

lon bombardment energy effect on microstructure and J_c of Nb/Cu thin films.

C. P. A. Carlos, G. Rosaz, S. Leith, M. Bonura, C. Senatore, S. Pfeiffer, A.-T. Perez-Fontenla, A. Moros

Context

Experimental apparatus

Jc trends

Microstructure

Context

Experimental apparatus

Jc trends

Microstructure

CERN strategy

What do we know?

- HiPIMS is a must (wrt DCMS)
 - DCMS is excluded from our investigations

CR11.1 4.5K

CR11.2 4.5K

▲ CR12.2 4.5K

1.5

specs CR1 4.5K

- Cavities have complex shapes
 - atoms impinging angle has been proven to be responsible part of the Q-slope phenomenon

CR11.1 2.5K

♦ CR11.2 2.5K

▲ CR12.2 2.5K

100

[10[°]]

a

10

C. Benvenuti et al, Production and test of 352 MHz Niobium Sputtered Reduced Beta cavities, 1997, SRF97D25

2

Fig.1 SEM images of Nb/Cu films cross-sections elaborated by DCMS at various impinging angles and substrate biases.

10.20 10.20

a

0.5

10.00

Eacc [MV/m]

2.5

12

10

CR31.3 4.5K

specs CR3 4.5K

---- CR31.4 4.5K

CERN strategy

What do we know?

- **HiPIMS is a must (wrt DCMS)**
 - DCMS is excluded from our investigations .

HiPIMS is useful ONLY IF the substrate is BIASED

- Densification .
 - lons' trajectory normal to the surface .
 - Impinging energy control ٠

CERN strategy

What do we know?

- HiPIMS is a must (wrt DCMS)
 - DCMS is excluded from our investigations .

HiPIMS is useful ONLY IF the substrate is BIASED

- Densification .
 - lons' trajectory normal to the surface .
 - Impinging energy control ٠

HOW IS THAT BIAS AFFECTING THE FILM'S PROPERTIES?

HiPIMS

-50V bias

OV bias

11th TFSRF Workshop - 2024

Outline

Context

Experimental apparatus

Jc trends

Microstructure

Coating

Samples:

Surface treatment: SUBU 5 Size 10x35x1 mm³

Sputtering

Process parameter	Value	Unit	
Average Power	1.2	kW	
Frequency	100	Hz	
Pulse length	200	μS	
Temperature	150	°C	
Thickness	1-6	μ m	
Base Pressure (after BO)	3.10 ⁻¹⁰	mbar	
Process gas	Kr	-	
Process pressure	2.3.10 ⁻³	mbar	
Bias Voltage	[-50125]	V	

Context

Experimental apparatus

Jc trends

Microstructure

Jc vs Film Thickness and Bias

Thicker layers

- \rightarrow lower J_c
- \rightarrow lower defect density

HiPIMS films

• Still orders of magnitude higher than bulk Nb

Jc vs Film Thickness and Bias

Thicker layers

- \rightarrow lower J_c
- \rightarrow lower defect density

HiPIMS films

• Still orders of magnitude higher than bulk Nb

Extrapolated Jc for 10 μ m thick films

Non linear bias voltage dependency

Can we

- 1. identify the defects responsible for the trend?
- 2. Explain the bias optimum?

Context

Experimental apparatus

Jc trends

Microstructure

 $J_{\rm c}$ does not correlate with roughness

- $J_{\rm c}$ does not correlate with roughness
- J_c thickness dependency cannot be correlated with grain growth kinetics

$J_{\rm c}$ vs film's thickness

- $J_{\rm c}$ does not correlate with roughness
- J_c thickness dependency cannot be correlated with grain growth kinetics

$J_{\rm c}$ vs Film Thickness and Bias

Grazing incidence XRD analysis

Surface defects density evaluation

Diffractogram Rietveld refinement

- crystallites size
- microstrain

$$\rho_D = 2\sqrt{3} \frac{\left\langle \varepsilon^2 \right\rangle^{1/2}}{D \times b}$$

$J_{\rm c}$ vs Film Thickness and Bias

GIXRD DO NOT «SEE» ALL THE DISLOCATIONS

Outline

Context

Experimental apparatus

Jc trends

Microstructure

Brice et al model further optimized/simplified by Ma et al

Surface = 1st monolayer Underneath = bulk

$$E(x_s) = \left(\sqrt{E} - \frac{1.7 + K_l}{2R_c} x_s \sqrt{E_c}\right)^2$$

lon's energy at depth x_s (here taken as plane inerspacing)

D.K. Brice, J.Y. Tsao, S.T. Picraux, Nucl. Instr. Meth. B 44 Ž1989. 68.

Ma *et al.* Sketching of preferred energy regime for ion beam assisted epitaxy Applied Surface Science 137 (1999) 184–190

Crystalline plane family {hkl}	Coordination number	$E_d^{(s)}$ (eV)	d^{hkl} (Å)
{110}	6	27	$a/\sqrt{2}$
$\{100\}$	4	18	a/2
$\{211\}$	5	22.5	$a/\sqrt{6}$
$\{310\}$	4	18	$a/\sqrt{10}$
{111}	4	18	$a/\sqrt{12}$
{321}	5	22.5	$a/\sqrt{14}$
$\{210\}$	4	18	$a/\sqrt{20}$

 $\Psi_d^{(s)}(E, E_d^{(s)}) = \frac{1.7}{1.7 + K_l} \left| E - E(x_s) - 4\left(\frac{E_d^{(s)}}{\gamma}\right)^{3/4} (E^{1/4} - E(x_s)^{1/4}) \right|$ Energy deposited within the surface per incident ion

Energy deposited within the bulk per incident ion

 $\Psi_d^{(b)}(E, E_d^{(b)}) = \frac{1.7}{1.7 + K_l} \left[E(x_s) - \frac{E_d^{(b)}}{\gamma} - 4\left(\frac{E_d^{(b)}}{\gamma}\right)^{3/4} \left(E(x_s)^{1/4} - \left(\frac{E_d^{(b)}}{\gamma}\right)^{1/4} \right) \right]$

Four regimes identified

No energy transfer to the lattice – full recoil No growth assistance provided

Four regimes identified

I

No energy transfer to the lattice – full recoil No growth assistance provided

Only the surface layers are impacted. Low densification Possibility of buried defects not annealed by

further bombardment (out of reach)

Four regimes identified

I

No energy transfer to the lattice – full recoil No growth assistance provided

Only the surface layers are impacted. Low densification Possibility of buried defects not annealed by

further bombardment (out of reach)

Both surface and bulk energy deposition

Four regimes identified

I

No energy transfer to the lattice – full recoil No growth assistance provided

II

Only the surface layers are impacted. Low densification Possibility of buried defects not annealed by

further bombardment (out of reach)

Both surface and bulk energy deposition

IV

More energy deposited within the bulk Buried defects Gas incorporation

Comparison to experimental data

 J_c vs energy seems correlated to the energy spread across {110} and {100} crystalline planes.

Optimum in Jc matches with the minimum energy spread across {110} and {100} crystalline planes.

Further investigations foreseen:

- EBSD
- Nano-indentation

And of course: RF testing of 1.3GHz cavities

- J_c is used to optimize the quality of Nb/Cu films in view of reducing field trapping and subsequent dissipation during RF operation
- Thickness dependency of Jc cannot be linked to neither roughness nor grain boundaries density (grain size)
- Dislocations appear as a good candidate to explain the Jc mitigation with layer thickening
- An optimum in J_c is found close to 80eV and appears to be attributed to the energy transferred to the various crystalline planes during the growth.
- Optimal point also confirmed by a separate study using 3rd harmonic RF test https://arxiv.org/abs/2305.07746
- More analysis are needed to support further the model

«God made the bulk; the surface was invented by the devil» W. Pauli

Stay motivated ;)

16.09.2024

11th TFSRF Workshop - 2024

Thank you

vsm-squid J_c

FIB-SEM XB 540 Milling / Cross-sections

711155

Gemin

SEM *∑*igma (*Zeiss*)

EBSD

