

Point contact tunneling spectroscopy for SRF cavities and Qubits

Ivana Curci CEA/IRFU

Principle of tunneling spectroscopy

 Our PCT instrument has mapping capability with ~µm resolution -----> statistics of the superconducting parameters spatial distribution

- 1. ALD- coated Nb.
- 2. Nb-HPR-annealed. SRF cavities
- 3. Nb₃Sn-Cu.
- 4. Nb, Ta, Ta/Nb for 2D Qubits.

ALD AI₂O₃-Nb

ALD + heat treatment decreases TLS losses and increases the quality factor at low fields.

Correlation between PCT, XPS and TEM

- 1. ALD- coated Nb
- 2. Nb-HPR-annealed SR
 - SRF cavities

- 3. Nb₃Sn-Cu
- 4. Nb, Ta, Ta/Nb for 2D Qubits.

Nb-HPR-annealed (Nb EP + HPR + 650°C-10hrs + HPR)

SRF cavities show Q factors ~10 times higher than Nb EP + HPR
σ_{TLS} and tan(δ_{TLS}) decreased by a factor 10.

Nb-HPR-annealed

Nb+HPR+annealed vs Nb+HPR

- Nb +HPR shows higher Δ and Γ than Nb+HPR+annealed.
- TEM and XPS show NbOx partially crystalline which explains the proximity effect in PCT.
- At low field, the increase in the Q factor can be explained by the thinner and more cristalline oxide (less defects, less TLS).
- And at higher field?

Nb+HPR+annealed vs Nb+HPR

- Same Δ but $R_{Residual}$ is higher for the reference. $R_{Residual} \leftarrow \Gamma$? Analysis on process
- PCT reveal a reduction in Δ due to a proximity effect. How can we explain the difference in Δ_{PCT} vs Δ_{Rs} ??

- 1. ALD- coated Nb
- 2. Nb-HPR-annealed SRF cavities
- 3. Nb₃Sn-Cu
- 4. Nb, Ta, Ta/Nb for 2D Qubits.

Nb₃Sn-Cu for SRF cavities:

There are current efforts aimed at obtaining cavities with high quality factors using Nb₃Sn on Cu.

Nb₃Sn-Ta-Cu and Nb₃Sn-Y₂O₃-Cu

EDS/SEM for Nb₃Sn-Cu samples (CERN)

- 1. ALD- coated Nb.
- 2. Nb-HPR-annealed. SRF cavities
- 3. Nb_3Sn-Cu .
- 4. Nb, Ta, Ta/Nb for 2D Qubits.

Qubits coherence time (literature):

• What can PCT reveal to understand the difference between Ta and Nb Qubits?

PCT for Nb, Ta and Ta/Nb

Losses are not dominated by Δ in Qubits.
Γ → T1 ? How?

- $\Gamma_{Ta-Sapphire} = 0.15 < \Gamma_{Nb-Sapphire} = 0.26.$ Correlation with T1_{Ta} >T1_{Nb} ?
- T1_{Ta-Sapphire} for our sample vs literature?
- XRD reveal both α (wanted) and β (unwanted) phases.
- Small Δ and Γ on Ta/Nb → proximity effect between Ta and Nb.
- McMillan gives good fits for Ta/Nb. It predicts d ≤ 10 nm and Γ ~ 0.01.
- $\Gamma_{Ta-Nb}=0.01 < \Gamma_{Ta}=0.15$. Correlation with $T1_{Ta-Nb} > T1_{Ta}$?

More PCT on Ta and Nb is needed!!

Conclusions

- PCT can uncover various phenomena on the surface of superconducting devices correlated to their performances.
- PCT on Al₂O₃-Nb reveals smaller gaps compared to the bulk. It can be attributed to the presence of Nb oxides.
- PCT on Nb-HPR-annealed samples reveals a proximity effect. TEM and XPS explain this by the presence of a partially crystalline/metallic Nb oxide. We want to correlate Γ values with R_{res}.
- PCT on Nb₃Sn-Cu shows regions with Δ closer to the bulk, but also with smaller Δ, which may indicate the presence of a normal layer (Nb,Cu) estimated to be around ~3-7 nm.
- We are trying to find a correlation between the Γ for Ta and Nb that might help in the understanding of Qubits T1. We need more samples to find a correlations.

References

- 1. Proslier, T., Zasadzinski, J., Moore, J., Pellin, M., Elam, J., Cooley, L., ... & Gray, K. E. (2008). Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment. *Applied Physics Letters*, *93*(19).
- Kalboussi, Y., Delatte, B., Bira, S., Dembele, K., Li, X., Miserque, F., ... & Proslier, T. (2024). Reducing twolevel system dissipations in 3D superconducting Niobium resonators by atomic layer deposition and high temperature heat treatment. *arXiv preprint arXiv:2402.04137*.

Thank you