# **Research of Niobium Cavity Coating with Nb<sub>3</sub>Sn Film at IHEP**

#### Chao DONG Institute of High Energy Physics, CAS TFSRF2024, Sept 17



#### Introduction

- Setup and coating process
- Performance of Nb<sub>3</sub>Sn grown on Nb cavities
- Characterizations of Nb<sub>3</sub>Sn coated samples
- Summary and perspective

#### Introduction of our team



In addition to the personnel (11) mentioned above, there are more than 5 persons from companies (OTIC + HERT) involved.

# The Coating Furnace for Nb<sub>3</sub>Sn

Main Technical Specifications:

1. Type: vertical double vacuum furnace.

2.Effective Uniform Temperature Zone The diameter is not less than 300mm, with a height of 500mm.

The inner wall material of the high-temperature zone furnace is niobium.

3. Vacuum System
Ultimate vacuum: ≤ 5.0×10<sup>-5</sup> Pa (empty furnace, room temperature, fully degassed)
Working vacuum: ≤ 9.0×10<sup>-4</sup> Pa (1300°C, empty furnace, fully degassed)
Vacuum pumps: oil-free molecular pump unit.

4. Temperature Control System
Maximum furnace temperature: 1200°C
Maximum crucible temperature: 1300°C
Temperature uniformity: Better than ±4°C





#### A schematic of the furnace

### **Cleanroom and Furnace Temperature Calibration**



Class 10,00

| EFER               | Time  | Furnace (°C) |            |               | Crucible(°C) |            |               |
|--------------------|-------|--------------|------------|---------------|--------------|------------|---------------|
|                    | (min) | measured     | calibrated | $\triangle T$ | measured     | calibrated | $\triangle T$ |
|                    | 160   | 510          |            |               | 600          | 513.0      | 87            |
|                    | 221   | 609          | 567.3      | 41.7          | 701          | 616.3      | 84.7          |
|                    | 340   | 807          | 771.2      | 35.8          | 901          | 823.4      | 77.6          |
|                    | 400   | 905          | 870.3      | 34.7          | 1001         | 924.1      | 76.9          |
|                    | 462   | 1005         | 972.1      | 32.9          | 1100         | 1027.3     | 72.7          |
|                    | 521   | 1104         | 1072.8     | 31.2          | 1201         | 1131.3     | 69.7          |
| Cleanliness level: | 580   | 1202         | 1173.0     | 29            | 1300         | 1232.5     | 67.5          |
| Cloce 10.00        | 640   | 1203         | 1175.4     | 27.6          | 1320         | 1243.3     | 76.7          |



1. The actual furnace temperatures are approximately 30°C lower than the measured value;

2. The actual crucible temperature is 65-80°C lower than the measured value.

5

#### **Coating Process**



The top flange of the cavity was covered with niobium foil.

### **Coating Parameters of 1.3 GHz 1-cell Cavities**

| Coating Date+<br>Cavity No. | Degas<br>Temperature<br>& time | Nucleation<br>Temperature& time<br>Crucible/Furnace | Coating<br>Temperature& time<br>Crucible/Furnace |    | Annealing<br>Temperature& time<br>Crucible/Furnace | Sn (g)      | SnCl2 (g) |
|-----------------------------|--------------------------------|-----------------------------------------------------|--------------------------------------------------|----|----------------------------------------------------|-------------|-----------|
| 20240520<br>+ S27           | 150°C 17h                      | Max: 850/540°C 5h                                   | 1290 / 1130 °C                                   | 1h | None                                               | 0.66 + 0.34 | 0.38      |
| 20240527<br>+ S18           | <b>150℃ 17h</b>                | Max: 850/540°C 5h                                   | 1290 / 1130°C                                    | 2h | None                                               | 0.64 + 0.42 | 0.4       |
| 20240603<br>+ S7            | 150℃ 17h                       | Max: 850/540°C 5h                                   | 1290 / 1130°C                                    | 3h | None                                               | 0.65 + 0.42 | 0.41      |
| 20240611<br>+ S22           | 150℃ 17h                       | Max: 850/540°C 5h<br>valve is closed                | 1290 / 1130°C<br>valve is closed                 | 1h | None                                               | 0.67 + 0.43 | 0.4       |
| 20240620<br>+ S27           | <b>150℃ 17h</b>                | Max: 850/540°C 5h<br>valve is closed                | 1290 / 1130°C<br>valve is closed                 | 2h | None                                               | 0.68 + 0.38 | 0.5       |
| 20240627<br>+ S14           | 150℃ 17h                       | Max: 850/540°C 5h<br>valve is closed                | 1290 / 1130°C<br>valve is closed                 | 3h | None                                               | 0.66 + 0.34 | 0.49      |

\*The valve is open unless specifically stated otherwise.

### **Typical Coating Curves**



Large patchy regions

#### **Typical Coating Curves**



small patchy areas

### **Slow Cooling**



During the cooling process, the temperature difference between the upper and lower beamtubes (TI6318, TI6316) on the superconducting cavity is less than 0.02K.

#### Performance of Nb<sub>3</sub>Sn Grown on Nb Cavities



The gradient is almost the same whether the valve was opened or closed during nucleation and coating , but from the perspective of Q value, the coating effect is better when the valve was open.

The shorter the coating time with the valve closed, the better the vertical test results?

#### **Performance of Nb<sub>3</sub>Sn Grown on Nb Cavities**



- 1. The only EP cavity S18 is the best-performing overall.
- 2. Based on the surface morphology, cavities with more patchy regions did not perform worse in the end.

#### **Characterizations of Nb<sub>3</sub>Sn Coated Samples**

Characterizations of Nb<sub>3</sub>Sn coated samples typically involve the following aspects :

(1) Structure characterization : Rigaku SmartLa X-ray Diffractometer (XRD)

(2) Surface morphology: Hitachi SU5000/8100 Scanning Electron Microscope (SEM)

(3) Electromagnetic properties:

- R-T—Quantum Design Physical Property Measurement System (PPMS-9T)
- M-T/M-H—Quantum Design Magnetic Property Measurement System (MPMS-3)

(4) Composition characterization: Energy Dispersive X-ray Spectroscopy (EDS) and Wavelength Dispersive X-ray Spectroscopy (WDS).

(5) Film thickness measurement: Focused Ion Beam (FIB) + SEM.

#### Nb<sub>3</sub>Sn Coated Samples



The first type: samples that are coated together with cavities, suspended in the middle of the cavity, or placed on the central tray.



The second type: a sample cavity capable of accommodating 10 samples (upper and lower beamtubes: 2, upper and lower cells: 8).

#### **Structural Characterization**



Physica C: Superconductivity and its applications 600(2022)1354107

#### **Measurements** R-T/m-T



- Samples #2-#5 had a consistent T<sub>c</sub> value of about 18 K.
- Both XRD and R-T data confirmed the almost identical coating quality at different locations of the cavity.



sample #1, confirming the superconductivity of both Nb and Nb<sub>3</sub>Sn.

0.0

-0.2

#6

ZFC

25

FC

20

15

Only one transition occurred in ZFC for sample #6, which suggested the Nb sphere was well enclosed by the Nb<sub>3</sub>Sn layer, and the magnetic field was entirely excluded outside the Nb<sub>3</sub>Sn layer.

Physica C: Superconductivity and its applications 600(2022)1354107

# $B_{c1}$ in Nb<sub>3</sub>Sn/Nb

20

20

#6

#1



Magnetization curves at various temperatures for #1 and #6.

Temperature dependences of  $B_{c1}$  for #1 and #6.

#### Fitting formula:

- $\mu_0 H_{c1}(T) = \mu_0 H_{c1}(0) [1 (T/T_c)^2];$
- The  $B_{c1}(0)$  of #6 becomes 130 mT when only the data lower than 10 K is fitted. This is consistent with bulk Nb.
- The  $B_{c1}(0)$  of #6 is about 14 mT when only the data higher than 10 K is fitted, less than that of Nb<sub>3</sub>Sn.

Therefore, there is still much room for the improvement of the critical parameters of Nb<sub>3</sub>Sn coatings.

### **Coating Parameters of the Sample Cavity**

| Coating Date | Degas<br>Temperature<br>& time | Nucleation<br>Temperature& time<br>Crucible/Furnace | Coating<br>Temperature& time<br>Crucible/Furnace |    | Annealing<br>Temperature& time<br>Crucible/Furnace | Sn (g)    | SnCl2 (g) |
|--------------|--------------------------------|-----------------------------------------------------|--------------------------------------------------|----|----------------------------------------------------|-----------|-----------|
| 20240506     | 150°C 17h                      | Max: 850/540°C 5h                                   | 1290C / 1130                                     | 3h | 1170C / 1130 2h                                    | 0.6+0.33  | 0.32+0.2  |
| 20240516     | 150℃ 17h                       | Max: 850/540°C 5h                                   | 1290C / 1130                                     | 1h | None                                               | 0.6+0.36  | 0.32      |
| 20240523     | <b>150℃ 17h</b>                | Max: 850/540°C 5h                                   | 1290C / 1130                                     | 2h | None                                               | 0.61+0.4  | 0.4       |
| 20240530     | <b>150</b> ℃ <b>17h</b>        | Max: 850/540°C 5h                                   | 1290C / 1130                                     | 3h | None                                               | 0.65+0.42 | 0.41      |
| 20240606     | <b>150</b> ℃ <b>17h</b>        | Max: 850/540°C 5h<br>valve closed                   | 1290C / 1130<br>valve closed                     | 1h | None                                               | 0.65+0.42 | 0.41      |
| 20240617     | <b>150</b> ℃ <b>17h</b>        | Max: 850/540°C 5h<br>valve closed                   | 1290C / 1130<br>valve closed                     | 2h | None                                               | 0.65+0.44 | 0.4       |
| 20240624     | <b>150℃ 17h</b>                | Max: 850/540°C 5h<br>valve closed                   | 1290C / 1130<br>valve closed                     | 3h | None                                               | 0.65+0.41 | 0.53      |

\*The valve is open unless specifically stated otherwise.

### Sn content % by WDS



 1.Samples at different locations on the inner surface of the cavity: #1 #3 #6 #7;
 2. The sample suspended in the center of the cavity: #D;

3. The sample placed on the tray: #P.

| Date | #1   | #3   | #6   | #7   | avg. | Sn rich /poor | #P   | #D   |
|------|------|------|------|------|------|---------------|------|------|
| 0506 | 25.6 | 25.3 | 25.5 | 24.6 | 25.3 | Rich          |      |      |
| 0516 | 20.7 | 21.0 | 21.4 | 20.0 | 20.7 | Severely poor | 3.3  | 12.7 |
| 0523 | 22.6 | 22.5 | 21.7 | 22.5 | 22.3 | Severely poor | 24.6 | 24.9 |
| 0530 | 24.1 | 24.2 | 24.0 | 23.9 | 24.1 | Poor          |      | 25.8 |
| 0606 | 23.9 | 23.8 | 23.8 | 24.0 | 23.9 | Poor          |      | 24.5 |
| 0617 | 25.7 | 25.4 | 25.1 | 26.0 | 25.6 | Rich          |      | 25.5 |
| 0624 | 25.8 | 26.0 |      | 25.7 | 25.8 | Rich          |      | 26.3 |

The differences in Sn content between different positions on the inner surface are not significant. **Nonuniformity: main form Sn poor regions.** 

The Sn content results of the sample suspended in the center of the cavity cannot represent the actual values well.

#### Surface Morphology (SEM)





Regulus 10.0kV 8.0mm x10.0k SE(UL)

Max grain size: 3um









Grain sizes large than 10um only occurred on the samples suspended in the center of the cavity.

#### **Film Thickness Measurement**

![](_page_20_Figure_1.jpeg)

The uniformity of film thickness is strongly correlated with the flatness of the substrate.

Film thickness is directly proportional to the growth time of the thin film.

Next step: investigate the variations in film thickness at different positions.

#### **Technical Challenges**

#### Nonuniformity

(1) Variation in film thickness
 Smoother substrate
 Mechanical polishing + cold EP
 Thinner Nb<sub>3</sub>Sn coating film

![](_page_21_Picture_3.jpeg)

#### Mechanical polishing equipment

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_6.jpeg)

The inner surface of a large grain cavity before and after mechanical polishing.

(2) Anodize the niobium cavity:to improve the uniformity of tin nucleation.

![](_page_21_Figure_9.jpeg)

![](_page_21_Picture_10.jpeg)

#### **Summary and Perspective**

- In future, the coating process will be further optimized, in order to enhance  $Q_0$  and  $E_{acc}$  of Nb<sub>3</sub>Sn SRF cavities.
- Besides, the conduction cooling of Nb<sub>3</sub>Sn SRF cavities will be studied, too.

![](_page_22_Picture_3.jpeg)

![](_page_22_Figure_4.jpeg)

Currently, we have successfully tested a niobium cavity using conduction cooling with commercial cryocoolers.

# **Thank you for your attention!**