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In the deep-learning field, since it corresponds to transposing the weight matrix
of the equivalent fully-connected layer, it is called a transposed convolution.


κ1 κ2 κ3 0 0 0 0
0 κ1 κ2 κ3 0 0 0
0 0 κ1 κ2 κ3 0 0
0 0 0 κ1 κ2 κ3 0
0 0 0 0 κ1 κ2 κ3


⊤

=



κ1 0 0 0 0
κ2 κ1 0 0 0
κ3 κ2 κ1 0 0
0 κ3 κ2 κ1 0
0 0 κ3 κ2 κ1

0 0 0 κ3 κ2

0 0 0 0 κ3



A convolution can be seen as a series of inner products, a transposed
convolution can be seen as a weighted sum of translated kernels.

François Fleuret Deep learning / 7.1. Transposed convolutions 4 / 14
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F.conv_transpose1d implements the operation we just described. It takes as
input a batch of multi-channel samples, and produces a batch of multi-channel
samples.

We can compare on a simple 1d example the results of a standard and a
transposed convolution:

>>> x = torch.tensor([[[0., 0., 1., 0., 0., 0., 0.]]])
>>> k = torch.tensor([[[1., 2., 3.]]])
>>> F.conv1d(x, k)
tensor([[[ 3., 2., 1., 0., 0.]]])

⊛ =

>>> F.conv_transpose1d(x, k)
tensor([[[ 0., 0., 1., 2., 3., 0., 0., 0., 0.]]])

∗ =

François Fleuret Deep learning / 7.1. Transposed convolutions 7 / 14

Pytorch
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Transposed convolutions also have a dilation parameter that behaves as for
convolution and expends the kernel size without increasing the number of
parameters by making it sparse.

They also have a stride and padding parameters, however, due to the relation
between convolutions and transposed convolutions:

!
While for convolutions stride and padding are defined in the input
map, for transposed convolutions these parameters are defined in the
output map, and the latter modulates a cropping operation.

François Fleuret Deep learning / 7.1. Transposed convolutions 9 / 14

stride, padding, dilation in transposed convolition

from [Fle22]
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Transposed convolution layer (stride = 2)
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The composition of a convolution and a transposed convolution of same
parameters keep the signal size [roughly] unchanged.

!
A convolution with a stride greater than one may ignore parts of the
signal. Its composition with the corresponding transposed convolution
generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size w and stride s composed with the
transposed convolution of same parameters maintains the signal size W , only if

∃q ∈ N, W = w + s q.

W

s s s w

François Fleuret Deep learning / 7.1. Transposed convolutions 11 / 14

Convolution and Transposed Convolition back-to-back

from [Fle22]
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It has been observed that transposed convolutions may create some
grid-structure artifacts, since generated pixels are not all covered similarly.

For instance with a 4× 4 kernel and stride 3

François Fleuret Deep learning / 7.1. Transposed convolutions 12 / 14

Artefacts

from [Fle22]
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An alternative is to use an analytic up-scaling, implemented in the PyTorch
functional F.interpolate.

>>> x = torch.tensor([[[[ 1., 2. ], [ 3., 4. ]]]])
>>> F.interpolate(x, scale_factor = 3, mode = 'bilinear')
tensor([[[[1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],

[1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
[1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
[2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
[3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
[3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]]]])

>>> F.interpolate(x, scale_factor = 3, mode = 'nearest')
tensor([[[[1., 1., 1., 2., 2., 2.],

[1., 1., 1., 2., 2., 2.],
[1., 1., 1., 2., 2., 2.],
[3., 3., 3., 4., 4., 4.],
[3., 3., 3., 4., 4., 4.],
[3., 3., 3., 4., 4., 4.]]]])

François Fleuret Deep learning / 7.1. Transposed convolutions 13 / 14

Equivalent Operations: Transposed Conv or Conv+Interpolation

from [Fle22]
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autoencoders: Goals

Many applications such as image synthesis, denoising,
super-resolution, speech synthesis, compression, etc. require to go
beyond classification and regression, and model explicitly a high
dimension signal.

This modeling consists of finding “meaningful degrees of
freedom” that describe the signal, and are of lesser dimension.

Peter Steinbach CERN School of Computing
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from [Fle22]

39/73



Original space 𝒳

Latent space ℱ

f

g

François Fleuret Deep learning / 7.2. Deep Autoencoders 7 / 26

represent complex data in a simpler way

from [Fle22]

40/73



Original space 𝒳

Latent space ℱ

f

g

François Fleuret Deep learning / 7.2. Deep Autoencoders 8 / 26

And for f , can we find g to invert that mapping?

from [Fle22]
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Reconstruct the complex signal

from [Fle22]
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autoencoders: Objectives

When dealing with real-world signals, the objective of
autoencoders involves the same theoretical and practical
issues as for classification or regression: defining the right
class of high-dimension models, and optimizing
them.

This motivates the use of deep architectures for signal
synthesis. This is called a generative model!

Peter Steinbach CERN School of Computing
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An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an
encoder f from the original space 𝒳 to a latent space ℱ , and a decoder g to
map back to 𝒳 (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).

Original space 𝒳

Latent space ℱ

f

g

If the latent space is of lower dimension, the autoencoder has to capture a
“good” parametrization, and in particular dependencies between components.

François Fleuret Deep learning / 7.2. Deep Autoencoders 12 / 26

autoencoders: Definition [BK88] [HZ93]

from [Fle22]
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Let q be the data distribution over 𝒳 . A good autoencoder could be
characterized with the quadratic loss

EX∼q

[
∥X − g ◦ f (X )∥2

]
≃ 0.

Given two parametrized mappings f (· ;wf ) and g(· ;wg ), training consists of
minimizing an empirical estimate of that loss

ŵf , ŵg = argmin
wf ,wg

1

N

N∑
n=1

∥xn − g(f (xn;wf );wg )∥2 .

A simple example of such an autoencoder would be with both f and g linear, in
which case the optimal solution is given by PCA. Better results can be achieved
with more sophisticated classes of mappings, in particular deep architectures.

François Fleuret Deep learning / 7.2. Deep Autoencoders 13 / 26

autoencoders: Loss functions

from [Fle22]
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A deep autoencoder combines an encoder composed of convolutional layers,
with a decoder composed of transposed convolutions or other interpolating
layers. E.g. for MNIST:

AutoEncoder (
(encoder): Sequential (

(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU (inplace)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(3): ReLU (inplace)
(4): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU (inplace)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU (inplace)
(8): Conv2d(32, 8, kernel_size=(4, 4), stride=(1, 1))

)
(decoder): Sequential (

(0): ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))
(1): ReLU (inplace)
(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(3): ReLU (inplace)
(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU (inplace)
(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(7): ReLU (inplace)
(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))

)
)

François Fleuret Deep learning / 7.2. Deep Autoencoders 15 / 26

deep autoencoders: an example with MNIST1

from [Fle22]
128 × 28 greyscale images of handwritten digits.
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Encoder

Tensor sizes / operations

1×28×28

nn.Conv2d(1, 32, kernel_size=5, stride=1)
28

×2432×24×24

nn.Conv2d(32, 32, kernel_size=5, stride=1)
24

×2032×20×20

nn.Conv2d(32, 32, kernel_size=4, stride=2)
20

×932×9×9

nn.Conv2d(32, 32, kernel_size=3, stride=2)
9

×432×4×4

nn.Conv2d(32, 8, kernel_size=4, stride=1)
4

×18×1×1
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autoencoders

from [Fle22]
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Decoder

Tensor sizes / operations

8×1×1

nn.ConvTranspose2d(8, 32, kernel_size=4, stride=1)
×1

432×4×4

nn.ConvTranspose2d(32, 32, kernel_size=3, stride=2)
×4

932×9×9

nn.ConvTranspose2d(32, 32, kernel_size=4, stride=2)
×9

2032×20×20

nn.ConvTranspose2d(32, 32, kernel_size=5, stride=1)
×20

2432×24×24

nn.ConvTranspose2d(32, 1, kernel_size=5, stride=1)
×24

281×28×28
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autoencoders

from [Fle22]
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Training is achieved with quadratic loss and Adam

model = AutoEncoder(nb_channels, embedding_dim)

optimizer = optim.Adam(model.parameters(), lr = 1e-3)

for epoch in range(args.nb_epochs):
for input in train_input.split(batch_size):

z = model.encode(input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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autoencoders in pytorch

from [Fle22]
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X (original samples)

g ◦ f (X ) (CNN, d = 2)

g ◦ f (X ) (PCA, d = 2)
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Results

from [Fle22]
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X (original samples)

g ◦ f (X ) (CNN, d = 4)

g ◦ f (X ) (PCA, d = 4)
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Results

from [Fle22]
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X (original samples)

g ◦ f (X ) (CNN, d = 8)

g ◦ f (X ) (PCA, d = 8)
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Results

from [Fle22]
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X (original samples)

g ◦ f (X ) (CNN, d = 16)

g ◦ f (X ) (PCA, d = 16)
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Results

from [Fle22]
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X (original samples)

g ◦ f (X ) (CNN, d = 32)

g ◦ f (X ) (PCA, d = 32)
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Results

from [Fle22]
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To get an intuition of the latent representation, we can pick two samples x and
x ′ at random and interpolate samples along the line in the latent space

∀x , x ′ ∈ 𝒳 2, α ∈ [0, 1], ξ(x , x ′, α) = g((1− α)f (x) + αf (x ′)).

Original space 𝒳

Latent space ℱ

x x ′

f (x)

f (x ′)

f

g
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Exploring the latent space

from [Fle22]
59/73



To get an intuition of the latent representation, we can pick two samples x and
x ′ at random and interpolate samples along the line in the latent space

∀x , x ′ ∈ 𝒳 2, α ∈ [0, 1], ξ(x , x ′, α) = g((1− α)f (x) + αf (x ′)).

Original space 𝒳

Latent space ℱ

x x ′

f (x)

f (x ′)

f

g

François Fleuret Deep learning / 7.2. Deep Autoencoders 20 / 26

Exploring the latent space

from [Fle22]
60/73



To get an intuition of the latent representation, we can pick two samples x and
x ′ at random and interpolate samples along the line in the latent space

∀x , x ′ ∈ 𝒳 2, α ∈ [0, 1], ξ(x , x ′, α) = g((1− α)f (x) + αf (x ′)).

Original space 𝒳

Latent space ℱ

x x ′

f (x)

f (x ′)

f

g

François Fleuret Deep learning / 7.2. Deep Autoencoders 20 / 26

Exploring the latent space

from [Fle22]
61/73



PCA interpolation (d = 32)
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Exploring the latent space: results

from [Fle22]
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Autoencoder interpolation (d = 8)
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Autoencoder interpolation (d = 32)
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from [Fle22]
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And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model qZ over the latent space ℱ , sample there, and map the
samples into the image space 𝒳 with g .

We can for instance use a Gaussian model with diagonal covariance matrix.

f (X ) ∼ 𝒩 (m̂, ∆̂)

where m̂ is a vector and ∆̂ a diagonal matrix, both estimated on training data.

Original space 𝒳

Latent space ℱ

g
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Sample the latent space

from [Fle22]
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Autoencoder sampling (d = 8)

Autoencoder sampling (d = 16)

Autoencoder sampling (d = 32)
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Results

from [Fle22]

70/73



These results are unsatisfying, because the density model used on the latent
space ℱ is too simple and inadequate.

Building a “good” model amounts to our original problem of modeling an
empirical distribution, although it may now be in a lower dimension space.
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Unsatisfying Results?

from [Fle22]
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Take Aways and Parting Thoughts

Transposed Convolutions and Upscaling

complement regular convolutions
either use transposed conv or conv+interpolate to upscale

Auto Encoders
popular architecture with various applications
latent space can be traversed and worked with
restoration of many corruptions

Time for some exercises!

Peter Steinbach CERN School of Computing
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