Superheating field in superconductors with nanostructured surfaces

Alex Gurevich

Old Dominion University, Norfolk VA, USA

Supported by DOE DE-SC 100387-020

What are the SRF field limits and how could they be raised?

- The widely used GL theory of dc superheating field $H_s(T)$ is applicable near T_c but not at T << T_c.
- Only $H_s(0)$ = 0.84H_c at $\kappa = \lambda/\xi \gg 1$ in the clean limit (Galaiko 1966, Catelani and Sethna, 2008) and for arbitrary impurity concentration (**Lin and Gurevich, 2012)** have been calculated.
- \blacksquare How different can the dynamic superheating field $H_d(T,f)$ be from the static $H_s(T)$ at GHz frequencies? $H_d(T,f) \rightarrow \sqrt{2}H_s(T), \quad T \approx T_c$ (Sheikhzada and Gurevich, 2020)
- **E** Increase of H_s by surface nanostructuring: dirty layers, SIS or SNS multilayers for which H_s has only been calculated in the limit of $\kappa \to \infty$
- **•** We report GL numerical calculations of H_s at realistic finite κ for:
	- Dirty surface layers
	- SIS structures: dirty Nb-I-clean Nb, Nb₃Sn-I-Nb and others
- \blacksquare A significant boost of H_s can be achieved by optimizing SIS parameters.

Superfluid pairbreaking velocity

Everything has been said before, but since nobody listens we have to keep going back and beginning all over again.

Andre Gide

RF field induces supercurrent density carried by Cooper pairs

 $H(z) = H_p e^{-z/\lambda},$
 $J(z) = (H_p/\lambda)e^{-z/\lambda}$

Depairing current density at the surface: J_d **= env**_c **= 500 MA/cm²**

$$
J_d \simeq H_c/\lambda
$$

Thermodynamic critical field $H_c = 200$ mT, $\lambda = 40$ nm. In Nb cavities the dc depairing limit at 2 GHz and 2K has been achieved on "industrial scale"

Superfluid velocity v_{s} cannot exceed the critical value v_{c} above which the superconducting state breaks down. In the clean limit:

At $v = v_c \simeq 1 \text{km/s}$ for Nb the moving condensate of Cooper pairs becomes unstable but the density of Cooper pairs does not vanish.

Bardeen, Rev. Mod. Phys. 34, 667 (1962), deGennes, 1968

Ginzburg-Landau equations

$$
\xi^{2}\left(\nabla + \frac{2\pi i}{\phi_{0}}\vec{A}\right)^{2}\psi + \psi - \psi |\psi|^{2} = 0,
$$

$$
\nabla \times \nabla \times \vec{A} = \vec{J}_{s} = -\frac{|\psi|^{2}}{\lambda^{2}}\left(\frac{\phi_{0}}{2\pi}\nabla \theta + \vec{A}\right)
$$

▪ Phenomenological Ginzburg-Landau theory **(1950, Nobel prize 2003)**

- Coupled nonlinear PDEs for the pair wave function $\psi(\mathbf{r}) = e^{i\theta} \Delta/\Delta_0$ and magnetic vector-potential A(r).
- Coherence length ξ and magnetic penetration depth λ
- Thermodynamic critical field:

$$
B_c=\frac{\phi_0}{2^{3/2}\pi\lambda\xi}
$$

Boundary condition between a superconductor and vacuum $J_s = 0$:

$$
\left(\nabla + \frac{2\pi i}{\phi_0} \vec{A}\right) \psi \vec{n} = 0
$$

GL depairing current density

Uniform current-carrying state with $\psi = \psi_0 e^{i\phi}$ **, where q is proportional to the velocity of the Cooper pairs.** The GL equations give:

2

2

0

$$
\psi_0^2 = 1 - \xi^2 q^2
$$
, $J = \frac{\psi_0^2 \phi_0 q}{2 \pi \lambda^2 \mu_0}$

▪ Current density as a function of q:

$$
J = \frac{\phi_0 q}{2\pi\lambda^2 \mu_0} (1 - \xi^2 q^2) \longleftarrow \text{suppression}_{\text{of n}_\text{s} \text{ by current}}
$$

E Maximum J at $q = 1/\xi\sqrt{3}$ defines the GL depairing current density:

$$
J_d = \frac{\phi_0}{3\sqrt{3}\pi\mu_0\lambda^2\xi} \approx 0.54 \frac{H_c}{\lambda} \propto \left(1 - \frac{T}{T_c}\right)^{3/2}
$$
 At J = J_d the superfluid density
 n.(J d) = (2/3)n, does not vanish

 $n_c(J_d) = (2/3)n_s$ does not vanish

DC superheating field

- **•** Meissner state becomes unstable above the superheating field $H > H_s$ as the velocity of Cooper pairs exceed the critical velocity
- GL region, $T \approx T_c$: (Matricon and Saint-James, 1967, Chapman 1995)
	- $B_s \approx 1.2 B_c$, $\kappa \approx 1$, $B_s \approx 0.745 B_c$, $\kappa \gg 1$
	- B_s decreases as the GL parameter $κ = λ/ξ$ increases and the material gets dirtier.

at κ >> 1 in the clean limit **(Galaiko 1966, Catelani and Sethna, 2008)**

 \blacksquare No theory of $H_s(T)$ at low T and

 $H(x)$ H_{0} 0 λ х

Effect of
$$
\kappa = \lambda/\xi
$$
 on H_s

Nonlocal EM response

Large $\kappa = \lambda/\xi$: Cooper pair reaches the critical velocity at the surface, where $J(0) \simeq H_s/\lambda \to J_d$. This yields the minimum superheating field at $\kappa \gg 1$:

$$
H_s = (\sqrt{5}/3)H_c = 0.745H_c
$$

 $\kappa \sim 1$: Center of mass of Cooper pair reaches the critical velocity at J(0) > j_d at higher H at the surface. As a result, $H_s(\kappa)$ Increases as κ decreases.

Spinning Cooper pair \rightarrow vortices.

Vortices protect superconductivity at H > H^s

At H \lt H_s screening currents are not strong enough to break the Meissner state at $J(0) < J_d$

At $H > H_s$ vortices reduce the current density at the surface allowing SC at higher fields

Counterflow of vortex currents against the Meissner current reduces $J(0)$ at the surface below J_d allowing SC to survive up to high fields H_{c2} at which the vortex cores overlap

- **The SRF breakdown is limited by H_s but not H_{c2}**
- Vortices penetrate with supersonic velocities $v_d \sim 10-20\, {\rm km/s}$ in $t_d \sim \xi/v_d \sim 4\cdot 10^{-12}\, s \ll 10^{-9}\, s$ **Embon et al Nat. Commun. 8, 85 (2017); Dobrovolskiy et al, Nat. Commun. 11, 3291 (2020)**
- **•** Delay with penetration of vortices at $H > H_s$ does not increase the SRF field limit but destroys SC

Hs for nanostructured surfaces in the limit of

SIS London model

Enhancement of Hs by current counterflow induced in the overlaayer

SIS, dirty limit, Usadel eqs

Kubo, SUST 34, 045006 (2021) Ngampruetikorn and Sauls,

Dirty surface layer

Inhomogeneous impurity scattering rate at the surface

$$
\gamma(x)=\gamma_0 e^{-x/\zeta}
$$

Phys. Rev. Res. 1, 012015 (2019)

Gurevich, APL 88, 012511 (2006); AIP Adv. 5. 117112 (2015) **Kubo, Iwashita, Saeki, APL 104, 045006 (2014)**

Instability of Meissner screening at H = H_s at finite κ

Christiansen, Solid Stat. Comm, 7, 727 (1969); Chapman SIAM J. Appl. Math , 55, 1233 (1995); Transtrum et al, PRB 83, 094505 (2011), Liarte et al, SUST 30, 033002 (2017)

GL results for $\kappa \gg 1$

$$
H_s = H_c \left(\frac{\sqrt{5}}{3} + \frac{0.545}{\sqrt{\kappa}} \right)
$$

Period along the surface

 $l_{\parallel} \simeq \frac{6.6 \lambda}{\kappa^{3/4}}$

Decay length perpendicular to the surface

Gurevich, TFSRF, Orsay, Sept. 16-20, 2024 **10 for nanostructured surfaces (SIS etc)? How can the instability lengths affect Hs**

Dirty layer at the surface

$$
(x) = \frac{\lambda^2(x)}{\lambda_{\infty}^2} = \frac{\xi_{\infty}^2}{\xi^2(x)}
$$

$$
= 1 - \alpha \exp(-x/l_d)
$$

Slowly ramping magnetic field:

$$
\dot{h}_0 = \dot{H}_0 / \sqrt{2} H_c \ll 1
$$

Gurevich, TFSRF, Orsay, Sept. 16-20, 2024 11 12

Detecting superheating field

Order Parameter (f)

Dirty surface layer, results

Maximum in H_s(I_d) results from current counterflow induced in the dirty surface layer with larger by the cleaner bulk with smaller λ_{∞} similar to that in SIS multilayers. Reduced Hs at larger Id is due to larger GL parameter of the dirty layer, $\kappa_0 = \kappa_\infty/(1-\alpha)$

SIS with the same materials

Dip in $H_s(d)$ at small d results from suppression of vortex perturbations by I layer over $l_{\perp}\sim\sqrt{\xi}\lambda$ perpendicular to the surface

Red dashed line shows H_s (d) calculated in the London model

H^s of SIS in the London model

$$
H_s(d) = \left[\cosh(d/\lambda_1) + (\lambda_2/\lambda_1)\sinh(d/\lambda_1)\right]H_{s2}, \qquad d < d_m
$$

$$
H_s(d) = \left[\frac{\lambda_1 + \lambda_2 \tanh(d/\lambda_1)}{\lambda_1 \tanh(d/\lambda_1) + \lambda_2}\right]H_{s1}, \qquad d > d_m
$$

Cusp-like maximum Hs caused by the current counterflow effect is at the optimum overlayer thickness:

$$
d_m = \lambda_1 \left[\frac{\lambda_1}{\lambda_1 + \lambda_2} \left(\frac{H_{s1}}{H_{s2}} + \sqrt{\frac{H_{s1}^2}{H_{s2}^2} + 1 - \frac{\lambda_2^2}{\lambda_1^2}} \right) \right]
$$

Here H_{s1} and H_{s2} are the superheating fields for the bulk and overlayer materials

High-Tc overlayer in SIS

- **.** Thin Nb3Sn overlayer more than doubles the dc superheating field
- **EXEC** London model works surprisingly well
- **I** linterlayer is necessary to prevent avalanche penetration of vortices

Nonequilibrium SRF

Kramer and Watts-Tobin, PRL, 40. 1041 (1978) Watts-Tobin, Krahenbuhl and Kramer, JLTP 42, 459 (1980)

$$
\gamma=2\Delta_0\tau_E/\hbar
$$

Relaxation time of SC condensate:

$$
\tau_{\Delta} = \frac{\pi \hbar}{8k_B(T_c - T)}
$$

Relaxation time of quasiparticles due to inelastic electron-phonon collisions:

$$
\tau_E \approx \frac{\hbar}{\zeta k_B T} \left(\frac{c_s}{v_F}\right)^2 \! \left(\frac{T_F}{T}\right)^2
$$

Numerical simulations of equations of nonequilibrium superconductivity

- 1. Kinetic equations for quasiparticles and dynamic eqs for SC condensate
- Time-dependent GL equations for a gapped dirty superconductor

$$
\frac{\tau_{\Delta}}{\sqrt{1+\gamma^2|\psi|^2}} \left(\frac{\partial}{\partial t} + \frac{\gamma^2}{2}\frac{\partial |\psi|^2}{\partial t}\right)\psi = \xi^2 \left(\nabla + \frac{2\pi i \mathbf{A}}{\phi_0}\right)^2 \psi + (1 - |\psi|^2)\psi
$$

$$
\nabla \times \nabla \times \mathbf{A} = -\frac{1}{\lambda^2} \text{Im}\{\psi^* \left(\frac{\phi_0}{2\pi} \nabla + i\mathbf{A}\right)\psi\} - \mu_0 \sigma_n \frac{\partial \mathbf{A}}{\partial t}
$$

Relaxation time constant of quasiparticles can be much larger than the RF period

For Nb at 7K, we have:

$$
\tau_{\Delta} \approx 1.4 \times 10^{-12} s \ll 1/f \sim 10^{-9} s \quad \tau_E \approx 5 \times 10^{-10} s \simeq 1/f
$$

- **Nearly instantaneous reaction of SC condensate to RF field.**
- Much slower relaxation of quasiparticles, which slows down greatly as T decreases

Dynamic SRF breakdown

• SC breakdown field H_d (T,f) increases with ω up to the limit:

 $H_d(T,\omega) \to \sqrt{2}H_s(T),$ $\omega \tau_E \gg 1$

• SC breakdown caused by the time averaged squared RF field

 $\langle H_a^2 \sin^2 \omega t \rangle = H_a^2/2$

Dynamic superheating field

High temperatures: enhancement of H_d due to slow qp relaxation:

$$
H_d(T,\omega) \to H_s(T). \qquad \omega \tau_E \ll 1,
$$

\n
$$
H_d(T,\omega) \to \sqrt{2}H_s(T). \qquad \omega \tau_E \gg 1,
$$

\n
$$
H_s(T) = \left(\frac{\sqrt{5}}{3} + \frac{0.545}{\kappa}\right)H_c(T).
$$

Low temperatures: T < 0.5Tc: the relaxation time $\tau_E(T)$ increases greatly but the density of quasiparticles decreases exponentially in the dirty limit. No effect of quasiparticles on SC breakdown if $l \lesssim 6 \xi_0$

 $n_c(T) \propto \exp(-\epsilon_q/k_B T), \qquad H = H_s$ $H_d(\omega,T) \to H_s(T), \qquad \hbar \omega \ll \Delta_0$

In the clean limit $l\gtrsim 6\xi_0$ the quasiparticle gap $\epsilon_g(H)$ vanishes at H < H_s, so the dynamic superheating field may be enhanced by slow relaxation of quasiparticles **Sheikhzada and Gurevich, PRB 102, 104507 (2020)**

Lin and Gurevich, PRB 85, 054513 (2012)

Conclusions

- GL calculations of H_s for surface dirty layer and SIS structures were performed for arbitrary GL parameter.
- In all cases we observed a maximum in H_s at optimal thickness for which H_s exceeds the superheating fields of both the overlayer and the bulk materials
- Our GL results for H_s(d) at finite κ are qualitatively consistent with previous calculations in the London model
- At GHz frequencies the dynamic superheating field in the dirty limit is close to the static H_s but in the clean limit the relation between H_d and H_s has not been investigated