Reducing the Thermal Effects during Coating of SRF Cavities: A Combined Numerical and Experimental Approach

Getnet Kacha Deyu *¹, Trupen Parikh², Marc Wenskat^{1,2}, Isabel González Díaz-Palacio^{1,3}, Robert H. Blick³, Robert Zierold³, Wolfgang Hillert¹

- 1. Institute of Experimental Physics, Universität Hamburg, Luruper Chaussee 149, Hamburg D-22761, Germany
- 2. Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg D-22607, Germany
- 3. Institute of Nanostructure and Solid State Physics & Center for Hybrid Nanostructures, Universität Hamburg, Germany

Deyu, Getnet Kacha, et al. Chemistry of Materials 36.6 (2024): 2846-2856. *getnet.kacha.deyu@desy.de

11th International Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity

15-20 September 2024, Université Paris-Saclay, France

Insulator layer for SIS coating of SRF cavities

□ SRF cavities approach thermodynamic limit of Nb

 $\hfill\square$ SIS to enhance E_{acc} and achieve lower RF losses

- □ Superconductor (S) layer:
 - provide magnetic screening
- □ Insulator (I) layer:
 - □ stabilize coating
 - prevent global vortex penetration
 - \Box candidates: Al₂O₃, AlN, Ta₂O₅, MgO...
 - need to have full coverage and uniform coating over the cavity volume

Atomic layer deposition (ALD)

Successful ALD-Al₂O₃ coating on cavities

Recipe optimization

1DE18, Q_o vs E_{acc} @ 2K

Preserve extraordinary cavity performance after coating

Wenskat, Marc, Deyu, Getnet Kacha, et al. Superconductor Science and Technology 36.1 (2022): 01501

Thermal effects in SRF cavities coating

- Deposition time for Al₂O₃ in cavity volume: ~3x longer than in small chamber
- □ PEALD: 60 nm of NbTiN/AIN deposition: ~5 days at 250°C*
- Time/temp. optimization can reduces parasitic temperature effects, crucial for maintaining cavity performance

To explore the possibility of achieving shorter process times (reduced thermal exposure) while maintaining film quality, ALD-Al₂O₃ process modeling on an SRF cavity is carried out using ANSYS Fluent

Atomic layer deposition - Al₂O₃

Working principles

- □ Atomic-scale precision
- □ Self limiting surface reactions
- □ Sub-nanometer thickness control
- □ A wide range of materials
- □ High conformality on complex, 3D structures

3D computational domain of ALD setup - thermal

Simulated pressure profile agrees with experiment

Thin film chamber

Only precursors distribution, no surface chemical reactions

- □ Peak pressures during TMA and H₂O pulsing and exposure phases
- Overestimated purging time; a short purge is sufficient to remove excess precursors

Precursors distribution - thin film chamber

- Effective precursors distribution within given pulse and exposure times
- **Overestimated purging time, shorter purging is enough**

Α

5e-5

0.0e+00

Precursors distribution - cavity volume

Precursors distribution - cavity volume

- □ Precursors effectively distributed and purged out within a given process time
- □ ~1 s of exposure time is enough for effective precursors distribution throughout the cavity

Surface chemistry simulation shows fast saturation

TMA pulse:

H₂O pulse:

×10⁻⁵

1.2

ΑΙ

 H_2O

□ $2AI(CH_3)_3$ (q)+3OH* (s)→3O*AI(CH_3)_2 (s)+3CH_4 (q)

 $3H_2O(q) + O^*AI(CH_3)_2(s) \rightarrow 3OH^*(s) + 3CH_4(q) + AI_2O_3(s)$

The pulse time for both precursors was set at 50 ms, with simulation running until saturation

TMA saturated at ~1 s and water at 750 ms

residual precursor concentrations required further purging to prevent unwanted deposition

Simulation observations for cavity geometry

□ Precursors pulse for 50 ms

□ TMA saturation in 1 s, H₂O in 750 ms, showing adequacy of brief exposure times

- □ Simulated Al₂O₃ layer thickness ~1.2 Å per cycle, consistent with standard ALD rates
- Short exposure and effective purging times reduce overall cycle time, ensuring uniform coating without compromising quality

Recipe Al ₂ O ₃ coating @ 120 °C – Cavity volume								
		ТМА		H ₂ O			Cycle time	
	Pulse /(ms)	Exposure / (s)	Purge /(s)	Pulse /(ms)	Exposure /(s)	Purge /(s)	/mins.	
Simulation	50	1	-	50	1	-	-	
Experiment *	500	60	120	500	60	120	6.02	

□ Experimental validation is needed to complement the simulation and ensure accurate, reliable findings

10

Experiment agree with surface chemistry simulation

Recipe-cavity volume								
	ТМА			H ₂ O			Cycle	Time /hrs.
	Pulse /(ms)	Exposure / (s)	Purge /(s)	Pulse /(ms)	Exposure /(s)	Purge /(s)		
R0*-	500	60	120	500	60	120	84	8.42
R1–	500	30	120	500	30	120	84	7.02
R2-	500	1	120	500	1	120	84	5.40
R3-	500	1	90	500	1	90	84	4.16
R4-	500	1	60	500	1	60	84	2.52
R5-	500	60	30	500	60	30	84	4.13
R6-	50	1	120	50	1	120	84	5.38
R7–	50	1	90	50	1	90	84	4.14
R8–	50	1	60	50	1	60	84	2.50

Film Thickness 100 R0 -----80 Film thickness (nm) R 60 R7 R8 40 20 2 8 9 3 5 6 7 1 Λ Sample position **Growth Rate** 3.0 Growth rate (GPC) Å 2.0 1.0 R0 R1 R2 R3 R4 R5 R6 R7 R8 S

Recipe

- □ Consistent and uniform Al₂O₃ thin-film deposition across the cavity volume
- □ Achieved predicted GPC of 1.2 Å with parameters suggested from simulation
- □ Significant reduction of up to 66.2% in overall process time

Conclusions

 \Box The study explored ALD of Al₂O₃ using both theoretical predictions and experimental verification

- □ A 3D computational domain was created using ANSYS Fluent software
- **TMA** and water were used as precursors with varying process parameters
- □ The precursors saturate at ~1 s, with a calculated GPC of 1.2 Å
- **Experimental verification confirmed uniform Al₂O₃ coverage and a GPC of 1.2 Å**
- □ The optimized recipe achieved up to 66.2% process time savings, reducing thermal impacts on the cavity
- The findings are transferable to modeling other important superconducting thin films, SIS structures, processes, and shapes of cavities

Next steps

□ Use this toolbox for faster optimization of the next milestone

- \rightarrow Simulation of ALD process for SIS structure on the cavity volume
- □ Face new challenges with new cavity coating boundary conditions*
 - □ New materials: NbTiN/AIN
 - \Box Other precursors: TBTDEN, TDMAT, TMA and H₂/N₂ radicals
 - □ Plasma-Enhanced ALD
 - □ New coating system and vacuum conditions

Give this could be a set of the set of the set in the set in

^{*} González Díaz-Palacio, Isabel, et al. Journal of Applied Physics 134.3 (2023).

Acknowledgment

C. Krill (Universität Ulm)

Bundesministerium für Bildung und Forschung

research grant 05K22GUD

Thank you!

GPC calculation

GPC of 1.2 Å, which aligned with typical ALD values

Recipe optimization – cavity volume

Dummy Cavity

 \Box Temp=120 °C, N₂ - 20 SCCM

Recipe-cavity volume								
	ТМА			H ₂ O			Cycle	Time /hrs.
	Pulse /(ms)	Exposure / (s)	Purge /(s)	Pulse /(ms)	Exposure /(s)	Purge /(s)		
R0* —	500	60	120	500	60	120	84	8.42
R1—	500	30	120	500	30	120	84	7.02
R2—	500	1	120	500	1	120	84	5.40
R3—	500	1	90	500	1	90	84	4.16
R4—	500	1	60	500	1	60	84	2.52
R5—	500	60	30	500	60	30	84	4.13
R6—	50	1	120	50	1	120	84	5.38
R7—	50	1	90	50	1	90	84	4.14
R8—	50	1	60	50	1	60	84	2.50

ALD process modeling in ANSYS fluent

 \Box Simulating ALD-Al₂O₃ in a thin film chamber and single-cell SRF cavity

Deyu, Getnet Kacha, et al. Chemistry of Materials 36.6 (2024): 2846-2856.

Simulation boundary conditions

Boundary	Condition	Туре	Value	Time		
	N ₂	Mass flow inlet	20 SCCM	Continuous		
Inlet	ТМА	Pressure inlet- P° at 25 °C	1257.23 Pa	50 ms pulse		
	H ₂ O	Pressure inlet- P° at 25 °C	3157.07 Pa	50 ms pulse		
	N ₂	Base pressure	80 Pa	Continuous		
	ТМА			Periodic behavior		
Outlet		Pressure outlet	Process dependent	Pulse -50ms OFF		
				Exposure-12 s OFF		
				Purge-40 s ON		
	H ₂ O			Pulse -50ms OFF		
				Exposure-12 s OFF		
				Purge-60 s ON		
Surface site density		-OH*	5/nm ²	Fixed		
Process Temp.		Chamber/cavity wall		Continuous		
		Inlet feed pipes	75 °C	Continuous		

Simulation flow chart

Precursors distribution-cavity volume

Chemisorption reactions of ALD Al2O3

$$\begin{aligned} \|-OH + Al(CH_{3})_{3} \rightarrow \|-O-Al(CH_{3})_{2} + CH_{4} & (1a) \\ \|-OH + \|-O-Al(CH_{3})_{2} \rightarrow (\|-O)_{2} - Al(CH_{3}) + CH_{4} & (1b) \\ \|-OH + (\|-O)_{2} - Al(CH_{3}) \rightarrow (\|-O)_{3} - Al + CH_{4} & (1c) \\ \|-O-Al(CH_{3})_{2} + H_{2}O \rightarrow \|-O-Al(CH_{3})OH + CH_{4} & (2a) \\ \|-O-Al(CH_{3})OH + H_{2}O \rightarrow \|-O-Al(OH)_{2} + CH_{4} & (2b) \\ \|-O-Al(CH_{3})OH + H_{2}O \rightarrow \|-O-Al(OH)_{2} + CH_{4} & (2b) \\ \|-O-Al(CH_{3}) + H_{2}O \rightarrow (\|-O)_{2} - Al(OH) + CH_{4} & (2c) \\ \end{aligned}$$

Limitations of simulation work

۹ 	Simulation		Actual ALD Process
•		Aspect	
	Fixed	Surface Site Densities	Involve varying site densities
	Constant	Temperature	May vary affecting reaction kinetics and film growth
	Does not account	Impurities and Contaminants	Presence of impurities can impact surface reactions and film quality
	Does not account	Precursor Quality Variability	Precursor purity and consistency can vary, affecting the outcome
	Does not consider	Surface Roughness	Influences precursor adsorption and film deposition uniformity
	Constant	Sticking Probability	Varies with surface conditions and temperature
	Does not consider	Long-Term Effects	Critical for predicting the durability and performance of the coating

These limitations highlight the need for experimental validation to complement the simulation results and ensure the accuracy and reliability of the findings.