

NATIONAL HIGH MAGNETIC FIELD LABORATOR **FLORIDA STATE UNIVERSITY**

Superconductors for Dark Matter Detection (and maybe Accelerators)

 -2 um

Table of Contents

- Axions
- Detecting the Axion
- Nb₃Sn for Axion Detection
- Making a resonator
- Healing Seams for Axion Detectors (and maybe SRF cavities)

Baryogenesis and Dark Matter

[CMB Timeline300 no WMAP -](https://en.wikipedia.org/wiki/Cosmological_constant#/media/File:CMB_Timeline300_no_WMAP.jpg) Cosmological constant - Wikipedia

Milky Way halo structure Outer halo Inner halo **Thin disk** NASA, ESA, and A. Feild [STScI])

Axion comes to clean up!

Table of Contents

- Axions
- Detecting the Axion
- Nb₃Sn for Axion Detection
- Making a resonator
- Healing Seams for Axion Detectors (and maybe SRF cavities)

Resonance behavior of a cavity

• Microwave at Resonant frequency depends on geometry of cavity

• Resonates at TM₀₁₀ mode

[Accelerator Science: Why RF? \(youtube.com\)](https://www.youtube.com/watch?v=mu4m7wSnpD0) \blacksquare [Resonant cavity and circuit analysis \(physicsforums.com\)](https://www.physicsforums.com/threads/resonant-cavity-and-circuit-analysis.988647/)

Detecting the Axion

²C. Bartram, 2018

Measuring the Axion

Nick Du et al. 2018

Power from Axion Decay

Quality factor and Superconductors

Why Nb₃Sn on Cu?

- Copper has good thermal conductivity; this suppresses hot spot formation in the $Nb₃$ Sn and allows for high Q factor at low E_{acc}
- Needed due to Nb₃Sn's low thermal conductivity

Table of Contents

- Axions
- Detecting the Axion
- Nb₃Sn for Axion Detection
- Making a resonator
- Healing Seams for Axion Detectors (and maybe SRF cavities)

We've succeeded making $Nb₃$ Sn films in multiple ways

- Bronze route reaction temperature of ~700°C is compatible with Cu cavities
	- Cu melts at 1085°C, below the ~1100°C tin vapor method
	- Cu cavities facilitate conduction cooling and goals of DOE Accelerator Stewardship.
- We recently used a high-Sn alloy instead of the usual α -bronze to increase tin activity.
	- $-$ Increased tin activity is the key to success of $Nb₃$ Sn wires for high-field magnets
	- Increased tin activity is vital to avoid tin-poor A15 with degraded superconducting properties
- Experiments began with Nb substrates then moved on to Cu substrates

D. Dew-Hughes & T. S. Luhman Journal of Materials Science volume 13, pages1868– 1876(1978)

Bronze substrate

Hot Bronze reminiscent of zone T sputtered microstructure

High Sn "Bronze"

- Maybe we can increase Sn activity using High Sn "Bronze"
- We aim to make α , β , γ , and ε single phases in the Cu-Sn phase diagram

Results: Nb₃Sn via bronze on Nb

Nb substrates: Sn Activity and Reaction Time

- Black has the lowest Tc
- Least Sn and Time
- Red, Blue, and Green \approx Tc onset
- Balance between reaction time and Sn volume.

- Purple has the highest Tc with the sharpest transition
- 10 12 14 16 18 Hot deposition has best Tc and

MAGLAB Temperature (K) sharpest transition sharpest transition

What effects Tc for Nb₃Sn?

Strain Experiment Sapphire

2 μm Cu-13%Sn 680C Nb 500nm deposition

• **Film confined to sapphire has a sharp transition**

- **Film peeled off sapphire relieves the tensile strain but increases strain felt by the Nb³ Sn from the CuSn**
- **Compressive strain from Cu-Sn is relieved after etch and increases Tc** \sim **1K (** $\epsilon \sim 5\%$ **)**

Nb substrate with Cu-Sn Etch

How can we analyze these films?

Critical Temperature Tc

21

Cu substrates

Substrate effects

The sapphire film has low CTE mismatch and high Sn content.

Sn diffuses into Cu substrate, and a Low Sn% thin CuSn layer will give bad Tc.

300nm Ta diffusion layer is not enough for this case.

Optimize CuSn layer?

$Nb₃$ Sn on (Cu/Ta/5 μ m Cu-Sn)

We are losing Sn, with 300nm Ta diffusion barrier.

Can mitigate the effects of Sn loss with a higher Sn% film, though a thicker film doesn't give the same effect.

Table of Contents

- Axions
- Detecting the Axion
- Nb₃Sn for Axion Detection
- Making a resonator
- Healing Seams for Axion Detectors (and maybe SRF cavities)

RF Test Resonators

FSU 3D printed Cu tape

hexagonal cavity

South Korean HTS cavity UW ADMX PPMS NbTi

O. Kwon SQMS 2024

Geometry and Orientation matters

Quality factor vs Magnetic field

a) cigar-shaped cavity optimized for high-field b) TESLA cavity for particle accelerators

Geometry Simulations

- **Modeling TM010 mode with COMSOL EM physics**
- **Using Conductivity of Cu at T ~ 4K**
- **Gaps between conducting walls reduces Q by ~ 30%**
- **Hexagon increases Frequency by ~2Ghz and reduces Q ~ 65%**

Start with 1 Nb₃Sn surface

Bulk Cu

 $Nb₃Sn$ coating recipe on 1 Cu wall

Have not measured Q yet!!??!?

We will try to recreate mode decomposition measurement our collaborators did with NbTi.

> **Everything is set up, will measure soon!!!**

Table of Contents

- Axions
- Detecting the Axion
- Nb₃Sn for Axion Detection
- Making a resonator
- Healing Seams for Axion Detectors (and maybe SRF cavities)

Diffusion Bonding Seams

Formation mechanism of the diffusion bonding

Successful diffusion bonding has:

- **1. Close contact between the surface planes of the two materials being combined.**
- **2. Enough driving force being applied to the materials to supply enough diffusion coefficient.**

Healing Recipes

Challenges

MAGLAB

24 μm offset above

Stress at interface

Nb coating interface

33

Continuous Seam Across Joint

To End with…

Conclusion

- Optimizing recipes for $Nb₃$ Sn on Cu.
- Analyzed strain effects from Cu-Sn layer on Nb₃Sn.
- By exchanging one wall of a hexagonal cavity, we will have fast throughput relative measurements for our recipes. (can compare with 2-inch disk samples SLAC/Barcelona)
- Looking forward to Q testing in B and T for our Cu-Sn method (Cu in GB's) and our unique microstructure.

Future Experiments

ADMX Fermilab Collaborators

Acknowledgements

- The Applied Superconductivity Center
- ADMX Collaborators at Fermilab, Lawrence Livermore National Lab, University of Washington, University of Florida
- High Energy Physics Department of Energy: High-field Cavities for Axion Dark Matter

References

- 1. Sikivie, Pierre. "Invisible Axion Search Methods." *Reviews of Modern Physics* 93, no. 1 (February 18, 2021): 015004. <https://doi.org/10.1103/RevModPhys.93.015004>.
- 2. Boutan, Christian. "A Piezoelectrically Tuned RF-Cavity Search for Dark Matter Axions." *Ph.D. Thesis*, 2017. <https://ui.adsabs.harvard.edu/abs/2017PhDT........24B>.
- 3. Sikivie, P., N. Sullivan, and D. B. Tanner. "Proposal for Axion Dark Matter Detection Using an L C Circuit." *Physical Review Letters* 112, no. 13 (March 31, 2014): 131301. [https://doi.org/10.1103/PhysRevLett.112.131301.](https://doi.org/10.1103/PhysRevLett.112.131301)
- 4. Nick Du et al. "Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment." In: Phys. Rev. Lett. 120.15 (Apr. 9, 2018), p. 151301. issn: 0031-9007, 1079-7114. doi: 10 . 1103 / PhysRevLett . 120 . 151301. arXiv: 1804 . 05750 [hep-ex]. url: https : //link.aps.org/doi/10.1103/PhysRevLett.120.151301
- 5. Posen, S., and D. L. Hall. "Nb3Sn Superconducting Radiofrequency Cavities: Fabrication, Results, Properties, and Prospects." *Superconductor Science and Technology* 30, no. 3 (January 2017): 033004. [https://doi.org/10.1088/1361-6668/30/3/033004.](https://doi.org/10.1088/1361-6668/30/3/033004)
- 6. Di Gioacchino, Daniele, Claudio Gatti, David Alesini, Carlo Ligi, Simone Tocci, Alessio Rettaroli, Giovanni Carugno, et al. "Microwave Losses in a DC Magnetic Field in Superconducting Cavities for Axion Studies." IEEE *Transactions on Applied Superconductivity* 29, no. 5 (August 2019): 1–5. <https://doi.org/10.1109/TASC.2019.2897267>.
- 7. S. Posen et al. "High-Quality-Factor Superconducting Cavities in Tesla-Scale Magnetic Fields for Dark-Matter Searches." In: Phys. Rev. Applied 20.3 (Sept. 1, 2023), p. 034004. doi: 10.1103/PhysRevApplied.20.034004. arXiv: 2201.10733 [physics.acc-ph]. url: https: //link.aps.org/doi/10.1103/PhysRevApplied.20.034004 (visited on 01/19/2024).
- 8. Wenura Withanage, Andre Juliao, and Lance Cooley. "Rapid Nb 3 Sn Film Growth by Sputtering Nb on Hot Bronze." In: Superconductor Science and Technology 34 (Apr. 9, 2021). doi: 10.1088/1361-6668/abf66f.
- 9. A. Juliao et al., Nb3Sn on Nb substrates using Cu-Sn alloys, TBD
- 10. A. Juliao et al., Nb3Sn on Cu substrates using Cu-Sn alloys, TBD
- 11. Andre Anders. "A Structure Zone Diagram Including Plasma-Based Deposition and Ion Etching." In: Thin Solid Films 518.15 (May 31, 2010), pp. 4087–4090. issn: 0040-6090. doi:10.1016/j.tsf.2009.10.145. url: <https://www.sciencedirect.com/science/article/pii/S0040609009018288>
- 12. D. O. Welch. "Alteration of the Superconducting Properties of A15 Compounds and Elementary Composite Superconductors by Nonhydrostatic Elastic Strain." In: Advances in Cryogenic Engineering Materials: Volume 26. Ed. by A. F. Clark and R. P. Reed. Boston, MA: Springer US, 1980, pp. 48–65. isbn: 978-1-4613-9859-2. doi: 10.1007/978-1-4613-9859-2_4. url: https://doi.org/10.1007/978-1-4613-9859-2_4
- 13. Moore, D. F., R. B. Zubeck, J. M. Rowell, and M. R. Beasley. "Energy Gaps of the A − 15 Superconductors Nb 3 Sn, V 3 Si, and Nb 3 Ge Measured by Tunneling." *Physical Review B* 20, no. 7 (October 1, 1979): 2721–38. [https://doi.org/10.1103/PhysRevB.20.2721.](https://doi.org/10.1103/PhysRevB.20.2721)
- 14. Braine et al. "Multi-Mode Analysis of Surface Losses in a Superconducting Microwave Resonator in High Magnetic Fields." In: Rev. Sci. Instrum. 94.3 (Mar. 1, 2023), p. 033102. issn: 0034-6748, 1089-7623. doi: 10.1063/5.0122296. arXiv: 2208.11799 [physics.acc-ph]. url: http://arxiv.org/abs/2208.11799
- 15. A. Juliao et al., Bronze healing blocks for SRF cavities, TBD
- 16. Jiang, Tao, Feisi He, Fei Jiao, Fa He, Xiangyang lu, and Kui Zhao. "Feasibility Study on SRF Cavity Improvement by Doping Method," November 12, 2013.

Thank you for your time!

What do these Tc curves mean?

Tensile Testing the Seam

Axion field and Maxwell's Laws

Maxwell's Laws **Nightland Maxwell**'s Laws

$$
\vec{\nabla} \cdot \vec{E} = \rho_{el} \qquad \qquad \vec{\nabla} \cdot \vec{E} = g \vec{B} \cdot \vec{\nabla} a + \rho_{el} \qquad \qquad \vec{\nabla} \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = g(\vec{E} \times \vec{\nabla} a - \vec{B} \frac{\partial a}{\partial t}) + \vec{j}_{el}
$$

Axons cause an oscillating current.

$$
\vec{j}_a\ =\ -g\vec{B}_0\dot{a}\qquad\hbox{where}\quad \dot{a}\ \equiv\ \frac{\partial a}{\partial t}
$$

This current creates a magnetic field, which can be measured.

$$
\vec{\nabla}\times\vec{B}_a=\vec{j}_a
$$

 $^{\text{1}}$ Pierre Sikivie, 2021 \quad 43

 Ω

PhD Timeline

Replacing One Wall

- We replace one of the 6 sides with a superconducting film, and we simulate this by increasing the conductivity of the wall by 10x.
- We change the conductivity in various steps to see the impact of this conductivity change.

