

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Comenius University Bratislava

František Herman

Slovak Academic and Scientific Programme

Local Limit Disorder Characteristics of Superconducting Radio Frequency Cavities II.

Resonant Frequency Shift in the Vicinity of T_c *and Quality within the Dynes Superconductor Theory Approach*

 R

P.

arXiv:2409.04203

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Comenius University Bratislava

Students/Collaborators Collaborator Administrative Support

Lucia Gelenekyová Marcel Polák Anastasiya Lebedeva Richard Hlubina Rebeka Laučíková Katarína Matejčíková

Matúš Hladký

Slovak Academic and Scientific Programme

Collaborator

Richard Hlubina

 R

P.

Motivation: Conclusions from TTCM-Fermilab

D. Bafia et al., arXiv:2103.10601v2

arXiv:2409.04203

$$
\hat{G}(\mathbf{k}, \omega) = \frac{1}{2} \delta \ln \left[\varepsilon_{\mathbf{k}}^2 - \varepsilon(\omega)^2 \right],
$$
\n
$$
\delta = \tau_0 \partial_{\omega} - \tau_1 \partial_{\Delta} - \tau_3 \partial_{\varepsilon}
$$
\nand temperature

\n
$$
\varepsilon(\omega) = \sqrt{\omega + (\Gamma)^2 - (\Delta^2 + (\Gamma_s)}.
$$
\nenergy scales.

Phys. Rev. B 96, 014509

Maiwald et al., PRB **102**, 165125 (2020)

Dynes Superconductor

- Internally consistent extension of the BCS superconductor including (simultaneously present) pairbreaking and pair-conserving scattering processes in general case.
- Capable to describe electromagnetic and thermodynamic response.
- Applicable at low (density of states) and also higher (coherence peak) temperatures.
- Applicable at high disorder (MoC superconductorinsulator transition) and low disorder (Nb-SRF motivated)
- Mathematical formulation using Green function method:

Electromagnetic properties and optical conductivity

• Green function parametrisation:

$$
\Delta(\omega) = \overline{\Delta} / \left(1 + \frac{i\Gamma}{\omega} \right), \ Z(\omega) = \left(1 + \frac{i\Gamma}{\omega} \right) \left(1 + \frac{i\Gamma_s}{\Omega(\omega)} \right)
$$

$$
\Omega(\omega) = \sqrt{(\omega + i\Gamma)^2 - \overline{\Delta}^2} \text{ and } \overline{\Delta} = \overline{\Delta}(T)
$$

Electromagnetic properties and optical conductivity, formulation Dynes Superconductor

• Green function parametrisation:

$$
n(\omega) = n_1(\omega) + in_2(\omega) = \frac{\omega}{\sqrt{\omega^2 - \Delta^2(\omega)}} = \frac{\omega + i\Gamma}{\Omega(\omega)}
$$

$$
p(\omega) = p_1(\omega) + ip_2(\omega) = \frac{\Delta(\omega)}{\sqrt{\omega^2 - \Delta^2(\omega)}} = \frac{\overline{\Delta}}{\Omega(\omega)},
$$

$$
\epsilon(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega) = \overline{\Omega(\omega)}\sqrt{\omega^2 - \Delta^2(\omega)}
$$

$$
= \Omega(\omega) + i\Gamma_s.
$$

• Resulting formulation

$$
\sigma_s(\omega) = \frac{iD_0}{\omega} \int_{-\infty}^{\infty} d\nu \tanh\left(\frac{\nu}{2T}\right) H(\nu + \omega, \nu).
$$

 $D_0 = ne^2/m$ is the normal-state Drude weight and

$$
H_1(x, y) = \frac{1 + n(x)n^*(y) + p(x)p^*(y)}{2\left[\epsilon^*(y) - \epsilon(x)\right]},
$$

\n
$$
H_2(x, y) = \frac{1 - n(x)n(y) - p(x)p(y)}{2\left[\epsilon(y) + \epsilon(x)\right]},
$$

\n
$$
H(x, y) = H_1(x, y) + H_2(x, y)
$$

Dynes Superconductor

Implications towards the superconductive cavities: Coherence peak and Imaginary part of DC Conductivity

FIG. 9. Real and imaginary parts of the conductivities of the two samples from Fig. 4 in [13] (symbols), together with their fits by the theory of Dynes superconductors with the strongcoupling corrections described for both samples by $x = 1.145$ (lines).

FIG. 6. Temperature dependence of the imaginary part of the microwave conductivity $\sigma_2(T)/\sigma_2(0)$ for several choices of γ and γ_s . Note that when γ_s decreases and γ increases, the curves are pushed slightly downwards with respect to Eq. (14) which is shown by the blue line.

D. Bafia et al., ArXiv:2106.10601 (2021)

FIG. 7. Coefficient A describing the T-dependence of the imaginary part of the microwave conductivity close to T_c , $\sigma_2(T)/\sigma_2(0) = A(1 - T/T_c)$, plotted as a function of γ_s for several values of γ and x. Note that A depends only very weakly on γ in the limit of small pair breaking.

Phys. Rev. B 104, 094519

Surface Impedance (*Z*) *& microwave conductivity* (*σ*)

$$
\frac{Z_s}{Z_n} = \frac{R_s + iX_s}{R_n + iX_n} = \left(\frac{\sigma_1 - i\sigma_2}{\sigma_n}\right)^k
$$

$$
Z_s = |Z_n| \left(\frac{|\sigma_s|}{|\sigma_n|}\right)^k e^{i(\alpha_n - k\delta\varphi)}
$$

 $R_{s} = |Z_{n}|$ $\overline{}$ $|\sigma_{\rm s}|$ $|\sigma_n|$ *k* $\cos(\alpha_n - k\delta\varphi)$ *X_s* • Simple formulation of superconducting state properties:

$$
X_{s} = |Z_{n}| \left(\frac{|\sigma_{s}|}{|\sigma_{n}|}\right)^{k} \sin\left(\alpha_{n} - k\delta\varphi\right)
$$

• Normal state parametrization for *ωτ* → 0.

• More convenient form:

• *R* - surface resistance, *X* - surface reactance

Frequency Shift - different regimes

• Higher values of scattering rates reduce mean free path, reduce the T_c and deepen the dip.

 $\sigma'_{s}(T)/\sigma_{0} = 1 + f_{1}(\Gamma, \Gamma_{s})\Theta, \quad \sigma''_{s}(T)/\sigma_{0} = f_{2}(\Gamma, \Gamma_{s}, \omega)\Theta.$ $\delta f(T \to T_c)/\tilde{f} = (f_1 - f_2) \Theta/2$

$$
\Gamma \ll T_c \sim \Delta_{00} \qquad 2) \quad \Gamma \gg T_c \text{ with arbitrary } \Gamma_s
$$

\n
$$
f_1(\Gamma, \Gamma_s) = \frac{\gamma_e \pi^2}{7\zeta(3)} \frac{\Gamma_s}{\Gamma_n} \frac{\Delta_{00}}{\Gamma} \qquad f_1 = -\frac{2\gamma_s + 3\gamma}{\gamma_s + \gamma} \frac{1}{\gamma^2} < 0
$$

\n
$$
f_2(\Gamma, \Gamma_s, \omega) = \frac{2\Gamma_n}{\omega} \frac{n_s(0)}{n} A \qquad \text{pure dip.}
$$

Moderately clean regime: ℏ*ω* < Γ ≪ Γ*^s* ≲ Δ⁰

ω

n

• Both signs are possible.

Dirty ideal limit: $\omega \ll \Gamma \ll \Delta(0) \approx \Delta_{00} \ll \Gamma_s$

Slope at T_{c0} *:*

 $\approx -0.1398 + 0.082$ *ω* Γ

$$
\delta f(T_w) = 0 \qquad \text{for} \quad T_w \neq T_{c0}
$$

$$
\frac{T_w}{T_{c0}} \approx 1 - \frac{7\zeta(3)}{4\gamma_e \pi^2} \frac{\omega}{\Delta_{00}} \left(\sqrt{3} - \frac{\omega}{4\Gamma}\right)
$$

$$
\frac{\delta f(T)}{\tilde{f}} \approx \frac{2\gamma_e \pi^2}{7\zeta(3)} \frac{\Delta_{00}}{\omega} \left(\frac{\omega}{4\Gamma} - 1\right) \left(1 - \frac{T}{T_c}\right)
$$

$$
\approx 4.18
$$

4Γ)

δf (*T*dip) ˜*f*

Width of the dip:

Dep*th of the dip*:

 $T_{dip} \approx T_w/3$

Data: M. Zarea *et al.*, Frontiers in Superconducting Materials, 3: 1–7 (2023), arXiv:2307.07905v1

15 a) 10 $\delta f(T)$ [kHz] 0.98

FIG. 8. Resonant frequency dependence of $\delta f(T)$ considering values of $f = \{0.65, 1.3, 2.6, 3.9\}$ GHz. Considered scattering rates are $\gamma = 0.026$ and $\gamma_s = 0.58$.

• No free parameters in comparison scenario. • Pair-breaking fixed by the reduced T_c . \bullet Frequency scaling

FIG. resonant frequency Considered parameters: 2.6 GHz, $\Delta_0 = 1.55 \,\text{meV}$ [1], pair-conserving scat- $=$ tering rate corresponding to fixed $X_n = 7.1 \text{ m}\Omega$ (fitted $X_n = 7.5 \text{ m}\Omega$ is $\gamma_s = 0.52$ ($\gamma_s = 0.58$), and resulting $\ell = 121 \,\mathrm{nm} \; (\ell = 108 \,\mathrm{nm}).$

D. Bafia et al., arXiv:2103.10601v2

Comparison & fitting the experimental dip

$$
\frac{Q_s(0)}{Q_n} = \sqrt{\frac{2}{\sigma_0}} \frac{\sigma_s''(0)^{3/2}}{\sigma_s'(0)} = \frac{4\sigma_0}{\sigma_s'(0)} \left(\frac{n_s(0)}{n} \frac{\Gamma + \Gamma_s}{\omega}\right)^{3/2}
$$

Quality at T = 0*K*

$$
\frac{\sigma'(0)}{\sigma_0} = \frac{\gamma^2}{1 + \gamma^2} \times \frac{\gamma_s + \gamma}{\gamma_s + \sqrt{1 + \gamma^2}}
$$

• Pair-breaking subgap induced residual resistance.

• Role of superfluid fraction.

- The different roles of pair-breaking and pairconserving scattering.
- Role of pair-conserving disorder changes.

Superfluid fraction

$$
n_s(0)/n = \begin{cases} \frac{1}{\gamma_s} \left[\arctan(1/\gamma) - \frac{1}{\sqrt{1-\gamma_s^2}} \left(\arccos \gamma_s + \arctan \frac{\sqrt{1-\gamma_s^2}}{\gamma} - \arctan \frac{\sqrt{1-\gamma_s^2}\sqrt{1+\gamma^2}}{\gamma \gamma_s} \right) \right], \text{ if } \gamma_s\\ \frac{1}{\gamma_s} \left[\arctan(1/\gamma) - \frac{1}{\sqrt{\gamma_s^2 - 1}} \ln \frac{\left(\gamma_s + \sqrt{\gamma_s^2 - 1}\right)\left(\gamma + \sqrt{\gamma_s^2 - 1}\right)}{\gamma \gamma_s + \sqrt{\gamma_s^2 - 1}\sqrt{\gamma^2 + 1}} \right], \text{ if } \gamma_s \ge 1 \end{cases}
$$

• Assuming $\gamma_s < 1$ and linear order of γ :

$$
\frac{n_s(0)}{n} = \frac{1}{\gamma_s} \left[\frac{\pi}{2} - \frac{\arccos \gamma_s}{\sqrt{1 - \gamma_s^2}} \right] - \frac{\gamma}{\gamma_s + 1}
$$

• Assuming $\gamma_s \ll 1$ and $\gamma \ll 1$:

$$
n_s(0)/n\approx 1-\gamma-\gamma_s\pi/4
$$

Frequency Shift Summary & Conclusions I.

• Despite omitting the inhomogeneity effects, DS framework provides qualitatively (and quantitatively)

• Addressing the moderately clean regime, we describe the frequency shift slope $\delta f'(\Theta) = \partial \delta f(\Theta) / \partial \Theta|_{\Theta=0}$ with the simple function of pair-conserving and pairbreaking scattering rates. $\delta f'(\Theta) = \partial \delta f(\Theta) / \partial \Theta\big|_{\Theta=0}$

- reasonable results with the same numerical complexity as the Mattis-Bardeen theory.
- Various frequency shift regimes (Foot, Bump, Dip & Bump and Dip) assuming low disorder can be systemically identified.

• Considering the complexity of the phenomena together with the relevant temperature scale and simplicity of our approach, we achieve compelling agreement with the experiment.

Quality Summary & Conclusions II.

• Analysis of the high quality plateaus at low temperature and low disorder. For details see: arXiv:2409.04203.

•Analysis of the quality factor at zero Kelvin Temperature shows different influence of pairbreaking and pair-conserving disorder.

Publications Related to the Dynes superconductivity

Slope of Hc2 close to Tc versus the size of the Cooper pairs: The role of disorder in Dynes superconductors,

- F. Herman and R. Hlubina,Phys. Rev. B **108**, 134518 (2023),
- F. Herman, Phys. Rev. B **106**, 224521 (2022), Advanced approach of superconducting gap function extraction from tunneling experiments,
- D. Kavický, F. Herman and R. Hlubina, Phys. Rev. B **105**, 214504 (2022), *Model-independent determination of the gap function of nearly localized superconductors,*
- F. Herman and R. Hlubina, Phys. Rev. B **104**, 094519 (2021), *Microwave response of superconductors that obey local electrodynamics*,
- F. Herman and R. Hlubina, Phys. Rev. B **97**, 014517 (2018), *Thermodynamic properties of the DS*,
- F. Herman and R. Hlubina, Phys. Rev. B **96**, 014509 (2017), *Electromagnetic properties of impure superconductors with pair-breaking processes*,
- F. Herman and R. Hlubina, Phys. Rev. B **95**, 094514 (2017), *Consistent two-lifetime model for spectral functions of superconductors*,
- F. Herman and R. Hlubina, Phys. Rev. B **94**, 144508 (2016), *Microscopic interpretation of the Dynes formula for the tunnelling density of states*

Open question

TABLE I. Table of individual regimes together with its considered scattering constants Γ and Γ_s in units of the angular resonant frequency $\hbar\omega$ (for convenience $\hbar = 1$, and $f = 1.3$ GHz). For each regime, we also add the parameter inequalities as well as calculated values of mean free path ℓ , normal state reactance X_n , and the scale \tilde{f} .

Role of the 18 nm layer of Al2O3, or oxides in general?

Mean free path *ℓ*?

Comparison of Approaches