. ° :
" .
.
o M
'0"0‘ N
. .
. ® .
g 1
.
. i ’
A .-, . .
. .
. ° g °
D °
.
- ®e
. .
.
L .
® .
., .

Original space

A complex signal has hidden structure

o
.
.
.
.
e e e
J .
o . .
. .
oo . X
@ o '.-]
.
. o .
. L
. K s ®
. . . .
h .
. . . y
e, .
Y o *
. .
3 .
. . .
. .
from [Fle22]

Original space

A latent space is simpler

.
.
St Latent space &
0' . .'
. .
.
0:0.' he ¢]
.
] 0.. 3 . P
. K ° s ®
. 0.. e .
o A . (4 y
N e, . o ®
: .
A o‘
.
. e

from [Fle22]

Original space

Can we find f that maps complexfto simple?

° .
Pt Latent space &
L)
) .
.. .
(4 :0.' he ° . \
. o o .‘ 0 P
[.
. : 4 *
‘. <. y .
Y e o *° y
Y o‘
. o0)
from [Fle22]

Original space

represent complex data in a simpler way

Latent space &

Original space & from [Fle22]

And for f, can we find ¢ to invert that mapping?

ST

... . Latent space &

Original space & from [Fle22]

Reconstruct the complex signal

®e

Original space & from [Fle22]

m

autoencoders: Objectives

When dealing with real-world signals, the objective of
autoencoders involves the same theoretical and practical

issues as for classification or regression: defining the right
class of high-dimension models, and optimizing
them.

Peter Steinbach ERN School of Computing HELMHOLTZAI 43/73

autoencoders: Objectives

When dealing with real-world signals, the objective of
autoencoders involves the same theoretical and practical
issues as for classification or regression: defining the right
class of high-dimension models, and optimizing
them.

This motivates the use of deep architectures for signal
synthesis. This is called a generative model!

HELMHOLTZAI

autoencoders: Definition [BK88] [HZ93]

An autoencoder maps a space to itselt and 1s [CIOSG tO] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an
encoder f from the original space 2 to a latent space #, and a decoder g to
map back to 2 (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).

>

Original space &

autoencoders: Definition [BK88] [HZ93]

An autoencoder maps a space to itselt and 1s [CIOSG tO] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an
encoder f from the original space 2 to a latent space #, and a decoder g to
map back to 2 (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).

— Latent space &

Original space &

autoencoders: Loss functions

Let g be the data distribution over 2. A good autoencoder could be
characterized with the quadratic loss

Ex~q[IX — g 0 ((X)|?] ~ 0.

from [Fle22]

m

autoencoders: Loss functions

Let g be the data distribution over 2. A good autoencoder could be
characterized with the quadratic loss

ExqIX — g0 F(X)I?] ~o0.

Given two parametrized mappings f(-; wr) and g(-; wg), training consists of
minimizing an empirical estimate of that loss
1N
P . 2
W, Wg = argmin Z |xn — g (f (xn; we); wg)||* -

wr,wg n—=1

from [Fle22]

m

autoencoders: Loss functions

Let g be the data distribution over 2. A good autoencoder could be
characterized with the quadratic loss

ExqIX — g0 F(X)I?] ~o0.

Given two parametrized mappings f(-; wr) and g(-; wg), training consists of
minimizing an empirical estimate of that loss
1N
P . 2
i, g = argmin >~ lxn — g(F e we):)|

wr,wg n—=1

A simple example of such an autoencoder would be with both f and g linear, in
which case the optimal solution is given by PCA.

from [Fle22]

autoencoders: Loss functions

Let g be the data distribution over 2. A good autoencoder could be
characterized with the quadratic loss

ExqIX — g0 F(X)I?] ~o0.

Given two parametrized mappings f(-; wr) and g(-; wg), training consists of
minimizing an empirical estimate of that loss

N
R 1
Ws, Wg = argmin m Z [Ixn — g(f (xn; wr); Wg)||2

wr,wg n—=1

A simple example of such an autoencoder would be with both f and g linear, in
which case the optimal solution is given by PCA. Better results can be achieved
with more sophisticated classes of mappings, in particular deep architectures.

from [Fle22]

ﬂ; !‘H

with a decoder composed of transposed convolutions or other interpolating
layers. E.g. for MNIST:

AutoEncoder (
(encoder) : Sequential (

)

)

(0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
RelLU (inplace)

Conv2d (32, 32, kernel_size=(5, 5), stride=(1, 1))
RelLU (inplace)

Conv2d (32, 32, kernel_size=(4, 4), stride=(2, 2))
ReLU (inplace)

Conv2d (32, 32, kernel_size=(3, 3), stride=(2, 2))
ReLU (inplace)

Conv2d (32, 8, kernel_size=(4, 4), stride=(1, 1))

(decoder) : Sequential (

)

(0):
(1):
(2):
(3):
(4):
(5):
(6):
7):
(8):

ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))
ReLU (inplace)

ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
ReLU (inplace)

ConvTranspose2d (32, 32, kernel_size=(4, 4), stride=(2, 2))
ReLU (inplace)

ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
ReLU (inplace)

ConvTranspose2d (32, 1, kernel_size=(5, 5), stride=(1, 1))

from [Fle22]

198 x 28 greyscale images of handwritten digits.

Francois Fleuret

Deep learn 2. Deep Autoencode

autoencoders Encoder

Tensor sizes / operations

1x28x28
. . 28
nn.Conv2d(1, 32, kernel_size=5, stride=1)
[[eJeJeJe eJeJeo[o eJo]ee]o]eJo]e eJe]efeJe[e[T T T]
32x24x24 X 24
. . 24
nn.Conv2d (32, 32, kernel_size=5, stride=1)
[e[eJeJeJeJeJo]ee]o]oJo]e oo e oJefeJe[T T]
32x20x20 X 20
. . 20
nn.Conv2d (32, 32, kernel_size=4, stride=2)
[o] Tel Tef Tef T Tel Te Tef TeTTT7]
32X9x%x9 X9
9
nn.Conv2d (32, 32, kernel_size=3, stride=2) e
[o] Tel Tel TeT T
32x4x4 X 4
4
nn.Conv2d (32, 8, kernel_size=4, stride=1) “—>
CITT]
8x1x1 x1

from [Fle22]

autoencoders Decoder

Tensor sizes / operations

8x1x1
. . X1
nn.ConvTranspose2d(8, 32, kernel_size=4, stride=1) —
EITT]
32x4x4 4
. . X4
nn.ConvTranspose2d(32, 32, kernel_size=3, stride=2) -
[T Tel Tel TeT T
&>
32X9x%x9
. . X9
nn.ConvTranspose2d (32, 32, kernel_size=4, stride=2)
[T Tel Te[Tof Tef TeT Te[TeT [T TT1]
32x20x20 20
. . x 20
nn.ConvTranspose2d (32, 32, kernel_size=5, stride=1)
[eeJefefe[eJeJoTeJe e e e e]e]eJeJeJe[eT TTT]
32x24x24 24
. . X 24
nn.ConvTranspose2d (32, 1, kernel_size=5, stride=1)
[eeJefe[e[eJeJoJoJeJe e e e]e]o]oJoJeJeJeJeJe[e[T T T]
1x28x28 28 from [Fle22]

autoencoders in pytorch

Training is achieved with quadratic loss and Adam

model = AutoEncoder(nb_channels, embedding_dim)
optimizer = optim.Adam(model.parameters(), lr = 1le-3)

for epoch in range(args.nb_epochs):
for input in train_input.split(batch_size):
z = model.encode (input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

optimizer.zero_grad()

loss.backward()
optimizer.step()

from [Fle22]

X (original samples)

Results

© Y
DS N
N J
P & o0
s T —
> d o
,....._7.....1
T o R
Q) T

......l.._l.lﬂluf

N oD

M~ o o

2)

g o f(X) (CNN, d

39 n 5y
QI N
NS T
oo
o -
>~) n

oo
QT
~=r
~ O0O0Q
N~

:2)

o f(X) (PCA, d

g

from [Fle22]

TR)
Qo> >
oo O
o -
o~ -
(O
- O -
o0
Q™ >
~ D
~MOO
o~ o~

X (original samples)

Results

© Y
DS N
N J
P & o0
s T —
> d o
.......7.....]
T o R
Q) T

......l.._l.lﬂluf

N oD

M~ o o

4)

g o f(X) (CNN, d

S ey
QO NN
[\ RN
AL e
g T —
b ol I

J 0O
QW T
ikl 3
~NOQ
™~ o~

=4)

o f(X) (PCA, d

g

from [Fle22]

(S W
(O IS B8
[SIS N, |
a2
o™
o m
..'.q_.-..l.
o0
QM
~— .
~nNOQ
>

riginal samples)

X (o

Results

© Y
DS N
N J
P &~ o0
s T —
> d o
.......7.....]
T o R
Q) T

......l.._l.lﬂluf

N oD

M~ o o

8)

g o f(X) (CNN, d

O W (X
QS5 N
N J
Tam
g T -
> ™
..,.l-./...l
J 0O
o) T
~—=C
o OQ
N o~ T

=8)

o f(X) (PCA, d

g

from [Fle22]

cws
Q&N
[SRV N
3 oo
I T -
e N
— N e
0
DT
mOQ
™~ 3

riginal samples)

X (o

Results

© Y
DS N
N J
P &~ o0
s T —
> d)
.......7.....]
T o R
Q) T

......l.._l.lﬂ.rf

N oD

M~ o o

16)

g o f(X) (CNN, d

SN
QSN
No J
U s
g T —
Fdon

JTo0
QW) T
~=
N OQ
I i

16)

o f(X) (PCA, d

g

from [Fle22]

S iy
QSN
e g
AU
T -
o0
N -
Jg o0
O T
~=-r
~NO9Q
N

riginal samples)

X (o

Results

O Y

DS N
N J
P &~ o0
s T —
> d)
.......7.....]
T o R
Q) T

......l.._l.lﬂ.rf

N oD

M~ o o

32)

g o f(X) (CNN, d

NSV
[QICIE N
N J
pean
& T —
o
.......-7.!1
TR0
o) T
~=
~NO9Q
[N e

32)

o f(X) (PCA, d

g

from [Fle22]

S WnhQR
Q3N
N J
e
& T —
> &M
.......ﬁf-l-
J o0
QU T
~=-=r
N OQ
N T

Exploring the latent space

To get an intuition of the latent representation, we can pick two samples x and
x’ at random and interpolate samples along the line in the latent space

Vx,x' € X2, a €]0,1], £(x,x",a) = g((1 — a)f(x) + af(x')).

Latent space #

Original space &

R R RRRRRRRBRBRBRBRBRBRERBRRBRRE="ve\wWwotzn1 o

Exploring the latent space

To get an intuition of the latent representation, we can pick two samples x and
x’ at random and interpolate samples along the line in the latent space

Vx,x' € X2, a €]0,1], £(x,x",a) = g((1 — a)f(x) + af(x')).

Latent space #

Original space &

IR e \whoLT2M .

Exploring the latent space

To get an intuition of the latent representation, we can pick two samples x and
x’ at random and interpolate samples along the line in the latent space

Vx,x' € X2, a €]0,1], £(x,x",a) = g((1 — a)f(x) + af(x')).

Latent space #

Original space &

e

Exploring the latent space: results

PCA interpolation (d = 32)

1177372222222
555566666666
bbby
Y4Y4Y4494494990606600
6666664999999
666666000000

. /fzréom [Fle22]

Deep learning / 7.2. Deep Autoencoders

Frangois Fleuret
m

Exploring the latent space: results

Autoencoder interpolation (d = 8)

VDDV D D999
OOOOO0O0OO0OGCGGG
777777722222
[[1§ §5555555

from [Fle22]
eeeeeeeee ing / 7.2. Deep Autoencoders 22/26

Exploring the latent space: results

Autoencoder interpolation (d = 32)

5556666666066

CLEEXEE KK G & & Q &
66 66LOOOODOOO

bbbkl yyyyy

o 2 2 o o T ke Tt BN R4 Y I |
222222333333

from [Fle22]
ep learning / 7.2. Deep Autoencoders 23 /26

Frangois Fleuret De
m

Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model gZ over the latent space %, sample there, and map the
samples into the image space 2" with g.

from [Fle22]

Francois Fleuret Deep learning / 7.2. Deep Autoencode:

Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model g% over the latent space &, sample there, and map the
samples into the image space 2" with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

F(X) ~ N (i1, A)

where 7 is a vector and A a diagonal matrix, both estimated on training data.

from [Fle22]

Francois Fleuret Deep learning / 7.2. Deep Autoencode:

Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model g% over the latent space &, sample there, and map the
samples into the image space 2" with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

F(X) ~ N (i1, A)

where 7 is a vector and A a diagonal matrix, both estimated on training data.

— Latent space &

Original space &

from [Fle22]

Francois Fleuret Deep learning / 7.2. Deep Autoencode:

Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model g% over the latent space &, sample there, and map the
samples into the image space 2" with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

F(X) ~ N (i1, A)

where 7 is a vector and A a diagonal matrix, both estimated on training data.

0

— Latent space &

Original space &

from [Fle22]

Francois Fleuret Deep learning / 7.2. Deep Autoencode:

Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model g% over the latent space &, sample there, and map the
samples into the image space 2" with g.

We can for instance use a Gaussian model with diagonal covariance matrix.
F(X) ~ N (i1, A)

where 7 is a vector and A a diagonal matrix, both estimated on training data.

© TN

Latent space &

Original space &

from [Fle22]

Francois Fleuret Deep learning / 7.2. Deep Autoencode:

Results @

Autoencoder sampling (d = 8)

Autoencoder sampling (d = 16)

R 232333 €E239

092+ 8L37 %5349

3, 6AHog>2Lg4$358
Autoencoder sampling (d = 32)

29 3 Fa s b8 g

“ EZ QLSR8

£ @ L., 8% €5 472 ¢

. /fzrﬁom [Fle22]

Unsatisfying Results?

These results are unsatisfying, because the density model used on the latent

space & is too simple and inadequate.

Building a “good” model amounts to our original problem of modeling an
empirical distribution, although it may now be in a lower dimension space.

from [Fle22]

Take Aways and Parting Thoughts

Transposed Convolutions and Upscaling

' complement regular convolutions

I either use transposed conv or conv+tinterpolate to upscale

Peter Steinbach | CERN School of Computing HELMHOLTZ 72/73

Take Aways and Parting Thoughts

Transposed Convolutions and Upscaling

' complement regular convolutions

I either use transposed conv or conv+tinterpolate to upscale

Auto Encoders

I popular architecture with various applications
I latent space can be traversed and worked with
I restoration of many corruptions

Time for some exercises!

Peter Steinbach | CERN School of Computing HELMHOLTZ 72/73

References |

[Fle22] F. Fleuret. Deep Learning Course. 2022. URL: https://fleuret.org/dlc/.

[BK88] H. Bourland and Y. Kamp. “2Auto-Association by Multilayer Perceptrons and
Singular Value Decomposition, ¢ Biological Cybernetics, vol. 59". In: (1988).

HZ93] G. E. Hinton and R. Zemel. “Autoencoders, minimum description length and
Helmholtz free energy”. In: Advances in neural information processing systems 6
(1993).

Peter Steinbach | CERN School of Computing HELMHOLTZAI 73/73

https://fleuret.org/dlc/

	More Convolutions
	autoencoders
	Summary
	References

