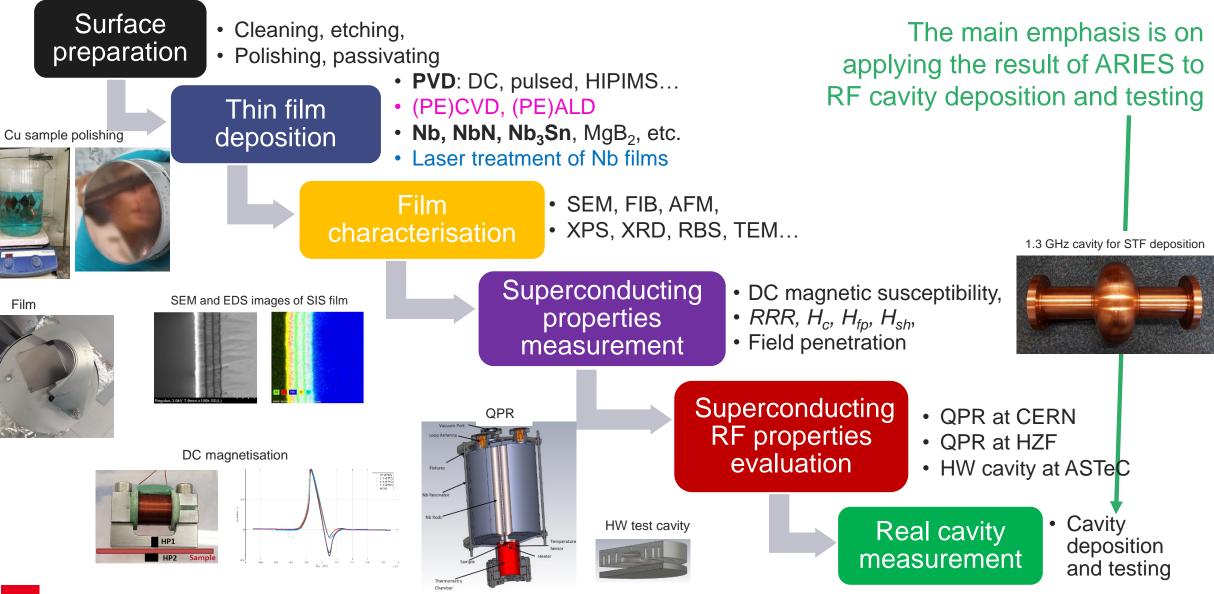


European projects

- RF Panel - Thin films

Claire Antoine, Oleg Malyshev

EUCARD ¹/₂, ARIES... Main results


Better understanding of a correlation between:

- substrate preparation,
- deposition process,
- thin film characterisation,
- the DC and AC SC evaluation results
- the TF behavior at RF conditions

In addition:

- Exploring other than Nb SC materials
- deposition target development
- Cu cavity production

IFAST WP9 contour

	IFAST WP9 Partners	Leadi	ng Participating		
1	CEA (Saclay, France)	WP, Tas and 4	sks 1 Task 1 , 2, 4 , 6		
3	IEE-SAS (Bratislava, Slovakia)		Tasks 2-6		
4	INFN/LNL (Legnaro, Italy)	Task 2	Tasks 1, 2 , 3, 5, 6		
5	INFN/LASA (Milano, Italy)		Tasks 2, 3		
6	Piccoli S.r.l. (Noale (VE), Italy)		Tasks 2, 3		
7	Helmholtz-Zentrum Berlin (Berlin, Germany)	Task 6	Tasks 1 and 6		
8	RTU (Riga, Latvia)	Task 5	Task 5		
9	University Siegen, (Siegen, Germany)	ÄT	Tasks 2, 3, 6		
10	UKRI/STFC/ASTeC (Daresbury, UK)	STFC WP, Tas ASTeC and 3	sks 1 Tasks 1, 2, 3 , 5, 6		
11	Lancaster University (Lancaster, UK)		Tasks 1 - 3		
12	Jlab (Newport News, Virginia, USA)	Jefferson Lab	Tasks 1, 2		
13	PTI (Physics-Polytechnic Institute, Minsk, Belarus)	MEPH	Tasks 1, 2		
14	MEPHI (National Research Nuclear University, Moscow, F	The Annual Annual	Tasks 1 - 3		
15	Helmholtz-Zentrum Dresden-Rossendorf (Dresden, Germ		Tasks 1 – 3, 5		

+participation from CERN and U. Hamburg

Accelerator R&D Roadmap - RF Panel -Thin films Identified axis of R&D

1. Continue R&D niobium on copper

- Fabrication cost reduction
- Reaching same performances as bulk Nb (1,3-0,4 GHz, various shapes) on single cells, then on multi-cells

2. Intensify R&D of new superconductors on Cu

- Same performance (Q₀) as Nb @ 4,2 K instead of 2 K
- A15 compounds (Nb₃Sn, Nb₃Al, V₃Si) and MgB₂

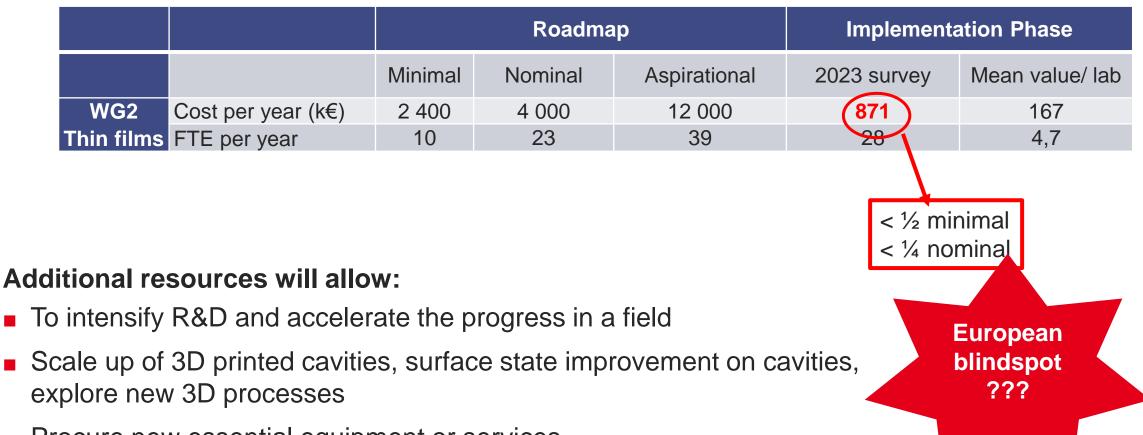
3. Pursue multilayers (SIS structures)

- Reaching higher gradients (and Q₀ !)
- Going from sample to cavities

4. Intensify Cu cavity production and surface preparation.

- No welding, smooth surfaces, possible diffusion barriers
- Large series production

5. Develop 3D printing and/or innovative cooling techniques.


Cryocooling, inbuilt circulation

6. Infrastructures and Manpower

- Dedicated characterization set-ups
- Dedicated thin film infrastructures

Contour should keep the same... ... but one need to accelerate/fill the holes

Procure new essential equipment or services

1-3: thin films on Cu, Multilayers

- 1- Fabrication cost reduction for cavity fabrication with frequencies < 700 MHz.</p>
 - Accelerate prototypes testing $@ \neq w$ with the new techniques (mainly substrates/task 4)
- 2- Intensify R&D of new superconductors on Cu 4.2 K operational cost saving:
 - Nb₃Sn (but not limited to)
 - Explore other fabrication methods (electrodeposition, ALD, bronze route => easy industrialization)
 - Overcome composition issues (try other A 15 less sensitive, e.g. V₃Si)
 - Explore possible issues (tunability, flux trapping...) (limited work taken in charge by ISAS, must be extended to all explored routes)
 - MgB₂
 - Launch an effective activity in Europe (∃ in USA, China , Japan)/ find synergies with SC electronics ?
- 3- Pursue Multilayers Push for high gradient:
 - Part of it depends on 2-
 - Several labs @ the prototype phase, main issue is
 - Technical support, access to Cleanroom + RF test (often an internal money question)
 - Extended material characterization

In brief it needs mostly money + students

4-6: thin films on Cu, Multilayers

- 4- Intensify Cu cavity production and surface preparation:
 - Fabrication:
 - High TRL, Accelerate industrialization
 - Surface preparation:
 - Paramount, should also explore AM surface preparation
- 5- Develop 3D printing and Innovative cooling techniques:
 - Premises only!
 - Explore various fabrication methods
 - Explore different cooling scenarios
 - Explore possible issues (tunability, flux trapping...) (limited work taken in charge by ISAS, must be extended to all explored routes)
- 6- Infrastructures and manpower High throughput testing:
 - Budgets to help R&D to access clean rooms + RF test
 - Opening new dedicated infrastructure at CERN to other European collaborators ?

Dreamlist* per team:

Institution	Needed Workforce [FTE]	Needed infrastructures (cost per year)	
CEA	8-9 FTE Half of it: tec. support	New furnace for pre- and post- ALD processing New ALD deposition set-up for multicells (~500 k€) financial support for (10-15) RF tests and characterization subcontracts (250-300 k€)	
CERN	7 FTE	using existing equipment	
Hamburg U.	7 FTE	Ramping up present activities (ALD, QPR set-ups) Substrates (samples, cavities) PCTS / CryoSTM is needed to locally measure gap / Tc ~150 k€ ?	
HZB	1 FTE	100 k€	
HZDR	3 FTE	Flash lamp annealing of cavities + caracterisation, faster turn-over 100 k€	
INFN	8 FTE	Ramping up present activities 200 k€	
IEE	0.5-1 FTE	using existing equipment	
RTU	1-2 FTE	Ramping up present activities, new laser with higher power 200 k€	
STFC/CI	14 FTE	Full power and low power testing facilitues for 1.3 GHz cavities 200 k€	
USI	12 FTE	Process development (hollow cathode) in order to realize coating of cavities Characterization and RF tests 200 k€	

in addition to
present funding,
student non
included

Roadmap for future R&D

- Road map not far from being clearly identified by the present European actors
 - Collaboration within Europe is active
 - International Collaborations are also active
- Worldwide the landscape is the same:
 - Small teams with limited budget, limited technical support, limited access to RF tests
 - Project always come first, hence R&D is very slow
- Bulk Nb technology has reached its theoretical limits in terms of performance
- Difficult to build ambitious/ advanced machine with the same Nb technology: costs increase with:
 - Increased technological demand (higher energy, higher power machines...)
 - Increasing energy costs
 - Increasing He costs

We need to change paradigm !!!

- Thin films:
 - No European program after 2025 (except ISAS, w. limited participation)
 - Most lab have limited R&D resources (sometimes, individual countries too ☺)

Finance and staff

	Staff	PhD students	Finance per year	
Present	30	9	871 k€	
Ideal	60	18	2100 k€	

Additional resources will allow:

- To intensify R&D and accelerate the progress in a field
 - With more staff, postdocs, PhD students
 - More SC materials to explore
 - More tests of TF coated RF cavity, as well as QPR, choke cavity and split cavity
 - To operate existing facilities, which can be used in present due to lack of staff
 - To cover LHe, consumables and electricity costs
 - To intensity laser and FLA annealing of TF on copper samples and cavities
- Scale up of 3D printed cavities, surface state improvement on cavities, explore new 3D processes
- Procure new essential equipment or services
 - For newly built or upgraded existing facilities
 - More copper cavities and their polishing
 - More deposition targets
 - More surface/material characterisation and SC property measurements
 - To enable clean room access
 - New furnace + new ALD coating set-up (to progress to larger cavities and multicell cavities)
 - Quicker progress to multicell coating and testing