Artwork adapted from Sandbox Studio, Chicago with Ana Kova

BHC

Oltre il Modello Standard

Sapori dei quark

Asimmetria materia-antimateria

6 Marzo 2024

Fisica del sapore a LHC - l'esperimento LHCb -

Presentazione delle attività di tesi magistrali

martino.borsato@unimib.it

Il Modello Standard

Il Modello Standard

RRÍŤTI

Il Modello Standard

Il settore del sapore

Accoppiamenti dell'Higgs (Yukawa) 13 parametri liberi

Masse dei fermioni

 Pattern peculiare di masse dei fermioni

Mescolamento dei quark

- Transizioni di sapore gerarchiche (matrice CKM)
- Unica fonte di asimmetria materia-antimateria nel MS

"The Flavour Puzzle"

- Che origine ha il pattern peculiare di sapori del MS?
- La soluzione a questo e altri problemi del MS potrebbe trovarsi ben oltre l'energia di LHC
- Piccoli effetti quantistici potrebbero essere visibili a più bassa energia
- Studi di precisione della "struttura di sapore" del MS hanno il potenziale di rivelare questi effetti, specialmente se la nuova fisica ha una struttura di sapore diversa

Il sapore nella storia del MS

Alcune scoperte indirette nel sapore

Il sapore oltre il MS

Si vedano per esempio <u>UTFit</u> e <u>JHEP 0803:049,2008</u>

Fisica del sapore a LHC

- Fisica del sapore necessita
 sorgente di quark pesanti
- LHC: Collisioni di protoni con energia 13 TeV a 40 MHz
- Quark *b* pesa solo 5 GeV
 → 10 milioni al secondo
- Molto difficili da identificare e misurare con precisione
- Uno dei 4 grandi detector di LHC ha un design dedicato: LHCb

L'esperimento LHCb

LHCb

design dedicato alla fisica del sapore

→ Più grande dataset al mondo di adroni beauty e charm

Le analisi di fisica del gruppo LHCb-Bicocca

Contatti: <u>marta.calvi@unimib.it</u>, <u>maurizio.martinelli@unimib.it</u>, <u>martino.borsato@unimib.it</u>

Transizioni $b \rightarrow u$

Proposta di tesi: Misura V_{ub} con il decadimento $B_s \rightarrow K \mu \nu$. Classificazione del segnale con ML, modellizzazione e sottrazione statistica del fondo, determinazione dell'elemento di matrice CKM V_{ub} con fit multidimensionale

- **Tensioni** tra determinazioni "esclusive" e "inclusive"
- Cosa c'è dietro?

Universalità leptonica

- "Universalità leptonica"
 Il MS prevede che le interazioni di gauge siano indipendenti dal sapore dei leptoni (μ, τ)
- Nuove interazioni potrebbero violare questa simmetria → sarebbe un segno chiarissimo di fisica oltre il MS
- I dati indicano una possibile (~3σ)
 violazione dell'universalità leptonica
 → necessarie altre misure

 $b \to c \ell \nu$ adronizzata in $\bar{B} \to D^{(*)} \ell^- \bar{\nu}$

Proposta di tesi: Test dell'universalità leptonica in $b \rightarrow c\ell\nu$. Prima analisi del grande dataset di Run2 e possibilità di partecipare all'analisi dei nuovi dati 2024. Test con nuovi osservabili. Studio della sensibilità di una analisi angolare ai coefficienti della teoria effettiva di campo.

Mixing e violazione CP nel charm

- Breve storia della violazione CP:
 - **1964**: CPV in $s \rightarrow d$ (Cronin & Fitch)
 - **2001**: CPV in $b \rightarrow d$ (BaBar & Belle)
 - **2013**: CPV in $b \rightarrow s$ (LHCb)
 - 2019: CPV in $c \rightarrow u$ (LHCb)

Prossimo step:

Misura CPV nelle interferenze quantistiche nel mixing $D^0 - \overline{D}^0$

Dataset di $D^0 \rightarrow K^0_S \pi^+ \pi^-$

2 Proposte di tesi:

1) Mixing e CPV in decadimenti multibody del D^0

2) Mixing e CPV in decadimenti semileptonici del D^0 Misure di precisione con dataset molto grandi. Fit complessi di effetti quantistici di interferenza e CPV.

Identificazione di $c \rightarrow u\gamma$

• Transizioni $c \rightarrow u$ molto rare nel MS

- Cancellazione delle ampiezze (GIM) $A(c \rightarrow d \rightarrow u) + A(c \rightarrow s \rightarrow u) \simeq 0$
- Sensibile a contributi di nuova fisica!

 $BR(D^0 \to \rho^0 \gamma) = (1.77 \pm 0.30) \times 10^{-5}$

Sfida sperimentale
 Miliardi di charm prodotti
 Grande fondo da $\pi^0 \rightarrow \gamma \gamma$

Analisi LHCb con tecnica "standard"

Sviluppo nuova tecnica basata su conversioni $\gamma \rightarrow e^+e^-$

Proposta di tesi

Sviluppo di un classificatore basato su ML per ridurre il fondo. Fit delle distribuzioni cinematiche per la quantificazione del fondo residuo. Calcolo delle efficienze e ottimizzazione della selezione. Stima della sensibilità della misura e confronto con metodo standard.

Altre analisi

- Studio della struttura del meson *B* con il decadimento $B^+ \rightarrow \mu\nu\gamma$
- Studio delle transizione rare $b \to s\ell^+\ell^$ con analisi angolare di $B^0 \to K^*e^+e^-$
- Ricerca di transizioni $\tau \rightarrow \mu\mu\mu$ che violano il sapore leptonico
- Ricerca di *fotoni oscuri* molto leggeri con nuove tecniche di analisi in real time

Venite a
parlarne
con noi!marta.calvi@unimib.it
maurizio.martinelli@unimib.it
martino.borsato@unimib.it

Analisi angolari multidimensionali

Sviluppi software e hardware del gruppo LHCb-Bicocca

Contatti: marta.calvi@unimib.it, maurizio.martinelli@unimib.it, martino.borsato@unimib.it, marco.pizzichemi@unimib.it

Deep Learning per analisi in real time

- Goal: prendere dati a luminosità più alta
 - Tantissime combinazioni di particelle e fondo
 - Throughput limitato permette di salvare solo parte dell'evento
- Soluzione proposta:
 - Deep-learning based Full-Event Interpretation
 - Consiste in vari step di filtri basati su D
 Graph Neural Networks (GNNs).
 - Ricostruzione dei decadimenti interessanti e riduzione del fondo
 - La parte dell'evento non interessante non viene scritta su disco

Prototipo dell'algoritmo in fase di ottimizzazione

Sviluppo e test di Graph Neural Networks per la ricostruzione e selezione di decadimenti di adroni pesanti ad LHC. Selezione delle particelle neutre. Estensione agli adroni charmati. Applicazioni offline. Validazione sui dati.

Deep Learning per ultra-fast simulation

- Simulazioni dettagliate necessarie per l'interpretazione degli eventi di LHC
- Oggi 90% della CPU → non sostenibile nella fase di alta luminosità
- Soluzione proposta:
 - Velocizzare alcune fasi della simulazione con algoritmi di Deep Learning
 - In particolare **Generative AI** con GANs (Generative Adversarial Netowrk)
 - Algoritmi più veloci su GPUs

In LHCb stiamo sviluppando il progetto Lamarr

Deep Learning per ricostruzione RICH

RICH = Ring Imaging Cherenkov (detector)

- LHCb ha un detector RICH per identificare gli adroni carichi
- Raggio cerchio Cherenkov → Angolo di emissione luce → massa della particella
- Migliaia di tracce per evento, qualche decina di fotoni per traccia
- Problema complesso di pattern recognition e classificazione
 → Deep Learning?

Piano di rivelazione dei fotoni

Nuove tecniche di tracciamento delle particelle

Tracking con FPGA

- Sviluppo di algoritmi di tracking su FPGA
- Basato su algoritmo di tracking <u>RETINA</u> che stiamo testando a LHCb
- Algoritmo può essere esteso per il tracking di particelle che decadono più tardi
- Nuove schede FPGA a Bicocca vanno testate!

FPGA: Field Programmable Gate Array

Tracking con QC

- Algoritmi quantistici per sistemi lineari sono esponenzialmente più veloci dei metodi classici (O(log N) vs O(N))
 → possiamo usarli per il tracking?
- Sviluppo di algoritmi di tracking per computer quantistici (QC)
- Confronto con algoritmi classici

pgrade del calorimetro elettromagnetico

- Nuova tecnologia necessaria!
 - Resistenza alla radiazione, granularità, misura di tempo ($\sigma_t \simeq 20 \text{ps}$)
- Spaghetti Calorimeter (SPACAL)
 - Possibilità di partecipare a test di prototipi con testbeam al CERN
 - Analisi dei dati ottenuti e confronto con simulazione Geant4
 - Studio delle performance dei prototipi
 - Studio di un algoritmo di identificazione delle particelle

Contatti: marta.calvi@unimib.it, marco.pizzichemi@unimib.it

Prototipo di modulo SPACAL

Time resolution with dual readout of W-SpaCal

HCb@Bicocca

- Fisica dei collider, adroni, sapore dei quark
- Simmetrie del MS e teorie oltre il MS
- Analisi statistica e Machine Learning
- Programmazione in python e/o C++
- Sviluppo detector di ultima generazione
- Un gruppo internazionale e in crescita

Contatti:

marta.calvi@unimib.it maurizio.martinelli@unimib.it martino.borsato@unimib.it marco.pizzichemi@unimib.it

LHCb group @Bicocca

BACKUP

Fisica con fasci di muoni

- I fasci di muoni permettono:
 - Misura del raggio del protone con atomi muonici (progetto FAMU)
 - **Neutrino factory**: neutrini muonici ed elettronici da $\mu \rightarrow e\nu_e \nu_\mu$
 - Muon collider: Higgs factory o esplorazione della frontiera dell'energia

Atomi muonici

MICE: Muon Ionisation Cooling Experiment

Muon Collider Collaboration

Proposta di tesi: Studio della diagnostica di fascio per il dimostratore del muon collider

Proposta di tesi: Costruzione Sistema di time of flight (TOF) con risoluzione ~50 ps Proposta di tesi:

Atomi muonici: test in laboratorio, sviluppo modelli teorici, analisi dei dati

FAMU - fisica degli atomi muonici

•The proton radius is extremely hard to measure with high precision and good control of systematics

•FAMU will realize a spectroscopic measurement of the hyperfine splitting (hfs) in the 1S state of muonic hydrogen, providing crucial informations on proton structure and muon-nucleon interaction

•<u>The method is outlined in the figure:</u>

• Experimental requirements:

- □ An intense pulsed muon beam (RIKEN-RAL) \rightarrow beam hodoscope for its characterization developed at MIB
- detection of X-rays ~ 100 keV (LaBr3:Ce crystals with SiPM readout developed at MIB)
- \square An intense tunable MIR laser with $\lambda \sim$ 6785 nm and a linewidth $\sim~0.07$ nm

Contatti: maurizio.bonesini@unimib.it

Possible arguments for a master thesis:

- Laboratory tests of 1" LaBr3:Ce read by SiPM arrays
- Study at CNAO beam facility of the performances of a fiber-SiPM beam hodoscope
- Laboratory study of MIR detectors and characterization of specialty fibers for MIR light transport
- Theoretical models for modelling the transfer rates in μp interactions
- Analysis of data collected at RAL for measurement of the proton Zemach radius

Bibliography:

- 1. R.Pohl et al. Science 353, 669 (2016)
- 2. A.Adamczack et al, JINST 11, P05007 (2016); C. Pizzolotto et al., Eur.Phys.J.A 56 (2020) 7, 185
- 3. M. Bonesini et al. JINST 12, C03035 (2017)
- 4. E. Mocchiutti et al, Phys. Lett. A 384 (2020) 126667
- 5. M. Bonesini et al., Condens. Mat. 8 (2023) 4,99
- 6. M. Stoilov et al. Phys. ReV. A (2023) 3,032823

Flavour-changing current

Hadron decays

- Quarks hadronise into bound states (hadrons):
 - Unflavoured *uū*, *dd*, *ud*
 - Strange mesons: *sū*, *sd*
 - Charm mesons: $c\bar{u}$, $c\bar{d}$, $c\bar{s}$
 - Beauty mesons: $b\bar{u}$, $b\bar{d}$, $b\bar{s}$, $b\bar{c}$
 - Baryons $q_i q_j q_k \dots$
 - Tetraquarks, Pentaquarks
 - A huge zoo 🐂 🕽 📐 🔬 🦩

The beauty of the beauty quark

Good theoretical properties:

- Decays only via weak interaction
- Can decay to 4 quarks and all leptons
- Small SM decay width
 - Flavour suppressed $|V_{cb}|, |V_{ub}| \ll 1$
 - Weak suppressed $m_b/m_W \ll 1$
 - Sensitive to small new contributions
- Large mass $m_b \gg \Lambda_{\text{QCD}}$ \Rightarrow precise calculations
- Hadronises before decaying

The beauty of the beauty quark

- Good experimental properties:
 - $\tau_B \simeq 1.5 \text{ ps} \rightarrow \text{displaced decay vertex}$
 - $m_b \simeq 5 \text{ GeV} \rightarrow \text{cheap to produce}$
 - Huge phenomenology
 - Hadronises in many ways
 - Decays to hundreds of channels

LHCb upgrades

A detector challenge: cope with huge LHC cross sections

- Precise real-time analysis (reduce throughput)
 → ultra-fast detectors and triggers
- Better data quality (segmentation, resolution)
- Track collisions in 4D \rightarrow timing at 10 ps

