
Alexander Held1

1 University of Wisconsin-Madison

US ATLAS / IRIS-HEP Analysis Software Training Event 2024
https://indico.cern.ch/event/1376945/

July 19, 2024

Template fits with
pyhf & cabinetry

This work was supported by the U.S. National Science Foundation (NSF) under Cooperative Agreements OAC-1836650 and PHY-2323298.

https://indico.cern.ch/event/1376945/

Big picture: turning collisions into publications
• What we want: statements about physical parameters , given data collected by an experiment

‣ connection: the likelihood — key ingredient for all subsequent statistical inference

θ x

Lx(θ) = p(x ∣ θ)

2Alexander Held

Ph
ys

. L
et

t.
B

78
4

(2
01

8)
 1

73 N
ature 607, 52–59 (2022)

observations x

p(x ∣ θ)

statements about parameters θ

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-13/
https://doi.org/10.1038/s41586-022-04893-w

Statistical inference based on the likelihood (ratio)
• Likelihood function is the key ingredient for statistical inference

‣ usually a function of many parameters: those we want to measure and nuisance parameters (NPs)

‣ we typically use the profile likelihood: NP values are chosen to maximize the likelihood

• Measure a parameter:

‣ minimize

• Discovery significance, parameter limits, …

‣ use test statistics based on profile likelihood ratio

‣ and/or Neyman construction

Lx(θ) = p(x ∣ θ)

−log Lx(θ)

3Alexander Held
arXiv.1007.1727

figure credit: L. Heinrich

full likelihood

profile likelihood

λ(μ) =
L (μ, ̂θ)
L (̂μ, ̂θ)

̂
profile NPs

https://doi.org/10.48550/arXiv.1007.1727

CERN-EX-1301009

An intractable likelihood function
• We need — unfortunately this very high-dimensional integral is intractable, cannot evaluate thisp(x ∣ θ)

4Alexander Held

parton shower zSparton level zP detector interaction zD

2. The Standard Model

g

g

H

q

q

q

H

q

q

q̄

W /Z

H

g

g

t̄

H

t

W /Z

Figure 2.9: Exemplary Feynman diagrams for the gluon–gluon fusion (top left), vector boson fusion
(top right), V H (bottom left), and t t̄ H (bottom right) processes

 [TeV] s
6 7 8 9 10 11 12 13 14 15

 H
+X

) [
pb

]

→
(p

p
σ

2−10

1−10

1

10

210 M(H)= 125 GeV

LH
C

 H
IG

G
S

XS
 W

G
 2

01
6

 H (N3LO QCD + NLO EW)

→pp

 qqH (NNLO QCD + NLO EW)

→pp

 WH (NNLO QCD + NLO EW)

→pp
 ZH (NNLO QCD + NLO EW)

→pp

 ttH (NLO QCD + NLO EW)

→pp

 bbH (NNLO QCD in 5FS, NLO QCD in 4FS)

→pp

 tH (NLO QCD, t-ch + s-ch)

→pp

Figure 2.10: Dominant processes for Higgs boson production with associated cross-sections in proton–
proton collisions, shown as a function of COM energy. Bands indicate theoretical uncertainties in the
cross-section calculation [34].

Higgs boson production

There are four major Higgs boson production modes accessible in proton–proton collisions at the LHC

[34]. Figure 2.9 shows exemplary LO Feynman diagrams for these four modes, while the respective

cross-section as a function of the center-of-mass (COM) energy are presented in figure 2.10 for a Higgs

boson mass of 125 GeV.

The loop-induced gluon–gluon fusion is the dominant production mode. Due to its large Yukawa

18

Fig. 1 Pictorial representation of a tt̄h event as produced by an event generator. The hard interaction (big
red blob) is followed by the decay of both top quarks and the Higgs boson (small red blobs). Additional
hard QCD radiation is produced (red) and a secondary interaction takes place (purple blob) before
the final-state partons hadronise (light green blobs) and hadrons decay (dark green blobs). Photon
radiation occurs at any stage (yellow).

on the understanding of LHC physics. The construction, maintenance, validation and extension of event
generators is therefore one of the principal tasks of particle-physics phenomenology today.

The inner working of event generators

Fig. 1 pictorially represents a hadron-collider event, where a tt̄h final state is produced and evolves by
including effects of QCD bremsstrahlung in the initial and final state, the underlying event, hadronisation
and, finally, the decays of unstable hadrons into stable ones. Event generators usually rely on the fac-
torisation of such events into different well-defined phases, corresponding to different kinematic regimes.
In the description of each of these phases different approximations are employed. In general the central
piece of the event simulation is provided by the hard process (the dark red blob in the figure), which
can be calculated in fixed order perturbation theory in the coupling constants owing to the correspond-
ingly high scales. This part of the simulation is handled by computations based on matrix elements,
which are either hard-coded or provided by special programs called parton-level or matrix-element (ME)
generators. The QCD evolution described by parton showers then connects the hard scale of coloured
parton creation with the hadronisation scale where the transition to the colourless hadrons occurs. The
parton showers model multiple QCD bremsstrahlung in an approximation to exact perturbation theory,
which is accurate to leading logarithmic order. At the hadronisation scale, which is of the order of a
few ΛQCD, QCD partons are transformed into primary hadrons (light green blobs) by applying purely
phenomenological fragmentation models having typically around ten parameters to be fitted to data.
The primary hadrons finally are decayed into particles that can be observed in detectors. In most cases
effective theories or simple symmetry arguments are invoked to describe these decays. Another impor-
tant feature associated with the decays is QED bremsstrahlung, which is simulated by techniques that
are accurate at leading logarithmic order and, eventually, supplemented with exact first-order results. A
particularly difficult scenario arises in hadronic collisions, where remnants of the incoming hadrons may
experience secondary hard or semi-hard interactions. This underlying event is pictorially represented by
the purple blob in Fig. 1. Such effects are beyond QCD factorisation theorems and therefore no complete
first-principles theory is available. Instead, phenomenological models are employed again, with more
parameters to be adjusted by using comparisons with data.

3

JHEP 0902 (2009) 007

The dependence on
parameters is here.θ

dzPdzD p (zD ∣ zS)p (zS ∣ zP) p (zP ∣ θ)p (x ∣ zD)p (x ∣ θ)= ∫ dzS

Phys. Lett. B 784 (2018) 173

observables x

https://cds.cern.ch/record/1505342
https://doi.org/10.1088/1126-6708/2009/02/007
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-13/

Density estimation & summary statistics

• There is one thing we can do: simulate samples

‣ use MC samples to estimate the density , e.g. by filling histograms with the samples

• Histograms are hit by the curse of dimensionality

‣ number of samples needed scales exponentially with dimension of observation

• We use summary statistics to reduce dimensionality of our measurements

‣ operate on objects like jets instead of detector channel responses

‣ use physicists & machine learning to efficiently compress information

• Challenge: finding the right low-dimensional summary statistic — crucial for sensitivity

xi ∼ p(x ∣ θ)

p(x ∣ θ) xi

xi

5Alexander Held

Eur. Phys. J. C 84 (2024) 78

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2022-12/

HistFactory & pyhf

6

The HistFactory model: overview

• HistFactory is a statistical model for binned template fits

‣ prescription for constructing probability density functions (pdfs) from small set of building blocks

‣ covers wide range of use cases

‣ models can be serialized to workspaces

7

p(⃗n, ⃗a ∣ ⃗k, ⃗θ) = ∏
i

Pois(ni ∣ νi(⃗k, ⃗θ)) ⋅ ∏
j

cj(aj ∣ θj)

prediction (summed
over samples)

observed data

auxiliary data, e.g. from
calibration measurement product over all

bins in all channels

unconstrained
parameters, e.g. POI

constrained nuisance
parameters

constraint term (e.g.
Gaussian)

Alexander Held

HistFactory: implementations
• Until 2018, the HistFactory model had only been implemented in ROOT

‣ using RooFit, with RooStats available for statistical inference

• pyhf implements the HistFactory model in pure Python (pip install pyhf)

‣ leverages tensor backends: efficient vectorized calculations & hardware acceleration

- can automatically differentiate through statistical model (computational graph)

✦ exact gradients for minimizers

✦ enables end-to-end analysis optimization: neos

- backend-agnostic API (and CLI)

8Alexander Held

computational graph
for HistFactory

example: autodiff
through model yield
prediction (e.g. for
uncertainty propagation)
it just works!

https://pyhf.readthedocs.io/
https://indico.cern.ch/event/1022938/contributions/4487419/

A HistFactory JSON workspace with pyhf
• JSON structure maps directly to workspace structure

‣ highly human-readable!

9Alexander Held

two samples modifiers

single channel

observed data

measurement configuration

SR

Si
gn

al

Ba
ck

gr
ou

nd

mu Modeling_unc

pyhf: summary

• pyhf provides

‣ a declarative JSON schema for workspaces, used for statistical model publication and reinterpretation

‣ a HistFactory implementation in Python that leverages tensor backends

• pyhf is a library exposing an API providing relevant functionality also found in RooFit, HistFactory and RooStats

‣ it does not provide high-level functionality which applications like HistFitter, TRExFitter, WSMaker focus on

‣ examples of things the pyhf API provides:

- model yield prediction & NLL given parameters, details about model structure, MLE, workspace pruning

‣ examples of things not in scope for pyhf:

- post-fit model prediction plots, nuisance parameter ranking

10Alexander Held

Model construction & use with cabinetry

11

Intro: constructing and using statistical models

• Binned template fits are widely used for statistical inference

• Statistical models used in particle physics are often rather complex

‣ lots of book-keeping to handle O(10k) histograms for typical ATLAS applications

‣ frequent model modifications needed for tests & debugging

• A set of tools emerged over time to aid with model construction and inference

‣ In ATLAS: HistFitter and many more internal tools, Combine for CMS

‣ (some of) these tools also provide utilities to visualize inference result & simplify debugging

12Alexander Held

https://github.com/histfitter/histfitter
https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

• cabinetry is a modern Python library for constructing and/or operating HistFactory models

❯pip install cabinetry

‣ uses pyhf, integrates seamlessly with the Python HEP ecosystem

‣ modular design: use the pieces of cabinetry you need

‣ part of the Scikit-HEP project

• cabinetry pyhf is roughly like TRExFitter ROOT (RooFit, HistFactory, RooStats)↔ ↔

The cabinetry library

13Alexander Held

https://github.com/scikit-hep/cabinetry/
https://pyhf.readthedocs.io/
https://scikit-hep.org/
https://github.com/scikit-hep/cabinetry/
https://pypi.org/project/cabinetry/

Working with cabinetry
• cabinetry is a Python library for creating and operating HistFactory models

‣ design and construct statistical models (workspaces) from instructions in declarative configuration

- analyzers specify selections for signal/control regions, (Monte Carlo) samples, systematic uncertainties

- cabinetry steers creation or collects provided template histograms (region ⊗ sample ⊗ systematic)

- cabinetry produces HistFactory workspaces (serialized fit model)

‣ perform statistical inference

- including diagnostics and visualization tools to study and disseminate results

14Alexander Held

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

cabinetry steering execution

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

list of phase space
regions (channels)

Designing a statistical model
• Declarative configuration (JSON/YAML/dictionary) specifies everything needed to build a workspace

‣ can concisely capture complex region ⊗ sample ⊗ systematic structure

15Alexander Held

general settings

list of
samples (MC/data)

list of
systematic

uncertainties

list of
normalization

factors

fit to

data

• Workspaces construction happens in three steps:

1) create template histograms from columnar data following config instructions

- backends execute instructions (default: uproot, experimental: coffea)

- alternatively: collect existing user-provided histograms

2) optional: apply post-processing to templates (e.g. smoothing)

3) assemble templates into workspace (JSON file)

• Utilities provided to visualize and debug fit model

Template histograms and workspace building
visualization of individual

template histograms

fit model visualization

event yield table

synthetic examples used for these slides 16

Signal_region
pre-fit

Signal_region
post-fit

Alexander Held

https://uproot.readthedocs.io/
https://coffeateam.github.io/coffea/

• Implementations for common inference tasks exist

‣ includes associated visualizations

Statistical inference

upper parameter limits

nuisance parameter pulls

nuisance parameter impacts

parameter correlations

likelihood scans

discovery significance

synthetic examples used for these slides 17Alexander Held

Full workflow example

18Alexander Held

generate
histograms for all
samples: nominal

& variations

workspace:
serialized

statistical model

minimize NLLturn into
likelihood function

L (⃗k , ⃗θ) = p(⃗n , ⃗a ∣ ⃗k , ⃗θ)

inference results

can read histograms or
ntuples with cabinetry

built by cabinetry
or from external source

a function, given
(observed + auxiliary)

data
done via pyhf

⃗n , ⃗a

using function
minimizer, e.g. MINUIT

(MIGRAD algorithm)
via iminuit

plots & tables
produced by cabinetry

can wrap these steps
with cabinetry

cabinetry: summary

• cabinetry is

‣ a modular Python library to create and/or operate statistical models for inference with template fits

‣ built upon the powerful and growing Python HEP ecosystem

‣ using a slightly different design approach to other tools: more library, less framework

- analyzers will generally need to write some code: hopefully less “black box” and more flexible, but more work

19Alexander Held

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

cabinetry steering execution

Histograms
Event selection,

systematic
uncertainties

Statistical
analysis &

diagnostics

Statistical
model

building
Workspace

ROOT JSON

Backup

20

Working with an unknown workspace
• Pick a workspace from HEPData: 10.17182/hepdata.89408.v3 (analysis: JHEP 12 (2019) 060)

‣ download workspace with pyhf

‣ perform inference and visualize results with cabinetry

‣ can use inference features regardless of how a workspace was built, functionality factorizes!

• See arXiv:2109.04981 and try it on Binder

21Alexander Held

(workspace contains additional
channels not shown here)

https://doi.org/10.17182/hepdata.89408.v3
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-31/
https://arxiv.org/abs/2109.04981
https://mybinder.org/v2/gh/cabinetry/cabinetry-tutorials/master?filepath=HEPData_workspace.ipynb

pyhf tutorial material
• pyhf tutorial: https://pyhf.github.io/pyhf-tutorial/

‣ especially recommended:

- auxiliary data (helpful to understand beyond just pyhf)

- HistFactory and modifier sections (including interactive model exploration!)

• cabinetry tutorial: https://github.com/cabinetry/cabinetry-tutorials

‣ Binder links in README

• Happy to go into more detail regarding any points & work through examples with code! Feel free to ask any questions.

22Alexander Held

run interactively on
Binder & Colab

https://pyhf.github.io/pyhf-tutorial/
https://pyhf.github.io/pyhf-tutorial/HelloWorld.html#auxiliary-data
https://pyhf.github.io/pyhf-tutorial/IntroToHiFa.html
https://pyhf.github.io/pyhf-tutorial/Modifiers.html
https://github.com/cabinetry/cabinetry-tutorials

Model patching
• Especially in searches, it is common to use many different models that slightly differ

‣ same background model but many different signal hypotheses (e.g. different resonance masses)

• It is possible to edit and swap out pieces of a workspace via JSON Patch

‣ e.g. add a new component to your model

‣ or replace your signal model

23Alexander Held

figure credit: Lukas Heinrich

https://jsonpatch.com/

A measurement: primary and auxiliary observables

• Our models are a combination of primary and auxiliary measurements

‣ auxiliary: both experimental (e.g. detector calibration) and theory (e.g. changes in simulation)

pprimary(⃗x ∣ ⃗ν) ⋅ paux(⃗a)

24Alexander Held

control region 1

control
region 2

signal
region

primary observables ⃗x

auxiliary
measurement 1

auxiliary observables ⃗a

data in our analysis calibration measurements + theory
(assumed to be statistically independent)

auxiliary
measurement 2

aux 3

Systematic variations
• Need to model for any value of nuisance parameters encoding systematic uncertainties

• Ideal case: just run simulator for any value of
‣ not computationally feasible in practice

• Instead: pick some values & interpolate

‣ in practice we use on-axis variations

‣ variations typically are “one at a time”

• Lots of assumptions here that we rely on in practice

‣ where to simulate

‣ interpolation choice

‣ effects factorize

ν(⃗k, ⃗θ) ⃗θ

⃗θ

25Alexander Held

θ1

θ2

 via interpolationν(θ1)

 via interpolationν(θ2)

new unseen point

nominal simulation

simulation with alternative ⃗θ

Interpolating between points
• Use model prediction for three points , interpolate to generalize

‣ interpolation is typically “vertical”, other approaches exist (but more specialized)

‣ note: information about statistical uncertainties in varied templates is lost here (arXiv:1809.05778)

νi(⃗k, ⃗θ) θ

26Alexander Held

θ = + 1

θ = − 1

θ

ν(
θ)

 CERN
-O

PEN
-2012-016

interpolation approach is
technically relatively simple
➡ limit risk of surprises

toy example: distributions for θ = − 1, 0, + 1

vertical
interpolation

vertical interpolation

interpolation in one bin

https://arxiv.org/abs/1809.05778
https://cds.cern.ch/record/1456844

Systematic uncertainties with HistFactory
• Common systematic uncertainties specified with two template histograms

‣ “up variation”: model prediction for

‣ “down variation”: model prediction for

‣ interpolation & extrapolation provides model predictions for any

• Gaussian constraint terms used to model auxiliary measurements (in most cases)

‣ centered around nuisance parameter (NP)

‣ normalized width () and mean (auxiliary data)

‣ penalty for pulling NP away from best-fit auxiliary measurement value

θ = + 1

θ = − 1

ν ⃗θ

θj

σ = 1 aj = 0 θ

ν(
θ)

CERN
-O

PEN
-2012-016

“up”

“down” nominal

θj aj = 0

cj(aj ∣ θj)

27Alexander Held

prediction for one bin

p(aj)

aj

p(⃗n, ⃗a ∣ ⃗k, ⃗θ) = ∏
i

Pois(ni ∣ νi(⃗k, ⃗θ)) ⋅ ∏
j

cj(aj ∣ θj)

https://cds.cern.ch/record/1456844

Complication: two-point systematics
• Sometimes have cases where variations in simulator chain are discrete

‣ e.g. choice of one simulator vs alternative

• Typical treatment: interpolate to treat as continuous, symmetrize

‣ lots of assumptions here, but need to make a choice to profile

• Especially tricky to deal with when these play a large role

‣ concerns about overly constraining uncertainty of nuisance parameter

‣ best-fit model prediction may lie away from both choices

28Alexander Held

LH
CH

W
G

-2022-003

modeling choices for main background of ttH(bb)

θ

PP8

symmetrize

PH7“anti”-PH7?

two-point systematics are
inherently problematic and
deserve special attention

https://cds.cern.ch/record/2812088

