

Bi-Polar HiPIMS deposited Nb3Sn What we know so far – a practical overview

S. Leith, V. Giglia, G. Rosaz, C. P. A. Carlos, S, Pfeiffer, A. Moros, A.-T. Perez-Fontenla, L. Vega-Cid, K. Brunner, W. Venturini-Delsolaro, J. Bernardi, A. Steiger-Thirsfeld, J. Gruber, M. Himmerlich, V. Petit

Outline

- 1. Context
- 2. European overview
- 3. Experimental setup
- 4. Feasibility
- 5. Target Management
- 6. Some process parameters' effects
- 7. Macroscopic defects library
- 8. QPR samples

FCC needs 100's of bulk Nb cavities for booster operation

Currently foreseen to operate at 2K

Could it be operated at 4.5K? Could we switch to Cu substrates?

Nb₃Sn / Cu appears as the most promising alternative

European overview - Actors

A15/Cu

STFC Daresbury Laboratory

TU Darmstadt

INFN Legnaro

CERN Geneva

European overview - Techniques

STFC Daresbury Laboratory

HiPIMS

TU Darmstadt

Dual cathode DCMS

INFN Legnaro

DCMS, dipped target

CERN Geneva

Bipolar HiPIMS

STFC Daresbury Laboratory

Samples / QPR

TU Darmstadt

Samples

INFN Legnaro

Samples, QPRs ... soon cavities

CERN Geneva

Samples, QPRs, RADES, Magnetic flux lens discs

Our point of view:

Our point of view: HiPIMS is a MUST (as discussed yesterday)

Our point of view: HiPIMS is a MUST (as discussed yesterday)

However:

- Nb₃Sn forms at rather low energy level (~750°C) vs HiPIMS bias (10's eV)
- Biasing is prompt to damage the lattice (see yesterday talk)
- Bias is needed for smoothness, density control
- Heat treatment is required to form proper A15 phase AND to recover defects

Bi-Polar HiPIMS (Energy Pulse Systems)

- Two magnetrons 150mm diameter
- Working distance (100mm)
- Base pressure ~10⁻¹⁰ mbar after BO
- Target: alloyed Nb₃Sn
- Heater: resistive, home-made

Coating parameters:

- Gas: Kr
- *T_s*: 500 ... 750°C
- *P*: 7•10⁻⁴ ... 5·10⁻² mbar
- *PP:* 35 … 100 V
- *Post anneal:* 0 ... 72 hrs

Can we elaborate high quality Nb₃Sn films?

Can we reach 18.3K Tc? First good sign of longe range order within the material lattice

Can we elaborate high quality Nb₃Sn films?

Can we reach 18.3K Tc? First good sign of longe range order within the material lattice

DCMS

Table 1. Influence of the substrate on critical temperature of the Nb₃Sn films.

	Critical temperature (K)			
Process pressure	Copper substrate	Ceramic substrate		
$P = 1 \times 10^{-3} \text{ mbar}$ $P = 5 \times 10^{-2} \text{ mbar}$	14.7 K 15.5 K	17.5 K 17.4 K		

https://doi.org/10.1088/1361-6668/aaf61f

Feasibility - T_c

Can we elaborate high quality Nb₃Sn films?

Can we reach 18.3K Tc? First good sign of longe range order within the material lattice

DCMS

Table 1. Influence of the substrate on critical temperature of the Nb_3Sn films.

	Critical temperature (K)			
Process pressure	Copper substrate	Ceramic substrate		
$P = 1 \times 10^{-3} \text{ mbar}$	14.7 K	17.5 K		
$P = 5 \times 10^{-2} \mathrm{mbar}$	15.5 K	17.4 K		

https://doi.org/10.1088/1361-6668/aaf61f

HiPIMS

Feasibility - T_c

Can we elaborate high quality Nb₃Sn films?

Can we reach 18.3K Tc? First good sign of longe range order within the material lattice

DCMS

Table 1. Influence of the substrate on critical temperature of the Nb_3Sn films.

	Critical temperature (K)			
Process pressure	Copper substrate	Ceramic substrate		
$P = 1 \times 10^{-3} \text{ mbar}$ $P = 5 \times 10^{-2} \text{ mbar}$	14.7 K 15 5 K	17.5 K 17.4 K		

https://doi.org/10.1088/1361-6668/aaf61f

SUBSTRATE'S THERMAL EXPENSION COEFFICIENT DRIVES THE RESIDULA STRESS → LRO → Tc

HiPIMS

How problematic is Cu?

Interdiffusion \rightarrow NC spots at the RF surface Also promoting the A15 phase formation

EDS Layered Image 1

How problematic is Cu?

Interdiffusion \rightarrow NC spots at the RF surface Also promoting the A15 phase formation

How to block it?

Diffusion barrier layer (Ta, HEA ...) Ta: requires a very specific crystalline phase (α) HEA: promising, needs more investigations, amorphous even at high T

How problematic is Cu?

Interdiffusion \rightarrow NC spots at the RF surface Also promoting the A15 phase formation

How to block it?

Diffusion barrier layer (Ta, HEA ...) Ta: requires a very specific crystalline phase (α) HEA: promising, needs more investigations, amorphous even at high T

Then... the surface is absolutely free of Cu?

How problematic is Cu?

Interdiffusion \rightarrow NC spots at the RF surface Also promoting the A15 phase formation

How to block it?

Diffusion barrier layer (Ta, HEA ...) Ta: requires a very specific crystalline phase (α) HEA: promising, needs more investigations, amorphous even at high T

Then... the surface is absolutely free of Cu?

No

Surface contamination. Disappears after HT.

Also observed:

A careful setup cleaning reduces surface Cu contamination. Surface diffusion from samples A problematic already known with dramatic industrial consequences

For future applications and scale-up

How to manage this contamination?

Curative approach: post coating Cu wet etching : Ammonium persulfate

Cu at. %	Pre Rinse	Post Rinse		
Sample 1	3.9	0.6		
Sample 2	5.3	1.6		

Target management

CERN's choice:

alloyed target : reduce the needs down to 2 targets: 1 for DBL and 1 for Nb3Sn

Problematic:

Fragile Prompt to cracking Dust creation Impossibility to buy cylindrically shaped targets

Study on going to adress this specific issue:

Thermal cycles Power ramp-rate Max power Backing plate bonding strategy

Coating pressure:

- Smoother at lower pressure (less gas phase collisions)
- Composition: Sn content increases with P
- An optimal has to be found between composition and roughness
- Films look as well more crystalline at high P (XRD quantitative analysis to be performed)

≈ 26

5n Content (at. 9 57 57

22

20

18

1.0E-04

1.0E-03

1.0E-02

Positive Pulse:

- Sn very sensitive to re-sputtering
- Sn content decreases with positive pulse voltage
- Composition and density evolve on an opposite trend

Effect on the Tc

- Increase in pressure \rightarrow increase in Sn content \rightarrow increase in T_c
- Increase in PP → decrease in Sn content → decrease in T_c

Coating temperature

- For a given coating recipe
- Lower temperature \rightarrow lower adatoms mobility
 - Porous layer
 - Layer appears much less crystalline

Problematic: very time consuming to perform defect analysis (FIB-SEM, cross sections, TEM ...)

Solution: Establish a catalogue of visual defects that can be linked to microscopic feature in view of speeding process qualification \rightarrow avoid unnecessary investigations

Problematic: very time consuming to perform defect analysis (FIB-SEM, cross sections, TEM ...)

Solution: Establish a catalogue of visual defects that can be linked to microscopic feature in view of speeding process qualification \rightarrow avoid unnecessary investigations

SEM image: surface with defects

Problematic: very time consuming to perform defect analysis (FIB-SEM, cross sections, TEM ...)

Solution: Establish a catalogue of visual defects that can be linked to microscopic feature in view of speeding process qualification \rightarrow avoid unnecessary investigations

EDS area

SEM image: hillock

DBL failure

- Stress induced crack
- dust

Problematic: very time consuming to perform defect analysis (FIB-SEM, cross sections, TEM ...)

Solution: Establish a catalogue of visual defects that can be linked to microscopic feature in view of speeding process qualification \rightarrow avoid unnecessary investigations

Problematic: very time consuming to perform defect analysis (FIB-SEM, cross sections, TEM ...)

Solution: Establish a catalogue of visual defects that can be linked to microscopic feature in view of speeding process qualification \rightarrow avoid unnecessary investigations

Coating at low T and reacted after coating

SYSTEMATICALLY LEADS TO FILM CRACKING

This option is for the moment put aside as a potential process route

QPR samples tests – RF data

Technical remark: heating up a QPR to a suitable temperature is an actual challenge.

Right now: only home-made heater has shown satisfactory behavior.

QPR samples tests – RF data

Technical remark: heating up a QPR to a suitable temperature is an actual challenge.

Right now: only home-made heater has shown satisfactory behavior.

RADES– RF data

Technical remark: heating up a QPR to a suitable temperature is an actual challenge.

Right now: only home-made heater has shown satisfactory behavior.

	t	р	Pw	Т	Mair	n pulse	Positiv	e Pulse
	(min)	(mbar)	(W)	(°C)	t	ν	t	Δt
					(μs)	(kHz)	(μs)	(μs)
Та	40	1×10^{-3}	350	750	50	1	200	4
Nb ₃ Sı	n 75	7×10^{-4}	350	750	-	-	-	-

(a)

(b)

Fig. 6. Results of quality factor measurements with the cavity immersed in liquid helium. The resonance frequency of the cavities is $f = (8.8 \pm 0.1)$ GHz at 4.5 K.

J. Golm *et al.*, "Thin Film (High Temperature) Superconducting Radiofrequency Cavities for the Search of Axion Dark Matter," in *IEEE Transactions on Applied Superconductivity*, vol. 32, no.

⁻4, pp. 1-5, June 2022, Art no. 1500605, doi: 10.1109/TASC.2022.3147741.⁻

Fig. 3. Photographs of the (a) coating setup and (b) a cavity half in coating position.

17.09.2024

11th TFSRF Workshop - 2024

QPR samples tests – **RF** data **BE CAREFUL:**

High temperature during coating can lead to the mechanical deformation of the QPR surface \rightarrow bulging

Serious impact onto the RF surface resistance estimation

Full surface metrology is **MANDATORY** after RF test to feedback the actual profile to RF simulation.

Depending on how you mount the sample: surface can either collapse, bulge or even the Nb tube could buckle (horizontal position)

Regular surface re-machining might be a standard to apply

Point6

Point 2

Point1

QPR samples tests – Material analysis

Residual stress quantification by XRD analysis

Scale-up strategy at CERN

- 1. One have to confirm the competitiveness of Nb₃Sn/Cu wrt Nb/Cu
- 2. Continue with QPR testing and process optimization
- 3. Objects to be coated: last SRF CERN workshop consensus on moving on straight to 800MHz cavities. (potentialy compatible with 1.3GHz)
- 4. The cost of such a coating hardware will be > 500kCHF : one should target for success
- 5. Sub-components (target) shall be comissioned and validate prior full integration
- 6. New CERN SRF building to be «furnished» in 2029

Outlook

- Nb₃Sn/Cu is an attractive system to compete with Nb/Cu
- 800MHz performance appear promising
- Linear thermal dilatation coefficient difference between substrate and film remains an issue : look for another substrate?
- Cu interdiffusion can be controlled/mitigated. Does not appear yet as a showstopper.
- High temperature is a pre-requisite DURING coating
- Target fragility has to be handled for a proper scale-up: could be a showtopper
- RF tests on QPR are showing performance close to Nb/Cu: there is room for hope

