

Cu-based Nb₃Sn QPR sample preparation via ETS bronze route

Ming Lu Institute of Modern Physics (IMP) Helmholtz-Zentrum Berlin (HZB) 2024-09-17

- **1.** Nb₃Sn And QPR background
- **2. Overall ETS bronze route progress**
- 3. Cu-based Nb₃Sn QPR sample preparation
- 4. Nb/Cu QPR sample baseline RF test
- 5. Future work and Summary

Nb₃Sn thin film superconducting cavity is the key technology for next-generation accelerator, and its engineering application will lead to a technological revolution in the field of SRF.

Courtesy of G. Ciovati, JLab

Nb₃Sn film on Cu cavity:

- ➤ Good thermal conductivity, better mechanical stability
- ➤ High performance@4.2 K, cooled by cryocooler

Diagram of the Tin Vapor Diffusion^[1]

[1] Posen, Sam. "Understanding And Overcoming Limitation Mechanisms In Nb3Sn Superconducting Rf Cavities." (2015).

The 11th Workshop on TFSRF2024, France

HZB Helmholtz

One achievable way : Nb₃Sn/Cu bronze route HZB Helmholtz Zentrum Berlin

1. The copper can facilitate the interdiffusion between Nb and Sn by $7\sim10$ magnitudes of orders. 2. The copper alloy will be excluded from the Nb₃Sn phase by itself.

[1] H. Müller and T. Schneider, "Heat treatment of Nb3Sn conductors," Cryogenics, vol. 48, pp. 323-330, 2008/07/01/2008.
[2] L Mei, Z Du, C Guo, & C Li. (2009). Thermodynamic optimization of the cu-sn and cu-nb-sn systems. Journal of Alloys & Compounds, 477(1-2), 104-117.

A powerful Tool: Quadrupole Resonator

Surface resistance

- $R_{\rm S}(\omega, B_{\rm RF}, T)$
- $R_{BCS} \leftrightarrow R_{res}$
- High resolution $R_{\rm S} \approx 1 \ {\rm n}\Omega \leftrightarrow Q_0 > 10^{11}$
- Cooling conditions
- Trapped flux

Penetration depth

- Penetration depth $\lambda(T)$
- Critical temperature T_c

RF quench field

• $B_{\rm vp, RF}(T, \omega)$

• *T_c*

Oliver Kugeler

HZB Helmholtz Zentrum Berlin

The bronze route work schedule at HZB

1. Nb₃Sn background

2. Overall ETS bronze route progress

- 3. Cu-based Nb₃Sn QPR samples preparation
- 4. Nb/Cu QPR sample baseline RF test
- 5. Future work and summary

Previous work: Bronze/Nb/Cu flat samples HZB Helmholtz Zentrum Berlin

Nb₃Sn/Cu sample preparations: Electrochemical and Thermal Synthesis (ETS) bronze route

- \checkmark low cost, simple operation.
- \checkmark suitable for complex cavity types, mass production.

Bronze precursor

Nb₃Sn/Cu

Small samples: Bronze/Nb/Cu multilayer films

Nb₃Sn/Cu sample properties:

The 11th Workshop on TFSRF2024, France

HZB Helmholtz Zentrum Berlin

1.3 GHz Nb₃Sn/Nb cavity bronze route

 \succ The surface morphology of the different stages of the coating is shown in the figure below:

Morphology analysis: The film is complete and the film-base bond is good, but there are differences in the optical area, and niobium oxide is suspected.

The 11th Workshop on TFSRF2024, France

HZB Helmholtz Zentrum Berlin

1.3 GHz Nb₃Sn/Nb cavity vertical test

- The Q_0 of the thin-film cavity at 4.2 K is about 1.2E+9, which is better than that of the bulk niobium cavity under the same conditions.
- \blacktriangleright Without Q-Slope and X-ray, it is inferred that the reason for limiting E_{acc} is thermal quench.

The 11th Workshop on TFSRF2024, France

ZB

Helmholtz

Nb₃Sn and QPR background Overall ETS bronze route progress Cu-based Nb₃Sn QPR samples preparation Nb/Cu QPR sample baseline RF test Future work and summary

Nb₃Sn/Cu QPR sample prepare procedure HZB Helmholtz Zentrum Berlin

The Nb₃Sn/Cu QPR sample preparation process includes 6 steps:

A new Cu-based Nb₃Sn QPR sample was successfully prepared.

> The Nb₃Sn/Cu QPR sample RF properties will be tested at HZB soon.

Optimized cathode structure and key parameters:

- New cathode structure:
 - 1. Only disk cathode before
 - 2. Disk cathode and Round belt cathode
- COMSOL simulation:

The difference in current density is reduced from 16 times to 2-3 times

• Parameters:

- 1. CV mode: 2.1 V
- 2. Electrode distance: 20 mm
- 3. Temperature: 15 °C
- 4. Stirring speed: 100 rpm
- 5. Polishing time: 1 h (30 μ m)

- > Observing surface morphology using LSM and measuring surface roughness.
- \succ There are small pitting (1µm) and corrosion on the surface, difficult to completely remove.

Surface Roughness

ISO 25178 - Primary surface F: [Workflow] Form removed (LS-poly 2) λs Filter: [Workflow] λs-filtered (λs 2.500 μm) **Height parameters** Sq 0.2881 μm Ssk 0.6972 Sku 3.504 Sp 1.145 μm Sv 0.7937 μm Sz 1.938 μm 0.2259 Sa μm

μm

- 1.9

- 1.8

- 1.7

- 1.6

- 1.5

- 1.4

- 1.3

- 1.2

- 1.1

- 1.0

- 0.9

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

- 0.0

A. Prudnikava, BE-IAS/HZB

Step 3: Cu QPR sample sputtering Nb at Siegen HZB Helmholtz Zentrum Berlin

Dr. Aleksandr Zubtsovskii

- \blacktriangleright Cu QPR samples were sputtered with Nb thin films about 10 µm using HiPIMS at Siegen.
- The sputtering temperature is about 180°C, so annealing is required before bronze plating to eliminate thermal expansion mismatch problem.

Step 4: Nb/Cu QPR sample electroplating process HZB Helmholtz Zentrum Berlin

Optimized anode structure and key parameters:

• Anode structure:

1. QPR samples are placed upside down to reduce the deposition of impurities from the anode

2. Only disk anode

• COMSOL simulation:

The difference in current density: 1-2 times Range: 3-4 mA/cm²

- Parameters:
 - 1. CC mode: 0.3 A
 - 2. Electrode distance: 50 mm
 - 3. Temperature: 15 °C
 - 4. Stirring speed: 100 rpm
 - 5. Electroplating time: 2 h (10 μ m)

Step 5: The QPR sample Heat Treatment at 700°C HZB Helmholtz Zentrum Berlin

Optimized furnace structure and vacuum pressure:

- Specific process:
 - 1. Placed vertically in a vacuum tube annealing furnace.
 - 2. QPR samples are placed vertically with glass sample holders at the bottom.

• Parameters:

- 1. Heat treatment curve: 600°C(30h)+700°C(30h).
- Heating and cooling rates:
 0.5°C/min and 9°C/min .
- Vacuum pressure:
 5E-9mbar (room temperature)
 - 6E-8mbar (at 700°C)

Step 6: The QPR sample polishing top impurity HZB Helmholtz Zentrum Berlin

- > The thickness of the Nb film at the bottom of the QPR sample is too thin, causing the Nb₃Sn film to fall off after polishing, exposing the Cu substrate.
- By removing impurities such as bronze, niobium oxide, and carbide on the surface, we obtained a clean Nb₃Sn/Cu QPR sample.

Small Nb₃Sn/Cu samples Heat Treatment at 700°C HZB Helmholtz Zentrum Berlin

I have prepared 6 small Nb₃Sn/Cu samples using the same process and characterized the Nb₃Sn coatings by LSM, SEM, EDX, XRD, PPMS, etc.

Small Nb₃Sn/Cu samples characterization HZB Helmholtz Zentrum Berlin

Small Nb₃Sn/Cu samples characterization

SEM and EDS: Nb₃Sn surface Sn content 22.35 at%, contains oxides and rare copper impurities.

Alena Prudnikava

HZB Helmholtz Zentrum Berlin

Nb₃Sn and QPR background Overall ETS bronze route progress Cu-based Nb₃Sn QPR samples preparation Nb/Cu QPR sample baseline RF test Future work and conclusion

Nb/Cu QPR sample baseline test

- The Nb/Cu QPR sample is not sealed with indium wire, but only connected with bolts, resulting in poor vacuum (resonator chamber: 7E-6 mbar, thermometry chamber: 2E-5 mbar).
- Control the gap distance by selecting the flange with the appropriate height and vector network analyzer test. (a total of 7 flanges with different heights)

Sebastian Keckert

> Performed multiple thermal cycles from 10-2K: 120-20 n Ω at 2K and 10mT, 240-60 n Ω at 4K and 15mT.

Nb/Cu QPR sample: When cooling through the critical temperature, the larger the rate, the less thermal current and less magnetic flux is trapped.

From T-B_{quench} curve fitting $(T/T_c)^2$, T>8K, we got B_{quench}(0K): 260mT and T_c: 9.24K (VNA data)

The 11th Workshop on TFSRF2024, France

HZB Helmholtz Zentrum Berlin

Proture work: From sample to Nb₃Sn/Cu cavity

IMP

Nb₃Sn/Cu surface impurities optimization. (Cu, Oxides, Carbides).

Nb₃Sn/Cu RF loss analysis and loss mechanism study. Nb₃Sn coating growth mechanism study and grain control.

• Next:

Nb₃Sn/Cu QPR sample test scheduled in Oct 2024. Trap flux study of Nb₃Sn coating on Cu substrate (TraMaFlu).

• Future:

Small samples -> larger samples -> QPR samples -> 1.3GHz cavities.

1.3GHz copper cavity Nb sputtering + bronze route Nb_3Sn coating.

TU Darmstadt (TUD)?

The 11th Workshop on TFSRF2024, France

HZB Helmholtz Zentrum Berlin

- Cu-based Nb₃Sn combines the excellent thermal conductivity of copper and the superior superconducting properties of Nb₃Sn in SRF field.
- The ETS bronze route is one method to achieve Nb₃Sn coating on copper. Its advantages are low cost, simple operation, suitable for complex cavity types and mass production.
- We provide a complete set of QPR sample preparation processes from copper electropolishing, Nb sputtering, electrodeposition and heat treatment to synthesize Nb₃Sn.
- By optimizing the entire preparation process and key parameters, a new Cu-based Nb₃Sn QPR sample was successfully prepared, and its RF properties will be characterized by QPR testing system at HZB soon.

Thanks to colleagues from the following institutes for providing help and information.

- Helmholtz-Zentrum Berlin (HZB), Germany Alena Prudnikava, Sebastian Keckert, Felix Kramer, Oliver Kugeler, Jens Knobloch.
- Institute of Modern Physics (IMP), CAS, China Jing Zhang, Bohao Zhang, Teng Tan.
 Universität Siegen, Germany

Dr. Aleksandr Zubtsovskii

Thanks for your attention.

