# Surface engineering by ALD and heat treatment for 3D Niobium resonators for applications in superconducting qubits

Y. Kalboussi<sup>1</sup>, B. Delatte<sup>1</sup>, M. Benko<sup>1</sup>, I. Curci<sup>1</sup>, T. Dejob<sup>1</sup>, S. Bira<sup>2,3</sup>, D. Longuevergne<sup>3</sup>, T. P Donat<sup>3</sup>, F. Miserque<sup>4</sup>, S. Tusseau-Nenez<sup>5</sup>, Y. Zheng<sup>6</sup>, D. Dragoe<sup>7</sup>, D.Bafia<sup>8</sup>, L.Grasselino<sup>8</sup>, G.Eremeev<sup>8</sup>, F.Crisa<sup>8</sup>, A.Gentils<sup>9</sup>, S. Jublot Leclerc<sup>9</sup>, X.Li<sup>10</sup>, M.Walls<sup>10</sup>, N.Brun<sup>10</sup>, K.Dembele<sup>11</sup>, J.L Maurice<sup>11</sup>, T. Proslier<sup>1</sup>

<sup>1</sup> IRFU, CEA Paris-Saclay University, Paris, France; <sup>2</sup>Jefferson laboratory; <sup>3</sup>IJCLab, CNRS, Paris-Saclay University, <sup>4</sup>LECA, CEA Paris-Saclay University, Paris, France;
<sup>5</sup>Plateforme DIFFRAX, Ecole Polytechnique; <sup>6</sup> INSP, CNRS, Sorbonne University; <sup>7</sup>Plateforme ICMMO, Paris-Saclay University. <sup>6</sup>DES, CEA Paris Saclay University, <sup>8</sup>Fermi National Accelerator Laboratory, USA. <sup>9</sup>Plateforme MOSAIC, IJClab Paris-Saclay University, <sup>10</sup>LPS,CNRS, Paris-saclay University. <sup>11</sup>Plateforme CIMEX,Ecole Polytechnique.



# **Context: Superconducting Qubits**









- 2D superconducting qubits suffer from limited coherence times (at best T<sub>1</sub> ~ 200µs.)
- Defects in the oxides layers are the major source of decoherence.



# **Two-level system defects in amorphous materials**



- Their microscopic nature is still ellusive:
- It can be tunneling atoms, tunneling electrons or spins and magnetic impurities.
- The TLS can exist in one of two energetically similar configurations
- At High temperature and high RF intensities, these defects are saturated.
- At low temperature, TLS couples to the electric field present in the qubit and causes decoherence.



# SRF cavities are excellent tools to advance quantum computing

- 1. As a tool to study materials : SRF cavities exhibit the same dielectric losses at low fields.
- 2. As multi-levels quantum bits : Tesla cavities are being integrated in quantum processing units.





 $|\psi\rangle = c_1|0\rangle + c_2|1\rangle + \dots + c_n|n\rangle$ 

### The passivation approach at CEA:





- 1) Deposit ~few nm oxide layer by ALD ( $AI_2O_3$ ,  $Ta_2O_5$ ,  $ZrO_2...$ ) onto Niobium.
- 2) Perfom a subsequent thermal treatement to dissolve niobium native oxide underneath (vacuum levels 10<sup>-6</sup> mbar)



The oxide layer must be thermally stable and have low dielectric losses.



### First results at CEA :

#### First experiment Second experiment Al<sub>2</sub>O<sub>3</sub>-10nm- 650°C- 4hrs Al<sub>2</sub>O<sub>3</sub>-10nm- 650°C- 10hrs [4] 7x10<sup>10</sup> -7x10<sup>10</sup> (a) (b) 6x10<sup>10</sup> 6x10<sup>10</sup> O <sup>5x10<sup>10</sup></sup> 4x10<sup>10</sup> 3x10<sup>10</sup> Quality factor Q 5x10<sup>10</sup> · 4x10<sup>10</sup> 3x10<sup>10</sup> 1,5 K 1,45 K 2x10<sup>10</sup> -2x10<sup>10</sup> 1x10<sup>10</sup> -1x10<sup>10</sup> 0.001 0.01 0.1 0.001 0.01 0.1 10 10 1E-4 1 E (MV/m) E (MV/m)

The 10 nm Al<sub>2</sub>O<sub>3</sub> film + annealing at 650°C for few hours significantly improves the quality factors of the Nb cavity in the low field regime.



### **Before Annealing :**



Before annealing, we have 5 nm of Nb oxide between the Al<sub>2</sub>O<sub>3</sub> and the Nb metal.

### **After Annealing**



- After annealing, we have 2 nm of Nb oxide, mainly NbO and Nb<sub>2</sub>O. No Nb<sub>2</sub>O<sub>5.</sub>
- The interface is crystalline with the bulk Nb.

### Al<sub>2</sub>O<sub>3</sub> hosts TLS too ...

We tested different thickness of Al<sub>2</sub>O<sub>3</sub> + Annealing @650°C+10 hours





- The Nb remains passivated even with only 2,5 nm of Al<sub>2</sub>O<sub>3</sub>
- After HPR, we need at least 5 nm to protect the Nb surface.

#### Y. KALBOUSSI - 19/09/2024 - TFSRF2024

# A crystalline oxyde: ZrO<sub>2</sub>

 $\Box$  We tested different thickness of ZrO<sub>2</sub> on Nb + Annealing 800°C – 3hrs







500

# **Another condidate: Ta<sub>2</sub>O<sub>5</sub>**

- Tantalum oxide results in lower losses than niobium oxide:
- Possibly due to consistency in Ta<sup>5+</sup> valence state and low vacancy concentration.





- We observe intermixing between Tantalum and Niobium.
- Optimization is ongoing in collaboration with FNAL.

# Thickness homogeneity of $AI_2O_3$ test on 1.3 GHz



- We performed homogeneity test of 2,5 nm of Al<sub>2</sub>O<sub>3</sub> inside a 1,3 Ghz cavity.
- The precusors are TMA and H<sub>2</sub>O at 250°C.
- We coated Two 1,3 Ghz Nb cavities and we are waiting for them to be tested one at CEA and one at FNAL.

# Thickness homogeneity of $ZrO_2$ test on 1.3 GHz



- We performed homogeneity test of 3 nm of ZrO<sub>2</sub> inside a 1,3 Ghz cavity.
- The precusors are Zr(NMe<sub>2</sub>)<sub>4</sub> and H<sub>2</sub>O at 200°C.
- We coated one 1,3 Ghz Nb cavity and we are waiting for the RF test at FNAL.

# Thickness homogeneity of $Ta_2O_5$ test on 1.3 GHz



□ ALD recepie: Ta(OC<sub>2</sub>H<sub>5</sub>)<sub>5</sub> and H<sub>2</sub>O at 250°C

Test1: 1,5s / 20s / 1,5s / 15s Test2: <u>2,5s</u> / 20s / 1,5s / 15s Test3: <u>3s</u> / <u>60s</u> / 1,5s / 15s Test4: 3s / 60s / 1,5s / <u>60s</u>

We coated one 1,3 Ghz Nb cavity and we are waiting for the RF test at FNAL.

# The highest coherence time ever measured on Air exposed Nb: $T_1$ = 17 s at 1.4 K



#### Y. KALBOUSSI - 19/09/2024 - TFSRF2024

# The highest coherence time ever measured on Air exposed Nb: $T_1 = 17$ s at 1.4 K



# The highest coherence time ever measured on Air exposed Nb: $T_1$ = 17 s at 1.4 K





# The highest coherence time ever measured on Air exposed Nb: $T_1$ = 17 s at 1.4 K



# 

### **Before the annealing : EP + HPR**



We observe an amorphous Nb oxide of 6.5 nm thickness

### After Annealing: 650°C-10hrs + HPR



After annealing, the oxide is significantly thinner and shows crystalline regions

#### Y. KALBOUSSI - 19/09/2024 - TFSRF2024

### **After Annealing**



 FFT analysis shows that those crystalline regions are mainly NbO crystallites.

- We conclude that the annealing at 650°C- 10Hrs transfroms the Nb<sub>2</sub>O<sub>5</sub> native oxide into partially crystalline NbO.
- When re-exposed to air, Nb<sub>2</sub>O<sub>5</sub> regrows partially around these crystallites.
- In-situ synchrotron analysis can be done to confirm this mechanism.



# In the future ?

- We are waiting for RF tests on ZrO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> and Ta<sub>2</sub>O<sub>5</sub> cavities.
- We are collaborating with the qubits community in order to test this approach on 2D resonators and Qubits.

# Thank you for your attention ! questions ?

### 2D resonators





### 2D resonators + Qubits



SRF cavities (3D resonators )





[1] Müller, Clemens, Jared H. Cole, and Jürgen Lisenfeld. "Towards understanding two-level-systems in amorphous solids: insights from quantum circuits." *Reports on Progress in Physics* 82.12 (2019): 124501.

[2] ] Romanenko, A., and D. I. Schuster. "Understanding quality factor degradation in superconducting niobium cavities at low microwave field amplitudes." *Physical Review Letters* 119.26 (2017): 264801.

[3] Roy, Tanay, et al. *Qudit-based quantum computing with SRF cavities at Fermilab*. No. FERMILAB-CONF-24-0026-SQMS. Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States), 2024

[4] Kalboussi, Yasmine, et al. "Reducing two-level systems dissipations in 3D superconducting niobium resonators by atomic layer deposition and high temperature heat treatment." *Applied Physics Letters* 124.13 (2024).

[5] Murthy, Akshay, et al. "Detailed Structural and Chemical Analysis of Amorphous Compounds in Superconducting Qubit Systems." (2024).

[6] Romanenko, A., et al. "Three-dimensional superconducting resonators at T< 20 mK with photon lifetimes up to τ= 2 s." *Physical Review Applied* 13.3 (2020): 034032.

[7] Abdisatarov, B., Bafia, D., Murthy, A., Eremeev, G., Elsayed-Ali, H. E., Lee, J., ... & Grassellino, A. (2024). Direct Measurement of Microwave Loss in Nb Films for Superconducting Qubits. *arXiv preprint arXiv:2407.08856*.