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Recap a convolution in 1D
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1D Convolutions
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Input

1 4 -1 0 2 -2 1 3 3 1

from [Fle22]

m



1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

w

Kernel

1 2 0 -1

from [Fle22]



1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

Output

Wowd from [Fle22]



1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

Output

Wowd from [Fle22]



1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

Output

Wowd from [Fle22]



1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

from [Fle22]



1D Convolutions

Convolution Tayer

Input

1 4 -1 0 2 -2 1 3 3 1

from [Fle22]



1D Convolutions
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1D Convolutions

Convolution Tayer
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Transposed Convolutions

In the deep-learning field, since it corresponds to transposing the weight matrix
of the equivalent fully-connected layer, it is called a transposed convolution.
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A convolution can be seen as a series of inner products, a transposed
convolution can be seen as a weighted sum of translated kernels.

from [Fle22]
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1D Transposed convolution layer

Input
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1D Transposed convolution layer
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Input
2 3 0 -1
w
1 2 -1
2 4 | 2
3 6 -3
+
Output
2 7
W+w-—-1

from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti




1D Transposed convolution layer
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1D Transposed convolution layer
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1D Transposed convolution layer
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1D Transposed convolution layer
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Pytorch

F.conv_transposeld implements the operation we just described. It takes as
input a batch of multi-channel samples, and produces a batch of multi-channel
samples.

We can compare on a simple 1d example the results of a standard and a
transposed convolution:

>>> x = torch.tensor([[[0., 0., 1., 0., 0., 0., 0.]111)
>>> k = torch.tensor([[[1., 2., 3.11])

>>> F.convld(x, k)

tensor([[[ 3., 2., 1., 0., 0.111

LAl I

>>> F.conv_transposeld(x, k)
tensor([[[ 0., oO0., 1., 2., 3., 0., 0., 0., 0.111

SR 1| ) |

from [Fle22]
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stride, padding, dilation in transposed convolition

Transposed convolutions also have a dilation parameter that behaves as for
convolution and expends the kernel size without increasing the number of
parameters by making it sparse.

They also have a stride and padding parameters, however, due to the relation
between convolutions and transposed convolutions:

map, for transposed convolutions these parameters are defined in the

f While for convolutions stride and padding are defined in the input
output map, and the latter modulates a cropping operation.

from [Fle22]




1 D: With Strides Transposed convolution layer (stride = 2)
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1 D: With Strides Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 | 4 | 2
s
3 6 -3
+
Output
2 |4 |1 |6
(W=D tw from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti




1 D: With Strides Transposed convolution layer (stride = 2)
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1 D: With Strides Transposed convolution layer (stride = 2)
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1 D: With Strides Transposed convolution layer (stride = 2)

Input
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Output

(W=D tw from [Fle22]

Francois Fleuret Deep learning / 7.1. Transposed convoluti




Convolution and Transposed Convolition back-to-back

Francois Fleuret

The composition of a convolution and a transposed convolution of same
parameters keep the signal size [roughly] unchanged.

signal. Its composition with the corresponding transposed convolution

2 A convolution with a stride greater than one may ignore parts of the
generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size w and stride s composed with the
transposed convolution of same parameters maintains the signal size W, only if

dgeN, W=w+sgq.

Deep learning / 7.1. Transposed convoluti

from [Fle22]




Artefacts
It has been observed that transposed convolttions may create some
grid-structure artifacts, since generated pixels are not all covered similarly.

For instance with a 4 x 4 kernel and stride 3

from [Fle22]



Equivalent Operations: Transposed Conv or Conv+Interpolation

An alternative is to use an analytic up-scaling, implemented in the PyTorch
functional F.interpolate.

>>> x = torch.tensor ([[[[ 1., 2. 1,
scale_factor =

>>> F.interpolate(x,

tensor ([[[[1
[1
[1

[3.
[3.

.0000,
.0000,
.6667,
2.

3333,
0000,
0000,

>>> F.interpolate(x,

tensor ([[[[1.
[1.
[1.
[3.
[3.
[3.

, 1.

W w W=

El

1
1
1
2.
3
3

1
1
1
3.
3
3

[3.,4.111D
3,

mode = 'bilinear')
.0000, 1.3333, 1.6667, 2.0000, 2.0000],
.0000, 1.3333, 1.6667, 2.0000, 2.0000],
.6667, 2.0000, 2.3333, 2.6667, 2.6667],
3333, 2.6667, 3.0000, 3.3333, 3.3333],
.0000, 3.3333, 3.6667, 4.0000, 4.0000],
.0000, 3.3333, 3.6667, 4.0000, 4.0000]1111)
scale_factor = 3, mode = 'nearest')
L, 2.0, 2., 2.7,
, 2., 2., 2.7,
, 2., 2., 2.1,
, 4., 4., 4.7,
, 4., 4., 4.7,
, 4., 4., 4.111D)

from [Fle22]



autoencoders
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autoencoders: Goals

Many applications such as image synthesis, denoising,
super-resolution, speech synthesis, compression, etc. require to go
beyond classification and regression, and model explicitly a high
dimension signal.
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autoencoders: Goals

Many applications such as image synthesis, denoising,
super-resolution, speech synthesis, compression, etc. require to go
beyond classification and regression, and model explicitly a high
dimension signal.

This modeling consists of finding “meaningful degrees of
freedom” that describe the signal, and are of lesser dimension.

HELMHOLTZAI 35/73
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A complex signal
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A complex signal has hidden structure
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A latent space is simpler
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Can we find f that maps complexfto simple?
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represent complex data in a simpler way

Latent space &

Original space & from [Fle22]




And for f, can we find ¢ to invert that mapping?

ST

... . Latent space &

Original space & from [Fle22]




Reconstruct the complex signal

®e

Original space & from [Fle22]

m



autoencoders: Objectives

When dealing with real-world signals, the objective of
autoencoders involves the same theoretical and practical

issues as for classification or regression: defining the right
class of high-dimension models, and optimizing
them.
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autoencoders: Objectives

When dealing with real-world signals, the objective of
autoencoders involves the same theoretical and practical
issues as for classification or regression: defining the right
class of high-dimension models, and optimizing
them.

This motivates the use of deep architectures for signal
synthesis. This is called a generative model!

HELMHOLTZAI



autoencoders: Definition [BK88] [HZ93]

An autoencoder maps a space to itselt and 1s [CIOSG tO] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an
encoder f from the original space 2 to a latent space #, and a decoder g to
map back to 2 (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).

>
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autoencoders: Definition [BK88] [HZ93]

An autoencoder maps a space to itselt and 1s [CIOSG tO] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an
encoder f from the original space 2 to a latent space #, and a decoder g to
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autoencoders: Loss functions

Let g be the data distribution over 2. A good autoencoder could be
characterized with the quadratic loss

Ex~q[IX — g 0 ((X)|?] ~ 0.

from [Fle22]
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autoencoders: Loss functions

Let g be the data distribution over 2. A good autoencoder could be
characterized with the quadratic loss

ExqIX — g0 F(X)I?] ~o0.

Given two parametrized mappings f(-; wr) and g(-; wg), training consists of
minimizing an empirical estimate of that loss
1N
P . 2
W, Wg = argmin Z |xn — g (f (xn; we); wg)||* -

wr,wg n—=1

from [Fle22]
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autoencoders: Loss functions

Let g be the data distribution over 2. A good autoencoder could be
characterized with the quadratic loss

ExqIX — g0 F(X)I?] ~o0.

Given two parametrized mappings f(-; wr) and g(-; wg), training consists of
minimizing an empirical estimate of that loss

N
R 1
Ws, Wg = argmin m Z [Ixn — g(f (xn; wr); Wg)||2

wr,wg n—=1

A simple example of such an autoencoder would be with both f and g linear, in
which case the optimal solution is given by PCA. Better results can be achieved
with more sophisticated classes of mappings, in particular deep architectures.

from [Fle22]
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with a decoder composed of transposed convolutions or other interpolating
layers. E.g. for MNIST:

AutoEncoder (
(encoder) : Sequential (

)

)

(0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
RelLU (inplace)

Conv2d (32, 32, kernel_size=(5, 5), stride=(1, 1))
RelLU (inplace)

Conv2d (32, 32, kernel_size=(4, 4), stride=(2, 2))
ReLU (inplace)

Conv2d (32, 32, kernel_size=(3, 3), stride=(2, 2))
ReLU (inplace)

Conv2d (32, 8, kernel_size=(4, 4), stride=(1, 1))

(decoder) : Sequential (

)

(0):
(1):
(2):
(3):
(4):
(5):
(6):
7):
(8):

ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))
ReLU (inplace)

ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
ReLU (inplace)

ConvTranspose2d (32, 32, kernel_size=(4, 4), stride=(2, 2))
ReLU (inplace)

ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
ReLU (inplace)

ConvTranspose2d (32, 1, kernel_size=(5, 5), stride=(1, 1))

from [Fle22]

198 x 28 greyscale images of handwritten digits.

Francois Fleuret
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autoencoders Encoder

Tensor sizes / operations

1x28x28
. . 28
nn.Conv2d(1, 32, kernel_size=5, stride=1)
[[eJeJeJe eJeJeo[o eJo]ee]o]eJo]e eJe]efeJe[e[ T T T]
32x24x24 X 24
. . 24
nn.Conv2d (32, 32, kernel_size=5, stride=1)
[e[eJeJeJeJeJo]ee]o]oJo]e oo e oJefeJe[ T T ]
32x20x20 X 20
. . 20
nn.Conv2d (32, 32, kernel_size=4, stride=2)
[o] Tel Tef Tef T Tel Te Tef TeTTT7]
32X9x%x9 X9
9
nn.Conv2d (32, 32, kernel_size=3, stride=2) e
[o] Tel Tel TeT T
32x4x4 X 4
4
nn.Conv2d (32, 8, kernel_size=4, stride=1) “—>
CITT]
8x1x1 x1

from [Fle22]




autoencoders Decoder

Tensor sizes / operations

8x1x1
. . X1
nn.ConvTranspose2d(8, 32, kernel_size=4, stride=1) —
EITT]
32x4x4 4
. . X4
nn.ConvTranspose2d(32, 32, kernel_size=3, stride=2) -
[T Tel Tel TeT T
&>
32X9x%x9
. . X9
nn.ConvTranspose2d (32, 32, kernel_size=4, stride=2)
[T Tel Te[ Tof Tef TeT Te[ TeT [T TT1]
32x20x20 20
. . x 20
nn.ConvTranspose2d (32, 32, kernel_size=5, stride=1)
[eeJefefe[eJeJoTeJe e e e e]e]eJeJeJe[eT TTT]
32x24x24 24
. . X 24
nn.ConvTranspose2d (32, 1, kernel_size=5, stride=1)
[eeJefe[e[eJeJoJoJeJe e e e]e]o]oJoJeJeJeJeJe[e[ T T T ]
1x28x28 28 from [Fle22]




autoencoders in pytorch

Training is achieved with quadratic loss and Adam

model = AutoEncoder(nb_channels, embedding_dim)
optimizer = optim.Adam(model.parameters(), lr = 1le-3)

for epoch in range(args.nb_epochs):
for input in train_input.split(batch_size):
z = model.encode (input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

optimizer.zero_grad()

loss.backward()
optimizer.step()

from [Fle22]
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Exploring the latent space

To get an intuition of the latent representation, we can pick two samples x and
x’ at random and interpolate samples along the line in the latent space

Vx,x' € X2, a €]0,1], £(x,x",a) = g((1 — a)f(x) + af(x')).

Latent space #

Original space &
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Exploring the latent space

To get an intuition of the latent representation, we can pick two samples x and
x’ at random and interpolate samples along the line in the latent space

Vx,x' € X2, a €]0,1], £(x,x",a) = g((1 — a)f(x) + af(x')).
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Exploring the latent space: results

PCA interpolation (d = 32)
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. /fzréom [Fle22]
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Exploring the latent space: results

Autoencoder interpolation (d = 8)
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from [Fle22]
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Exploring the latent space: results

Autoencoder interpolation (d = 32)
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Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model gZ over the latent space %, sample there, and map the
samples into the image space 2" with g.

from [Fle22]
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Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model g% over the latent space &, sample there, and map the
samples into the image space 2" with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

F(X) ~ N (i1, A)

where 7 is a vector and A a diagonal matrix, both estimated on training data.

from [Fle22]
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Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model g% over the latent space &, sample there, and map the
samples into the image space 2" with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

F(X) ~ N (i1, A)

where 7 is a vector and A a diagonal matrix, both estimated on training data.
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Sample the latent space

And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model g% over the latent space &, sample there, and map the
samples into the image space 2" with g.

We can for instance use a Gaussian model with diagonal covariance matrix.
F(X) ~ N (i1, A)

where 7 is a vector and A a diagonal matrix, both estimated on training data.

© TN

Latent space &

Original space &

from [Fle22]
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Results @

Autoencoder sampling (d = 8)

Autoencoder sampling (d = 16)
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Unsatisfying Results?

These results are unsatisfying, because the density model used on the latent

space & is too simple and inadequate.

Building a “good” model amounts to our original problem of modeling an
empirical distribution, although it may now be in a lower dimension space.

from [Fle22]



Take Aways and Parting Thoughts

Transposed Convolutions and Upscaling

' complement regular convolutions

I either use transposed conv or conv+tinterpolate to upscale
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Take Aways and Parting Thoughts

Transposed Convolutions and Upscaling

' complement regular convolutions

I either use transposed conv or conv+tinterpolate to upscale

Auto Encoders

I popular architecture with various applications
I latent space can be traversed and worked with
I restoration of many corruptions

Time for some exercises!

Peter Steinbach | CERN School of Computing HELMHOLTZ 72/73




References |

[Fle22]  F. Fleuret. Deep Learning Course. 2022. URL: https://fleuret.org/dlc/.

[BK88] H. Bourland and Y. Kamp. “2Auto-Association by Multilayer Perceptrons and
Singular Value Decomposition, ¢ Biological Cybernetics, vol. 59". In: (1988).

HZ93]  G. E. Hinton and R. Zemel. “Autoencoders, minimum description length and
Helmholtz free energy”. In: Advances in neural information processing systems 6
(1993).

Peter Steinbach | CERN School of Computing HELMHOLTZAI 73/73



https://fleuret.org/dlc/

	More Convolutions
	autoencoders
	Summary
	References

