

ARISTOTLE UNIVERSITYOF THESSALONIKI

HHFramework - A common framework for HH analyses in the ATLAS experiment

CERN School of Computing 2024 Spyros Merianos o.b.o. HH→bbyy Analysis Team

Higgs Boson Pairs (HH)

Key priority for the ATLAS and CMS collaborations has been to better understand Higgs properties and couplings. **How does the Higgs boson couple to itself?**

$$\begin{aligned} \mathcal{J} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \mathcal{F} \mathcal{B} \mathcal{Y} + h.c. \\ &+ \mathcal{X}_i \mathcal{Y}_{ij} \mathcal{X}_j \mathcal{P} + h.c. \\ &+ |\mathcal{D}_{\mu} \mathcal{P}|^2 - V(\mathcal{P}) \end{aligned}$$

$$V(\phi^{\dagger}\phi) = \mu^{2} \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^{2}$$

$$\supset \lambda v^{2} H^{2} + \lambda v H^{3} + \frac{\lambda}{4} H^{4}$$

$$m_{H} = \sqrt{2 \lambda v^{2}}$$

$$v \approx 246 \text{ GeV}$$

$$\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{SM}}$$

HH production provides a direct probe of the Higgs boson self-coupling which is :

- closely related to the shape of the Higgs scalar field potential.
- crucial for understanding the mechanism of electroweak symmetry breaking.

		bb	ww	ττ	zz	ΥY
	bb	34%				
-	WW	25%	4.6%			
-	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
-	ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

But why do we need a common framework?

HH is an extremely rare process, **1000 times rarer than** producing a single Higgs boson!

No "golden" channel in HH. Need to combine multiple signature of Higgs boson decays to increase sensitivity!

The channels

	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

A shared framework will simplify the complexity of combinations!

HHFramework

For LHC Run 3, the **ATLAS DiHiggs group** decided the creation of a **common framework.** It utilizes :

- Simplifies and streamlines common steps of various analyses.
- Satisfies specific needs of each individual analysis.

Athena software : which manages almost all ATLAS production

- workflows:
- generation,
- event simulation, reconstruction
- and derivation production
 Million lines of code in
 C++, Python etc.

EasyJet framework :

- Object calibration
- Overlap removal
- Event skimming capabilities
- Systematics support
- Multiple working points per object

Is and can be used by non HH analyses.

- Provides access to data and Monte Carlo (MC) samples stored on the Grid.
- Allows execution of long and resource-intensive jobs on the Grid.

$HH \rightarrow bb\gamma\gamma \ example \ workflow$

$HH \rightarrow bb\gamma\gamma on$

Yaml files Analysis specific configurations: channels, object working points, # nhoton ID and isolation requirements Photon: triggers, CutList for cutflow ID: "Loose" # Loose, Tight Python Config files Iso: "NonIso" amount: 2 variables: ["pt0vermyy"] variables_int: ["isEMTight"] cfg = ComponentAccumulator() small_R_jet PhotonWPLabel = f'{flags.Analysis.Photon.ID}_{flags.Analysis.Photon.Iso}' USEFJVT: true cfg.merge PhotonSelectorAlgCfg(flags, containerInKey=photonkey, btag_wp: "GN2v01_FixedCutBEff_77" containerOutKey="bbyyAnalysisPhotons_%SYS%", btaq_extra_wps: minPt=22. * Units.GeV, amount: 4 loosePhotonWP=PhotonWPLabel, tightPhotonWPs=[f'{wp[0]}_{wp[1]}' for wp in variables_int_allJets: flags.Analysis.Photon.extra_wps])) ["truthLabel", "PassWP", "pcbt"] cfg.merge(JetSelectorAlgCfg(CutList : flags, PASS_TRIGGER containerInKey=smalljetkey, - TWO_LOOSE_PHOTONS Configuration of object containerOutKey="bbyyAnalysisJets_%SYS%", - PASS_TRIGGER_MATCHING PCBTDecorName="ftag_quantile_" + - TWO_TIGHTID_PHOTONS selectors + analysis algorithms. - TWO_TIGHTID_ISO_PHOTONS flags.Analysis.Small_R_jet.btag_extra_wps[0] - PASS_RELPT Employing of C++ algorithms minPt=25. * Units.GeV, - DIPHOTON_MASS pTsort=False, (athena + eaysjet) through - EXACTLY_ZERO_LEPTONS PCBTsort=True, - AT_LEAST_TW0_JETS python config blocks. bTagWPDecorName="", - LESS_THAN_SIX_CENTRAL_JETS - EXACTLY_TWO_B_JETS selectBjet=False))

$HH \rightarrow bb\gamma\gamma example$

- ✓ Through easyjet a simply structured **Root** file is produced.
- ✓ It contains all necessary variables & histograms to move on with the more specific calculations.

$HH \rightarrow bb\gamma\gamma example$

Data / MC agreement for Run 3 (years 2023+2024)

Root file

Post-

Processing

frameworks

Separate post-processing frameworks accommodating different analysis strategies.

They treat :

- ✓ Plotting
- ✓ MC weight renormalization
- ✓ Statistical analysis etc.

Advantages of a common HHFramework :

- Uses centrally managed algorithms from Athena, where the developments have been reviewd and include the latest recommendations.
- Speeds up the process of developing code up to ntuple production (much faster compared to each analysis team writing their own code).
- Easyjet makes it easy to access the grid, making it straightforward to handle large datasets and run heavy computational tasks.
- It plays a key role in bringing together different DiHiggs channels, making it easier to perform a combined search for this rare process.

Analysis package content

triggers, CutList for cutflow...

Louis D'eramo

HHFramework HHackathon - 06/02/2024