Reducing the Thermal Effects during Coating of SRF Cavities: A Combined Numerical and Experimental Approach

Getnet Kacha Deyu *¹, Trupen Parikh², Marc Wenskat^{1,2}, Isabel González Díaz-Palacio^{1,3}, Robert H. Blick³, Robert Zierold³, Wolfgang Hillert¹

- *1. Institute of Experimental Physics, Universität Hamburg, Luruper Chaussee 149, Hamburg D-22761, Germany*
- *2. Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg D-22607, Germany*
- *3. Institute of Nanostructure and Solid State Physics & Center for Hybrid Nanostructures, Universität Hamburg*, Germany

Deyu, Getnet Kacha, et al. Chemistry of Materials 36.6 (2024): 2846-2856. *getnet.kacha.deyu@desy.de

11th International Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity

15-20 September 2024, Université Paris-Saclay, France

Insulator layer for SIS coating of SRF cavities

❑ SRF cavities approach thermodynamic limit of Nb

 \Box SIS to enhance E_{acc} and achieve lower RF losses

- ❑ Superconductor (S) layer:
	- ❑ provide magnetic screening
- ❑ Insulator (I) layer:
	- ❑ stabilize coating
	- ❑ prevent global vortex penetration
	- \square candidates: Al_2O_3 , AIN, Ta₂O₅, MgO...
	- ❑ need to have full coverage and uniform coating over the cavity volume

Atomic layer deposition (ALD)

Successful ALD-Al2O³ coating on cavities

Preserve extraordinary cavity performance after coating

Wenskat, Marc, Deyu, Getnet Kacha, et al. *Superconductor Science and Technology* 36.1 (2022): 01501 * González Díaz-Palacio, Isabel, et al. *Journal of Applied Physics* 134.3 (2023).

Recipe optimization Thermal effects in SRF cavities coating

- □ Deposition time for Al₂O₃ in cavity volume: \sim 3x longer than in small chamber
- \Box PEALD: 60 nm of NbTiN/AlN deposition: ~5 days at 250°C*
- ❑ Time/temp. optimization can reduces parasitic temperature effects, crucial for maintaining cavity performance

To explore the possibility of achieving shorter process times (reduced thermal exposure) while maintaining film quality, ALD-Al2O³ process modeling on an SRF cavity is carried out using ANSYS Fluent

Atomic layer deposition - $AI₂O₃$

Working principles

- ❑ Atomic-scale precision
- ❑ Self limiting surface reactions
- ❑ Sub-nanometer thickness control
- ❑ A wide range of materials
- ❑ High conformality on complex, 3D structures

3D computational domain of ALD setup - thermal

Simulated pressure profile agrees with experiment

Thin film chamber

❑ **Only precursors distribution, no surface chemical reactions**

- \Box Peak pressures during TMA and H₂O pulsing and exposure phases
- ❑ Overestimated purging time; **a short purge is sufficient to remove excess precursors**

Precursors distribution - thin film chamber

- ❑ Effective precursors distribution within given pulse and exposure times
- ❑ **Overestimated purging time, shorter purging is enough**

 $12.0s^A$

A

 $5e-5$

 $0.0e + 00$

H_{2O}

Precursors distribution - cavity volume

Precursors distribution - cavity volume

- ❑ Precursors effectively distributed and purged out within a given process time
- ❑ **~1 s of exposure time is enough for effective precursors distribution throughout the cavity**

Surface chemistry simulation shows fast saturation

 \times 10⁻⁵ \times 10⁻⁵ 1.2 1.5 _{1,0} concentration (kmol/m³s)
- ها صاحب المهام
- المساحب المستحدث
- المساحب المستحدث المستحدث
- المساحب المستحدث H₂O concentration (kmol/m³s) Al deposition rate (kg/m²s)
 $\frac{1}{2}$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Al deposition rate (kg/m2s) **Al H2O** 0.5 $\mathbf{0}$ $\mathbf 0$ Time 500 0.1 0.2 0.3 (a)
0.1 0.2 0.3 (a) 0.4 0.4 0.3 1 0.2 $^{0.3}$
Cavity length (m) 1000 1000 0.1 $\overline{0}$ $\bf{0}$

TMA pulse: H₂O pulse:

 \Box 2Al(CH₃)₃ (g)+3OH* (s)→3O*Al(CH₃)₂ (s)+3CH₄ (g) \Box 3H₂O (g)+O*Al(CH₃)₂ (s)→3OH* (s)+3CH₄ (g)+Al₂O₃ (s)

❑ The pulse time for both precursors was set at 50 ms, with simulation running until saturation

❑ **TMA saturated at ~1 s and water at 750 ms**

❑ residual precursor concentrations required further purging to prevent unwanted deposition

Simulation observations for cavity geometry

❑ Precursors pulse for 50 ms

 \Box TMA saturation in 1 s, H₂O in 750 ms, showing adequacy of brief exposure times

- ❑ **Simulated Al₂O₃ layer thickness ~1.2 Å per cycle**, consistent with standard ALD rates
- ❑ Short exposure and effective purging times reduce overall cycle time, ensuring uniform coating without compromising quality

❑ Experimental validation is needed to complement the simulation and ensure accurate, reliable findings

10

Experiment agree with surface chemistry simulation

Recipe

- \Box Consistent and uniform Al₂O₃ thin-film deposition across the cavity volume
- ❑ **Achieved predicted GPC of 1.2 Å with parameters suggested from simulation**
- ❑ Significant **reduction of up to 66.2% in overall process time**

Conclusions

❑ **The study explored ALD of Al2O³ using both theoretical predictions and experimental verification**

- ❑ **A 3D computational domain was created using ANSYS Fluent software**
- ❑ **TMA and water were used as precursors with varying process parameters**
- ❑ **The precursors saturate at ~1 s, with a calculated GPC of 1.2 Å**
- ❑ **Experimental verification confirmed uniform Al2O³ coverage and a GPC of 1.2 Å**
- ❑ **The optimized recipe achieved up to 66.2% process time savings, reducing thermal impacts on the cavity**
- ❑ **The findings are transferable to modeling other important superconducting thin films, SIS structures, processes, and shapes of cavities**

Next steps

❑ Use this toolbox for faster optimization of the next milestone

- \rightarrow Simulation of ALD process for SIS structure on the cavity volume
- ❑ Face new challenges with new cavity coating boundary conditions*
	- ❑ New materials: NbTiN/AlN
	- \Box Other precursors: TBTDEN, TDMAT, TMA and H_2/N_2 radicals
	- ❑ Plasma-Enhanced ALD
	- ❑ New coating system and vacuum conditions

* González Díaz-Palacio, Isabel, et al. *Journal of Applied Physics* 134.3 (2023).

Acknowledgment

Bundesministerium für Bildung und Forschung

C. Krill (Universität Ulm) **Research grant 05K22GUD**

Thank you!

GPC calculation

❑ GPC of 1.2 Å, which aligned with typical ALD values

Recipe optimization – cavity volume

Dummy Cavity

□ Temp=120 °C, N_2 – 20 SCCM

ALD process modeling in ANSYS fluent

□ Simulating ALD-Al₂O₃ in a thin film chamber and single-cell SRF cavity

Deyu, Getnet Kacha, et al. Chemistry of Materials 36.6 (2024): 2846-2856.

Simulation boundary conditions

Simulation flow chart

Precursors distribution-cavity volume

Chemisorption reactions of ALD Al2O3

$$
\|\text{-OH} + \text{Al}(\text{CH}_3)_3 \rightarrow \|\text{-O}-\text{Al}(\text{CH}_3)_2 + \text{CH}_4 \qquad (1a)
$$
\n
$$
\|\text{-OH} + \|\text{-O}-\text{Al}(\text{CH}_3)_2 \rightarrow (\|\text{-O})_2 - \text{Al}(\text{CH}_3) + \text{CH}_4 \qquad (1b)
$$
\n
$$
\|\text{-OH} + (\|\text{-O})_2 - \text{Al}(\text{CH}_3) \rightarrow (\|\text{-O})_3 - \text{Al} + \text{CH}_4 \qquad (1c)
$$
\n
$$
\|\text{-O}-\text{Al}(\text{CH}_3)_2 + \text{H}_2\text{O} \rightarrow \|\text{-O}-\text{Al}(\text{CH}_3)\text{OH} + \text{CH}_4 \qquad (2a)
$$
\n
$$
\|\text{-O}-\text{Al}(\text{CH}_3)\text{OH} + \text{H}_2\text{O} \rightarrow \|\text{-O}-\text{Al}(\text{OH})_2 + \text{CH}_4 \qquad (2b)
$$
\n
$$
(\|\text{-O})_2 - \text{Al}(\text{CH}_3) + \text{H}_2\text{O} \rightarrow (\|\text{-O})_2 - \text{Al}(\text{OH}) + \text{CH}_4 \qquad (2c)
$$
\n
$$
(\text{2a})
$$
\n
$$
\|\text{-O}-\text{Al}(\text{CH}_3) + \text{H}_2\text{O} \rightarrow (\|\text{-O})_2 - \text{Al}(\text{OH}) + \text{CH}_4 \qquad (2c)
$$
\n
$$
(\text{2a})
$$
\n
$$
\|\text{2b})
$$
\n
$$
\|\text{2c})
$$
\n
$$
\|\text{2d})
$$
\n
$$
\|\text{2e})
$$
\n
$$
\|\text{2f} + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O} \rightarrow \text{H}_2\text{O} \rightarrow \text{H}_2\text{O} \rightarrow \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}
$$

Limitations of simulation work

❑ These limitations highlight the need for experimental validation to complement the simulation results and ensure the accuracy and reliability of the findings.