

Bundesministerium für Bildung und Forschung

Thermal transmittance measurements of SIS & Nb₃Sn coated samples at cryogenic temperatures

19.09.2024

Marc Wenskat – on behalf SRF R&D Team emphasis on Leon King, Anton Lorf, Cem Saribal

• We need to dissipate RF losses / Joule heating away into the liquid He

- We need to dissipate RF losses / Joule heating away into the liquid He
- If the heat is not dissipated away, we will have an unwanted thermal feedback increasing R_s

- We need to dissipate RF losses / Joule heating away into the liquid He
- If the heat is not dissipated away, we will have an unwanted thermal feedback increasing R_s
- To achieve gradients >50 MV/m we need to study thermal transmittance $\mathbf{K} = \left(\frac{d}{\lambda} + R_K\right)^{-1}$

- We need to dissipate RF losses / Joule heating away into the liquid He
- If the heat is not dissipated away, we will have an unwanted thermal feedback increasing R_s
- To achieve gradients >50 MV/m we need to study thermal transmittance $\mathbf{K} = \left(\frac{d}{\lambda} + R_K\right)^{-1}$
- Does overall thermal transmittance *K* deteriorate after coating of Nb?

- We need to dissipate RF losses / Joule heating away into the liquid He
- If the heat is not dissipated away, we will have an unwanted thermal feedback increasing R_s
- To achieve gradients >50 MV/m we need to study thermal transmittance $\mathbf{K} = \left(\frac{d}{\lambda} + R_K\right)^{-1}$
- Does overall thermal transmittance *K* deteriorate after coating of Nb?
 - Is the thermal conductivity λ the culprit?
 - The thermal interface resistance R_{th} between layer and substrate?
 - What about the Kapitza-Resistance R_{κ} of the coated layer?

• To enforce heat flow through the film, standard measurements used in SRF are not feasible

- To enforce heat flow through the film, standard measurements used in SRF are not feasible
- Remembered earlier works by J. Amrit and C. Antoine (Thank you!)

Amrit, J., and M. X. François. "Heat flow at the niobium-superfluid helium interface: Kapitza resistance and superconducting cavities." Journal of low temperature physics 119 (2000): 27-40.

- To enforce heat flow through the film, standard measurements used in SRF are not feasible
- Remembered earlier works by J. Amrit and C. Antoine (Thank you!)

Amrit, J., and M. X. François. "Heat flow at the niobium-superfluid helium interface: Kapitza resistance and superconducting cavities." Journal of low temperature physics 119 (2000): 27-40.

We know A, control \dot{Q} and measure T_i and T_o

$$\underbrace{\left(\frac{d}{\lambda} + R_{K}\right)}_{\gamma}\dot{Q} = A \cdot (T_{i} - T_{o})$$

 $1/K \rightarrow$ This is what we obtain

Т

Measurement procedure

Measurement procedure

Measurement procedure

4

Cell Ø=106mm Sample Ø=45mm

Cell Ø=106mm Sample Ø=45mm

T-sensor inside & outside Manganin heating wire inside

Universität Hamburg

Cell Ø=106mm Sample Ø=45mm

T-sensor inside & outside Manganin heating wire inside

Universität Hamburg

Parasitically installed at cavity insert

Cell Ø=106mm Sample Ø=45mm

T-sensor inside & outside Manganin heating wire inside

Universität Hamburg

Parasitically installed at cavity insert

- Filling by 1m capillary with Ø=1mm to thermally decouple inside
- Electrical wires go through there (heater & T-sensor)
- Only glued / screwed \rightarrow high chance of leaks

Conduction not only through the sample!

- Conduction not only through the sample!
- Optimized geometry & material to minimize unwanted paths

- Conduction not only through the sample!
- Optimized geometry & material to minimize unwanted paths
- Leakage will create overestimation of $m{K}$ at low $\dot{m{Q}}$

- Conduction not only through the sample!
- Optimized geometry & material to minimize unwanted paths
- Leakage will create overestimation of $m{K}$ at low $\dot{m{Q}}$
 - At low \dot{Q} , heat carried away through leaks can be substantial amount of total thermal transmissivity

- Conduction not only through the sample!
- Optimized geometry & material to minimize unwanted paths
- Leakage will create overestimation of K at low \dot{Q}
 - At low \dot{Q} , heat carried away through leaks can be substantial amount of total thermal transmissivity
 - Fixed value will become less significant at higher \dot{Q}

- Conduction not only through the sample!
- Optimized geometry & material to minimize unwanted paths
- Leakage will create overestimation of K at low \dot{Q}
 - At low \dot{Q} , heat carried away through leaks can be substantial amount of total thermal transmissivity
 - Fixed value will become less significant at higher \dot{Q}
 - Leaks will seal themselves off, as He boils in channel

- Conduction not only through the sample!
- Optimized geometry & material to minimize unwanted paths
- Leakage will create overestimation of K at low \dot{Q}
 - At low \dot{Q} , heat carried away through leaks can be substantial amount of total thermal transmissivity
 - Fixed value will become less significant at higher \dot{Q}
 - Leaks will seal themselves off, as He boils in channel

$$K(\dot{Q}) = K_0 + a \cdot \left(\frac{\dot{Q}}{\dot{Q}_0}\right)^n$$

- All samples cut from 1 EXFEL sheet
- All samples underwent coarse BCP + 3h@800°C (Baseline)

- All samples cut from 1 EXFEL sheet
- All samples underwent coarse BCP + 3h@800°C (Baseline)
- 1 pair was coated **both sides** with
 - 15nm/60nm AIN/NbTiN via PEALD (as-deposited)
 - +1h@900°C to achieve high $T_c^{[1]}$ (annealed)

¹ González Díaz-Palacio, I., Wenskat, M., Deyu, G. K., Hillert, W., Blick, R. H., & Zierold, R. (2023). Thermal annealing of superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition. Journal of Applied Physics, 134(3)

- All samples cut from 1 EXFEL sheet
- All samples underwent coarse BCP + 3h@800°C (Baseline)
- 1 pair was coated **both sides** with
 - 15nm/60nm AIN/NbTiN via PEALD (as-deposited)
 - +1h@900°C to achieve high $T_c^{[1]}$ (annealed)
- 1 pair was coated with 200nm Nb₃Sn ^[2] twice (one side each) by TU Darmstadt (DCMS co-sputtering)

¹ González Díaz-Palacio, I., Wenskat, M., Deyu, G. K., Hillert, W., Blick, R. H., & Zierold, R. (2023). Thermal annealing of superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition. Journal of Applied Physics, 134(3)

² Schäfer, N., Karabas, N., Palakkal, J. P., Petzold, S., Major, M., Pietralla, N., & Alff, L. (2020). Kinetically induced low-temperature synthesis of Nb3Sn thin films. Journal of Applied Physics, 128(13).

- All samples cut from 1 EXFEL sheet
- All samples underwent coarse BCP + 3h@800°C (Baseline)
- 1 pair was coated **both sides** with
 - 15nm/60nm AIN/NbTiN via PEALD (as-deposited)
 - +1h@900°C to achieve high $T_c^{[1]}$ (annealed)
- 1 pair was coated with 200nm Nb₃Sn ^[2] twice (one side each) by TU Darmstadt (DCMS co-sputtering)

All measurements shown are at 2K

¹ González Díaz-Palacio, I., Wenskat, M., Deyu, G. K., Hillert, W., Blick, R. H., & Zierold, R. (2023). Thermal annealing of superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition. Journal of Applied Physics, 134(3)

² Schäfer, N., Karabas, N., Palakkal, J. P., Petzold, S., Major, M., Pietralla, N., & Alff, L. (2020). Kinetically induced low-temperature synthesis of Nb3Sn thin films. Journal of Applied Physics, 128(13).

Shows expected behavior with power law dependency

Universität Hamburg

- Shows expected behavior with power law dependency
- Values are well in agreement with literature

•
$$K_0 = (150 - 200) \text{ mW cm}^{-2} \text{ K}^{-1}$$

- Values are well in agreement with literature
 - $K_0 = (150 200) \text{ mW cm}^{-2} \text{ K}^{-1}$
- Measured as-fabricated (only water-jet cutting)
 - $K_0 = (307 \pm 46) \text{ mW cm}^{-2} \text{ K}^{-1}$
 - $K_0 = (332 \pm 31) \text{ mW cm}^{-2} \text{ K}^{-1}$
- Higher K₀ also in agreement with literature

Can we trust the results? Yes, they are reasonable

- Shows expected behavior with power law dependency
- Values are well in agreement with literature
 - $K_0 = (150 200) \text{ mW cm}^{-2} \text{ K}^{-1}$
- Measured as-fabricated (only water-jet cutting)
 - $K_0 = (307 \pm 46) \text{ mW cm}^{-2} \text{ K}^{-1}$
 - $K_0 = (332 \pm 31) \text{ mW cm}^{-2} \text{ K}^{-1}$
- Higher *K*₀ also in agreement with literature

SIS does not reduce the thermal transmittance K

- As-deposited $K_0 = (141 \pm 13) \text{ mW cm}^{-2} \text{ K}^{-1}$
- After annealing $K_0 = (156 \pm 10) \text{ mW cm}^{-2} \text{ K}^{-1}$
- SIS on both sides \rightarrow many interfaces

Well within the baseline Nb value!

 Nb_3Sn shows increased K_0 after coating one side

- Nb₃Sn shows increased K_0 after coating one side
- Further increase after coating other side as well

- Nb₃Sn shows increased K_0 after coating one side
- Further increase after coating other side as well
- It can't be thermal conductivity λ of Nb₃Sn

- Nb_3Sn shows increased K_0 after coating one side
- Further increase after coating other side as well
- It can't be thermal conductivity λ of Nb₃Sn
- What about the Kapitza-Resistance R_{κ} ?

- Nb₃Sn shows increased K_0 after coating one side
- Further increase after coating other side as well
- It can't be thermal conductivity λ of Nb₃Sn
- What about the Kapitza-Resistance R_{κ} ?
 - Is $R_{K,Nb3Sn} < R_{K,Nb}$?

- Nb₃Sn shows increased K_0 after coating one side
- Further increase after coating other side as well
- It can't be thermal conductivity λ of Nb₃Sn
- What about the Kapitza-Resistance R_{κ} ?
 - Is $R_{K,Nb3Sn} < R_{K,Nb}$?
 - Is it the surface roughness?

- Nb_3Sn shows increased K_0 after coating one side
- Further increase after coating other side as well
- It can't be thermal conductivity λ of Nb₃Sn
- What about the Kapitza-Resistance R_{κ} ?
 - Is $R_{K,Nb3Sn} < R_{K,Nb}$?
 - Is it the surface roughness?
 - Surface area would have to increase by x2

- Nb_3Sn shows increased K_0 after coating one side
- Further increase after coating other side as well
- It can't be thermal conductivity λ of Nb₃Sn
- What about the Kapitza-Resistance R_{κ} ?
 - Is $R_{K,Nb3Sn} < R_{K,Nb}$?
 - Is it the surface roughness?
 - Surface area would have to increase by x2
 - As-fabricated Nb had similar K₀

- Nb_3Sn shows increased K_0 after coating one side
- Further increase after coating other side as well
- It can't be thermal conductivity λ of Nb₃Sn
- What about the Kapitza-Resistance R_{κ} ?
 - Is $R_{K,Nb3Sn} < R_{K,Nb}$?
 - Is it the surface roughness?
 - Surface area would have to increase by x2
 - As-fabricated Nb had similar K₀
- Next steps:
 - Coat second sample pair, measure K₀
 - Measure roughness before & after
 - Compare to as-fabricated roughness
 10

• Thermal transmittance *K* is an important property of coated cavities

- Thermal transmittance *K* is an important property of coated cavities
- Yet, it remains unknown for most material / material combinations

- Thermal transmittance *K* is an important property of coated cavities
- Yet, it remains unknown for most material / material combinations
- We started measurements to assess impact of treatments & coatings

- Thermal transmittance *K* is an important property of coated cavities
- Yet, it remains unknown for most material / material combinations
- We started measurements to assess impact of treatments & coatings
 - SIS is comparable to bare Nb, despite many interfaces

- Thermal transmittance *K* is an important property of coated cavities
- Yet, it remains unknown for most material / material combinations
- We started measurements to assess impact of treatments & coatings
 - SIS is comparable to bare Nb, despite many interfaces
 - Nb_3Sn shows significant increase of K material property or surface roughness?

- Thermal transmittance *K* is an important property of coated cavities
- Yet, it remains unknown for most material / material combinations
- We started measurements to assess impact of treatments & coatings
 - SIS is comparable to bare Nb, despite many interfaces
 - Nb_3Sn shows significant increase of K material property or surface roughness?
- Next-gen cell with soldered stainless steel capillary is currently fabricated

Thanks to...

- you for listening
- the **conveners** for the opportunity to present this work
- **DESY** for the measurement opportunities
- **BMBF** for funding

Questions?

Swartzwelder, J. (Writer), & Reardon, J. (Director). (1994, January 6). Homer the Vigilante (Season 5, Episode 11) [TV series episode]. In D. Mirkin, J. L. Brooks, M. Groening, & S. Simon (Executive Producers), *The Simpsons*. Gracie Films; Twentieth Century Fox Film Corporation.

Contact:

Marc Wenskat

MSL/DESY

E-Mail: marc.wenskat@desy.de

Bundesministerium für Bildung und Forschung

Temperature Scan

- Started testing temperature scans while cooling down at QvT
- High power to be close to K₀
- Measurement starts at 2.1K

