Template fits with pyhf & cabinetry

Alexander Held¹

¹ University of Wisconsin-Madison

US ATLAS / IRIS-HEP Analysis Software Training Event 2024 https://indico.cern.ch/event/1376945/ July 19, 2024

This work was supported by the U.S. National Science Foundation (NSF) under Cooperative Agreements OAC-1836650 and PHY-2323298.

Big picture: turning collisions into publications

• What we want: statements about physical parameters θ , given data x collected by an experiment

• connection: the likelihood $L_x(\theta) = p(x \mid \theta)$ — key ingredient for all subsequent statistical inference

observations *x*

statements about parameters θ

Statistical inference based on the likelihood (ratio)

- Likelihood function $L_x(\theta) = p(x \mid \theta)$ is the key ingredient for statistical inference
 - usually a function of many parameters: those we want to measure and nuisance parameters (NPs)
 - we typically use the *profile likelihood*: NP values are chosen to maximize the likelihood

An intractable likelihood function

• We need $p(x \mid \theta)$ — unfortunately this very high-dimensional integral is *intractable*, cannot evaluate this

$$p(x \mid \theta) = \int dz_D dz_S dz_P p(x \mid z_D) p(z_D \mid z_S) p(z_S \mid z_P) p(z_P \mid \theta)$$

Density estimation & summary statistics

• There is one thing we *can* do: **simulate samples** $x_i \sim p(x \mid \theta)$

• use MC samples to estimate the density $p(x \mid \theta)$, e.g. by filling histograms with the samples x_i

• Histograms are hit by the curse of dimensionality

• number of samples x_i needed scales exponentially with dimension of observation

- We use **summary statistics** to reduce dimensionality of our measurements
 - operate on objects like jets instead of detector channel responses
 - use physicists & machine learning to efficiently compress information
- Challenge: finding the right low-dimensional summary statistic crucial for sensitivity

HistFactory & pyhf

The HistFactory model: overview

• HistFactory is a statistical model for binned template fits

- prescription for constructing probability density functions (pdfs) from small set of building blocks
- covers wide range of use cases
- models can be serialized to workspaces

HistFactory: implementations

- Until 2018, the HistFactory model had only been implemented in R00T
 - using RooFit, with RooStats available for statistical inference
- pyhf implements the HistFactory model in pure Python (pip install pyhf)
 - Ieverages tensor backends: efficient vectorized calculations & hardware acceleration
 - can automatically differentiate through statistical model (computational graph)
 - + exact gradients for minimizers
 - + enables end-to-end analysis optimization: neos
 - backend-agnostic API (and CLI)

example: autodiff through model yield prediction (e.g. for uncertainty propagation) *it just works!*

computational graph
for HistFactory

Alexander Held

A HistFactory JSON workspace with pyhf

- JSON structure maps directly to workspace structure
 - highly human-readable!

pyhf: summary

pyhf provides

- a declarative JS0N schema for workspaces, used for statistical model publication and reinterpretation
- a HistFactory implementation in Python that leverages tensor backends

• **pyhf** is a **library** exposing an API providing relevant functionality also found in RooFit, HistFactory and RooStats

- it does not provide high-level functionality which applications like HistFitter, TRExFitter, WSMaker focus on
- examples of things the pyhf API provides:
 - model yield prediction & NLL given parameters, details about model structure, MLE, workspace pruning
- examples of things not in scope for pyhf:
 - post-fit model prediction plots, nuisance parameter ranking

Model construction & use with cabinetry

Intro: constructing and using statistical models

- Binned template fits are widely used for statistical inference
- Statistical models used in particle physics are often rather complex
 - Iots of book-keeping to handle O(10k) histograms for typical ATLAS applications
 - frequent model modifications needed for tests & debugging
- A set of tools emerged over time to aid with model construction and inference
 - In ATLAS: <u>HistFitter</u> and many more internal tools, <u>Combine</u> for CMS
 - (some of) these tools also provide utilities to visualize inference result & simplify debugging

The cabinetry library

• **<u>cabinetry</u>** is a modern **Python library** for constructing and/or operating **HistFactory** models

```
>pip install cabinetry
```

- uses <u>pyhf</u>, integrates seamlessly with the Python HEP ecosystem
- modular design: use the pieces of cabinetry you need
- part of the <u>Scikit-HEP</u> project

• cabinetry \leftarrow pyhf is roughly like TRExFitter \leftarrow ROOT (RooFit, HistFactory, RooStats)

Working with cabinetry

- cabinetry is a Python library for creating and operating HistFactory models
 - design and construct statistical models (workspaces) from instructions in declarative configuration
 - analyzers specify selections for signal/control regions, (Monte Carlo) samples, systematic uncertainties
 - cabinetry steers creation or collects provided template histograms (region \otimes sample \otimes systematic)
 - cabinetry produces HistFactory workspaces (serialized fit model)
 - Perform statistical inference
 - including diagnostics and visualization tools to study and disseminate results

Designing a statistical model

• Declarative configuration (JSON/YAML/dictionary) specifies everything needed to build a workspace

▶ can concisely capture complex region ⊗ sample ⊗ systematic structure

InputPath: "input/{SamplePaths}" HistogramFolder: "histograms/" Normalization: 0.05 Normalization: -0.05 Samples: ["Signal", "Background"] Type: "Normalization" Filter: "nJets >= 8" Variable: "jet pt" - Name: "ModelingVariation" Binning: [200, 300, 400, 500] Tree: "events up" Weight: "weight modeling" - Name: "Data" SamplePaths: "data.root" Tree: "events down" Weight: "weight_modeling" Algorithm: "353QH, twice" Samples: "Background" SamplePaths: "signal.root" Type: "NormPlusShape" Weight: "weight nominal" NormFactors: - Name: "Background" SamplePaths: "background.root" Weight: "weight nominal"

list of systematic uncertainties

list of normalization factors

general settings

list of phase space

regions (channels)

list of

samples (MC/data)

Template histograms and workspace building

Workspaces construction happens in three steps:

1) create template histograms from columnar data following config instructions

- backends execute instructions (default: uproot, experimental: coffea)
- alternatively: collect existing user-provided histograms
- 2) optional: apply post-processing to templates (e.g. smoothing)
- 3) assemble templates into workspace (JSON file)
- Utilities provided to visualize and debug fit model

event yield table

visualization of individual template histograms

fit model visualization

Statistical inference

- Implementations for common inference tasks exist
 - includes associated visualizations

likelihood scans

discovery significance

•••

\$ cabinetry significance workspaces/example_workspace.jsor INFO - cabinetry.fit - calculating discovery significance INFO - cabinetry.fit - observed p-value: 1.13053295% INFO - cabinetry.fit - observed significance: 2.280 INFO - cabinetry.fit - expected p-value: 0.42110716% INFO - cabinetry.fit - expected significance: 2.635

parameter correlations

nuisance parameter pulls

upper parameter limits

nuisance parameter impacts

Full workflow example

cabinetry: summary

• cabinetry is

- a modular Python library to create and/or operate statistical models for inference with template fits
- built upon the powerful and growing Python HEP ecosystem
- using a slightly different design approach to other tools: more library, less framework
 - analyzers will generally need to write some code: hopefully less "black box" and more flexible, but more work

Backup

Working with an unknown workspace

- Pick a workspace from HEPData: <u>10.17182/hepdata.89408.v3</u> (analysis: <u>JHEP 12 (2019) 060</u>)
 - download workspace with pyhf
 - perform inference and visualize results with cabinetry

Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, *b*-jets and missing transverse momentum

- can use inference features regardless of how a workspace was built, functionality factorizes!
- See arXiv:2109.04981 and try it on Binder

pyhf tutorial material

- pyhf tutorial: <u>https://pyhf.github.io/pyhf-tutorial/</u>
 - especially recommended:
 - auxiliary data (helpful to understand beyond just pyhf)
 - HistFactory and modifier sections (including interactive model exploration!)

- cabinetry tutorial: <u>https://github.com/cabinetry/cabinetry-tutorials</u>
 - Binder links in README

• Happy to go into more detail regarding any points & work through examples with code! Feel free to ask any questions.

Model patching

- Especially in searches, it is common to use many different models that slightly differ
 - same background model but many different signal hypotheses (e.g. different resonance masses)
- It is possible to edit and swap out pieces of a workspace via JSON Patch
 - e.g. add a new component to your model

Using CLI \$ pyhf cls example.json | jq .CLs_obs 0.053994246621274014 \$ cat new_signal.json [{ "op": "replace", "path": "/channels/0/samples/0/data", "value": [10.0, 6.0] }] \$ pyhf cls example.json --patch new_signal.json | jq .CLs_obs 0.3536906623262466

figure credit: Lukas Heinrich

A measurement: primary and auxiliary observables

• Our models are a combination of primary and auxiliary measurements $p_{primary}(\vec{x} \mid \vec{\nu}) \cdot p_{aux}(\vec{a})$

• auxiliary: both experimental (e.g. detector calibration) and theory (e.g. changes in simulation)

Systematic variations

• Need to model $\nu(\vec{k}, \vec{\theta})$ for any value of nuisance parameters $\vec{\theta}$ encoding systematic uncertainties

 θ_2 • Ideal case: just run simulator for any value of θ new unseen point • not computationally feasible in practice $\nu(\theta_2)$ via interpolation Instead: pick some values & interpolate in practice we use on-axis variations variations typically are "one at a time" nominal simulation • Lots of assumptions here that we rely on in practice where to simulate interpolation choice $\nu(\theta_1)$ via interpolation simulation with alternative θ effects factorize

Interpolating between points

- Use model prediction $\nu_i(\vec{k}, \vec{\theta})$ for three points θ , interpolate to generalize
 - interpolation is typically "vertical", other approaches exist (but more specialized)
 - note: information about statistical uncertainties in varied templates is lost here (arXiv:1809.05778)

toy example: distributions for $\theta = -1, 0, +1$

interpolation approach is technically relatively simple → limit risk of surprises

interpolation in one bin

Alexander Held

Systematic uncertainties with HistFactory

- Common systematic uncertainties specified with two template histograms
 - "up variation": model prediction for $\theta = +1$
 - "down variation": model prediction for $\theta = -1$
 - interpolation & extrapolation provides model predictions ν for any $\vec{\theta}$
- Gaussian constraint terms used to model auxiliary measurements (in most cases)
 - centered around nuisance parameter (NP) θ_i
 - normalized width ($\sigma = 1$) and mean (auxiliary data $a_i = 0$)
 - Penalty for pulling NP away from best-fit auxiliary measurement value

$$p(\vec{n}, \vec{a} \mid \vec{k}, \vec{\theta}) = \prod_{i} \operatorname{Pois}(n_i \mid \nu_i(\vec{k}, \vec{\theta})) \cdot \prod_{j} c_j(a_j \mid \theta_j)$$

Complication: two-point systematics

- Sometimes have cases where variations in simulator chain are discrete
 - e.g. choice of one simulator vs alternative
- Typical treatment: interpolate to treat as continuous, symmetrize
 - lots of assumptions here, but need to make a choice to profile
- Especially tricky to deal with when these play a large role
 - concerns about overly constraining uncertainty of nuisance parameter
 - best-fit model prediction may lie away from both choices

two-point systematics are inherently problematic and deserve special attention

Arbitrary Units 0.4 ATLAS PP8 ttbb HCHWG-ATI AS PH7 trbb 0.35 ATLAS PP8 ttbb dipole ATLAS PP8 ttbb hbrd 2 0.3 ATLAS Sherpa ttbb 0.25 2022-003 0.2 ATLAS Generator Leve 0.15 \sqrt{s} =13 TeV, \geq 4b, \geq 4j Dilepton channel 0.1 0.05 Ratio to PP8 ATLAS tf+b5 8'0 5 9 ≥ 10 6 N_{iet}⊳

modeling choices for main background of ttH(bb)