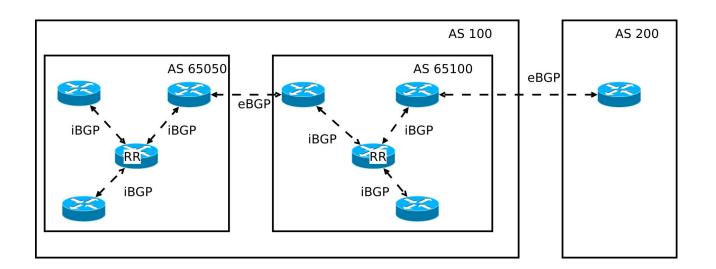

OVN BGP Agent

Bring BGP in your OpenStack cloud

Bernard Cafarelli < bcafarel@redhat.com>


What is BGP?

What is BGP?

- Allows exchange of routing information (tcp/179)
- Autonomous System (AS) is a collection of IP routing prefixes under the control of a single administrative entity.
- Exterior (eBGP) and Interior (iBGP).
- Standard for Internet routing, most ISPs require it to establish routing between one another.
- Widely used in large private IP networks

BGP for OpenStack

Layer 2 deployments

Typically data centers route packets at upper layers of the topology, with the lower layers operating as a L2 network.

Issues

- Large failure domains
- Large broadcast domains (broadcast, multicast, anycast)
- More static configuration
- Scalability issues
- Slow convergence time (Gratuitous ARPs, MAC learning, STP)
- TCAM exhaustion

Network Protocols

- ARP
- STP
- VLAN
- LACP Bonding
- M-LAG
- vPC

BGP for OpenStack

Going to Layer 3

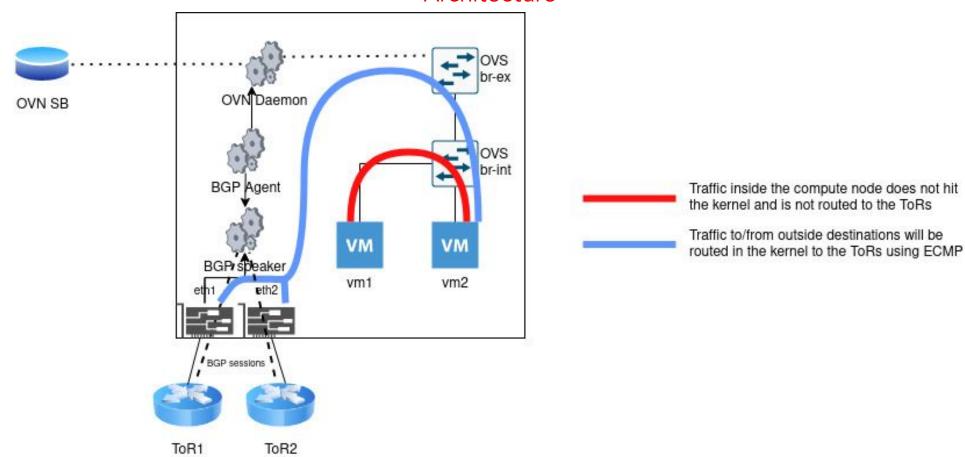
L3 data centers route packets at the lowest levels of the hierarchy (ToR and on the worker nodes).

Resolves Issues

- Smaller L2 failure domains
- Smaller L2 broadcast domains
- Dynamic configuration
- Faster convergence (<1 ms)

Network Protocols

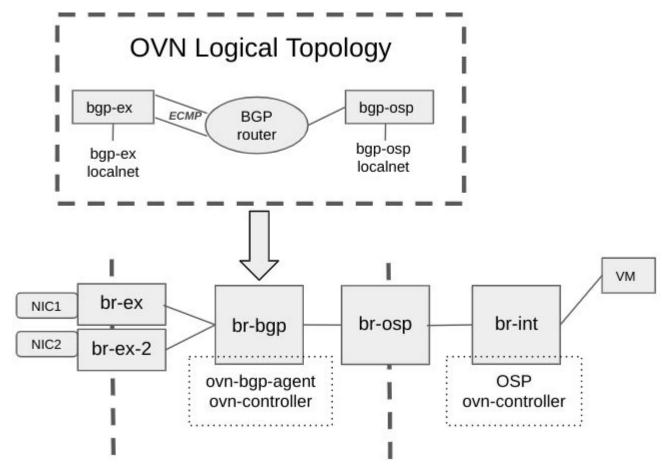
- Routing Protocol (e.g. BGP)
- ECMP
- BFD



Components

- Python based daemon running on each node
 - Monitors the **OVN database** to catch the events to trigger the actions
 - Relies on **FRRouting (FRR)** for BGP protocol implementation
 - Multiple exposing methods to route the traffic between the OVN overlay and the physical network, leveraging either:
 - **kernel networking** capabilities
 - a node-local OVN cluster
- Exposed IP addresses
 - VMs and load balancers on provider networks (or associated Floating IPs)
 - Optionally, VMs on tenant networks (can be controlled by address scopes)
 - And more (IPv6 GUA, advertise tenant networks per VM or per subnet, ...)

Architecture


Traffic routing (kernel routing)

- Traffic between nodes/BGP Advertisement
 - Actions to trigger FRR to advertise the route
- Traffic within a node/Redirecting traffic to OVN overlay
 - Set of IP rules, IP routes (on separate routing tables) and ARP entries
- Traffic within a node/Redirecting traffic from OVN overlay
 - Kernel sysctl knobs for ARP/NDP
 - Extra flow on ovs provider bridges to rewrite destination MAC address
- No support for overlapping CIDRs (avoid with address scopes, subnet pools, ...)

Traffic routing (OVN cluster)

- Traffic between nodes/BGP Advertisement
 - Actions to trigger FRR to advertise the route
- Traffic within a node/Redirecting traffic to or from the OVN overlay
 - Local OVN cluster on node
- Limitations
 - Requires OVN>=23.09
 - No BFD support (for NIC failover)
 - o IPv6 support

Improvements

- First implemented exposing method uses additional components and settings beyond
 OVN (IP rules, routes, ARP entries)
- Now supported natively in OVN via the local cluster per node
 - Less internal hops
 - This also allows to add support for hardware acceleration/DPDK
- Switch from OVN southbound database to northbound database (better scalability, more stable API)
- And more coming (initial support for L3 EVPN type-5 routes, ...)

Project history so far

- Upstream milestones
 - August 2021: repository creation
 - February 2022: version 0.1
 - October 2022: new contributors and drivers
 - April 2023: project accepted in Neutron stadium
 - May 2023: version 0.4, integrated in OpenStack release cycle, initial support for local OVN cluster
- Red Hat OpenStack Platform
 - Became fully supported in version 17.1 (based on Wallaby, kernel routing)
 - Upcoming version 18 (agent based on 2023.2/Bobcat)

Upcoming steps

- Performance testing on NFV use-cases and exposing methods comparison
- L3 EVPN driver recently merged
- API efforts in progress
- OVN community exploring tighter integration between OVN and BGP, discussed in latest <u>community meeting</u>

Beyond the agent and dataplane

- Scope and design differences with neutron-dynamic-routing
 - Focus on OVN and pure L3 datacenter architecture
 - o Full-feature FRR daemon vs dedicated specific BGP speaker
 - Support for provider network IP addresses
 - Support for EVPN
 - neutron-dynamic-routing caveats with DVR and ML2/OVN
- What about the control plane?
 - Desire for controllers in separate racks/datacenters
 - More static configuration, stretched L2 domain can work
 - Depends on your deployment tool ask your favourite vendor

Resources

- Project page and Launchpad bug reporting
- Main <u>documentation</u> (including extensive contributor documentation)
- Luis Tomás Bolivar's <u>blog</u> has multiple detailed articles
- Red Hat OSP 17.1 <u>documentation</u> on dynamic routing (search "OSP 17.1 BGP")

Questions?

- <u>openstack-discuss</u> mailing list
- #openstack-neutron (OFTC network) IRC channel

