First Nb₃Sn coated CEBAF style quarter cryomodule

Anne-Marie Valente-Feliciano

On behalf of

U. Pudasaini, G. Ciovati, C. Reece, J. Fisher, M. Drury, M. McCougan, M. Weaks, R. Rimmer, T. Reilly, R. Geng and SRF Technical Staff.

G. Eremeev, S. Posen, B. Tennis

Outline

o Introduction

- Technique & coating facilities
- o Development & qualification of Nb₃Sn coated 5-cell cavities
- Nb₃Sn cryomodule development
- Results from cryomodule acceptance testing
- Next step
- o Lessons learned
- o Summary & outlook

Goal: develop a quarter cryomodule with Nb₃Sn-coated cavities with an average gradient of 10 MV/m per cavity.

In the framework of G. Eremeev's ECA : "Formation of Superconducting Nb₃Sn Phase for Superconducting Radio Frequency (SRF) Cavities "

2024 TFSRF Workshop

Vapor Diffusion – "The" current mainstream technique

- since 1970s (Siemens)
- so far 'THE' technique producing practical Nb₃Sn cavities

Vapor diffusion coating facilities around the world

Multi-Cell Coating at Jefferson Lab

- Process development based on witness samples coated with multi-cell cavities
 - 1.5 GHz 5-cell and 1.3 GHz 3-cell
- Sn source(s) and temperature profile optimization
- Q₀ and E_{max} suitable for accelerator applications

	Witness san	Witness sample in each run. Sn consumption (g)				
		1 st coating	2 nd Coating	3 rd Coating	5C75-RI-NbSn02 02	5C75-RI-NbSn02 02
	Primary	3.6	2.50	2.79	3.05	2.42
	Secondary 1	1.7	1.50	1.42	1.50	1.48
	Secondary 2		1.60	1.43	1.51	1.48
⇒	Total	5.3	5.60	5.64	6.06	5. 38
⇒	Setup	S1-T1	S2-T1	S3-T2	S2-T1	S3-T2
	5				Je	fferson Lab

Multi-cell Cavity Coating at Fermilab

- Coatings of multicell accelerator structures for various projects
- $E_{acc} > 15 \text{ MV/m}$, Q ~ $1 \times 10^{10} \text{ at } 4.4 \text{ K}$

E_{acc} [MV/m]

Jefferson Lab

2024 TFSRF Workshop

Qualification of Nb₃Sn-coated C75 5-cell cavities at JLab

Two five-cell Nb₃Sn-coated cavities qualified in 2019 with E_{max} of 12 and 14 MV/m
Degraded to below 5 and 7 MV/m during the vertical pair test

- Mechanical stress due to vertical pair assembly & hanging
- Both cavities required reprocessing and re-coating

G. Eremeev, U. Pudasaini, Tesla Collaboration Meeting 2022, Aomori Japan

2024 htpsffdvBrkshopmeev's Early Career Award at Jefferson Lab.

Re-Qualification of Nb₃Sn-coated Cavities

One cavity coated at JLab and another at Fermilab

✤ Both cavities reached >13MV/m with Q~10¹⁰ at 10MV/m

Pair subjected to disassembly due to a leak in a RF window

Re-Qualification of Nb₃Sn-coated Cavities

- Cavities were re-tested independently degraded one cavity
- Pair successfully assembled again
- Skipped vertical test of the pair to avoid mechanical degradation

Cryomodule Assembly

- Several assembly steps required modifications to avoid mechanical strain on the cavities.

Slow cooldown with temperature gradient ~ 0.3 K across the cryomodule.

QCM Preliminary Qualification Test Results

- Accelerating gradients close to vertical test at 4 K
- Frequency difference between two cavities ~150 kHz
- > 2nd cavity tuned to match the first one at 2 K– no degradation

Cavity	E _{max} at 4.4 K (MV/m)	E _{op} at 4.4 K (MV/m)	E _{max} at 2.1 K (MV/m)	E _{op} at 2.1 K (MV/m)
5C75-RI-NbSn01 (cavity #7)	13.3	12.6	13.2	12.4
5C75-RI-04 (cavity #8)	7.9	7.5	8.7	8.5

Cavity performance at 4.4 K. No degradation in the field but reduced quality factor compared to VTA test: cooldown and measurement technique effects?

Jefferson Lab

‡ Fermilab

First demonstration of >10 MeV Nb₃Sn cryomodule

Cryomodule performance performance at 2 K

5C75-RI-004 cavity tuned by ~ 180 KHz at 2 K to match the frequency of 5C75-RI-NbSn01 induced no degradation.

Eremeev, G., U. Pudasaini, A. Reilly, B. Tennis, G. Ciovati, J. Fischer, M. Drury et al. "First results from two Nb₃Sn cavities assembled in a CEBAF quarter Cryomodule." In Proc. 32nd Linear Accelerator Conference (LINAC'24) 2024 TFSRF Workshop

What's next?

Upgraded Injector Facility at Jefferson Lab

- Currently in the UITF for the installation

1

- Beam test planned in Dec 2024.
 - Stay Tuned.

Lessons Learned

Challenges in Deploying Nb₃Sn Cavities for Accelerators

Mechanical vulnerability due to material brittleness – Need for specific procedures

- Risks associated with handling & assembly
- Tuning sensitivity
- Bi-layer material

2024 TFSRF The mal current during the cooldown resulting in Q-degradation

□ First-ever \geq 10MV/m gradient achieved in Nb₃Sn cryomodule with multi-cell cavities

- Cryomodule progressing for the beam test in the UITF
- Material brittleness poses challenges in maintaining performance from fabrication to installation
- □ Successful exercise highlighting the potential of Nb₃Sn, but further efforts needed for reliable deployment of Nb3Sn based cavities in cryomodules

