11th International Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity - TFSRF2024

Contribution ID: 84

Type: not specified

Depth-resolved characterization of superconductor-superconductor bilayer properties beneficial for SRF applications

Thursday 19 September 2024 09:00 (33 minutes)

Coating Nb with thin layers of one or more superconductors with longer penetration depths, λ , has been proposed to achieve accelerating gradients, $E_{\rm acc}$, beyond Nb's fundamental limit. Such heterostructures can sustain the Meissner state above each layer's superheating field, $B_{\rm sh}$, due to the strong suppression of the screening currents in the surface layers by a ''counter-current" in the substrate and the presence of interfacial energy barrier between material junctions. We infer the presence of interfacial energy barrier by measuring the first-flux-penetration field, $\mu_0 H_{\rm vp}$ in superconductor-superconductor (SS) Nb₃Sn(2 µm)/Nb samples using muon spin rotation (μ SR). Using thin Ag foils as energy moderators for the implanted muon spin probes, we profiled $\mu_0 H_{\rm vp}$ at sub-surface depths between 10 µm and 100 µm, finding that $\mu_0 H_{\rm vp}$ is depth-independent with a value of 234.5 ± 3.5 mT, consistent with Nb's metastable $B_{\rm sh}$ and a surface energy barrier preventing flux penetration. Similarly, evidence for current suppression in SS Nb_{1-x}Ti_xN/Nb samples was observed from nanoscale (depths

lesssim 150 nm) measurements of their Meissner screening profiles in applied fields ≤ 25 mT using the low energy μ SR. The observed bipartite form of the screening profiles quantitatively confirm the Meissner response predicted by the ''counter-current" model, which we use to identify the optimal Nb_{1-x}Ti_xN/Nb coating thickness for maximizing the $\mu_0 H_{\rm vp}$. Our results of strong suppression of the Meissner currents in the surface layer suggest that multilayered structures with several superconducting and insulating layers are necessary to reach the highest $E_{\rm acc}$.

Presenter: ASADUZZAMAN, Md (CA-University of Victoria, Canada) **Session Classification:** SRF Thin Films Characterization

Track Classification: Characterization