

Update from the CBG SPWG

Kārlis Dreimanis

13th CBG General Meeting, CERN 22.03.2024

Doctoral Study Programme

- Recap of the programme:
 - DSP "Particle physics and accelerator technologies" is implemented jointly by RTU and UL;
 - The development, implementation and oversight is done with the support of the CBG partners;
 - The programme has a dedicated study programme council consisting of 8 council members:
 - 2 representing RTU;
 - 2 representing UL;
 - 2 representing the CBG;
 - 2 representing CERN;
 - + 2 programme directors (1 from RTU, 1 from UL);
- Student attestation is performed yearly; for the academic year 2023/24 it is planned for the week of the 10th of June;
- This programme is expecting it's first successful thesis defence in 2024 [or early 2025 at the very latest]!
 - → crucial test of the success of our work!

Update on numbers

• Existing students (HEP & atomic physics):

0	Andris Potrebko	(Y4, RTU)	Measurement of the top/anti-top mass difference at CMS;
0	Antra Gaile	(Y3, RTU)	Study of di-Higgs production in the WWZZ channel. ;
0	Valts Krūmiņš	(Y3, UL)	Optical interferometry system for anti-beam positron measurements at AEgIS;
0	Normunds Ralfs Strautnieks	(Y3, UL)	Study of lepton universality in top decays at CMS;
0	Conrado Munoz Diaz	(Y2, RTU)	Measurement of the boosted top quark mass at CMS;
0	Dimitrios Sidiropoulos Kontos	(Y2, RTU)	Study of the boosted top substructure at CMS;
0	Dace Osīte	(Y2, RTU)	Search for the dead-cone effect in b-decays from top quarks at CMS;
0	Ojārs Mārtiņš Ebrerliņš	(Y1, RTU)	Jet substructure and hadronization studies;
0	Robert Pleše	(Y1, RTU)	Final-state radiation photon studies in low pile-up events at CMS.

• Existing students (accelerator technologies & medical physics):

0	Lazar Nikitovic	(Y3, RTU)	Design of a high-frequency linear accelerator for injection into a therapy synchrotron;
0	Kristaps Paļskis	(Y3, RTU)	Optimization of ion beam parameters for very high dose rate (FLASH) radiotherapy;
0	Luca Piacentini	(Y3, RTU)	Integration of Systems, of a Carbon Ion Rotating Gantry for Medical Treatments;
0	Tobia Romano	(Y2, RTU+PoliMi)	Study of sintering behaviour of pure copper processed via binder jetting AM;
0	Vincenzo Sansipersico	(Y1, RTU)	Optimization and Integration of a ⁴ He ²⁺ Synchrotron for Cancer Therapy.

Aim to recruit 2+2 students for the academic year 2024/25; advertisement to be posted on inspirehep.net within a month.

Update on numbers

Student statistics [planned by the end of 2024]

Development of the master's programme

Recap: Erasmus Mundus Design Measures (EMDM):

- Successful bid for EMDM funding in 2022;
 - 55 kEur (originally, 15 months until 31st of December 2023);
 - Deliverable: developed joint mechanisms for a new master's study programme;
 - Successfully applied for an extension on the deliverable due date now due end of May, 2024.

Aims of the EMDM project:

- o to develop joint mechanisms for admissions, evaluation, award of the degree, dissemination & communication mechanisms;
- o to develop the above mechanisms to be fully in line with the requirements for the Erasmus Mundus Joint Masters (EMJM) calls;
- o to develop a curriculum that would be highly competitive & desirable internationally (incl. to Western European students);

Aims of the planned master's programme:

- o to develop the scientific capacity in modern fundamental physics and related technologies in the Baltic region;
- o to train and develop human resources with the skills and competencies desired by the local industry;
- o to increase the internationalisation of the higher education ecosystem in the Baltic region.

• Crucial necessity: we <u>must</u> attain a single joint diploma!

It is agreed by all partners of the consortium that without a joint diploma this programme will not be tenable! Initial talks with Baltic Assembly to promote this have taken place; follow-up/update required.

Development of the master's programme

• Two-year <u>academic</u> master's comprising 120 ECTS, focused on <u>HEP & HEP instrumentation</u> relatable to:

Particle physics
HEP;

Particle reconstruction techniques HEP & HEP instrumentation;

Detector technologies
HEP instrumentation;

Accelerator physics HEP instrumentation;

Accelerator technologies HEP instrumentation;

• Programme to be implemented by a **consortium of Universities** from the three Baltic states (as of March 22nd, 2024):

Riga Technical University (RTU, lead), Latvia (LV);

University of Latvia (UL),
Latvia (LV);

University of Tartu (UT),
Estonia (EE);

Vilnius University (VU), Lithuania (LT);

Kaunas University of Technology (KTU), Lithuania (LT);

• Weekly meetings recently to finalize the programme implementation agreement (main deliverable of the EMDM).

HEP & HEP Instrumentation

• Encouraging (for us) discussion in the ECFA* report at the CERN Council last year: [the Taskforce] "calls for the creation of a dedicated panel in this area under the auspices of ECFA, in consultation with organisations or communities representing neighbouring disciplines and ICFA";

"The role of this coordination panel would primarily be to enhance the synergies between existing training programmes and <u>stimulate the creation</u> of complementary ones where relevant, in particular multidisciplinary schools or <u>academia-industry-joined training programmes</u>. The second equally important DCT sets out as a goal the <u>creation of a European master's degree programme in HEP instrumentation</u> [read:accelerator & detector physics & technologies], to also be a potential responsibility of this proposed panel to help coordinate." [from the R&D roadmap document: https://cds.cern.ch/record/2784893];

additionally,

"ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at future Higgs factories to gather."

- There is great interest in our planned activities from CERN and the accelerator-based research facilities!
- We have contacted ECFA and received an enthusiastic and full endorsement of this activity + a promise of an official letter of support when applying for the EMJM funding!

^{*} European Committee for Future Accelerators

HEP & HEP Instrumentation

Challenges & Summary

- Doctoral study programme is doing extremely well (though <u>still</u> requires some work to rejig some courses, etc.).
- Otherwise, the last 18 months have been extremely challenging!
- Work EMDM project implementation was continuously postponed, due to lack of time/resources; now fully on track as a high-priority item!
- Current due date for the EMDM deliverables 31st of May 2024 [we do seem to be on track!]
- EMJM project proposal submission targeted for February 2025.
- If successful, first EMJM cohort would start in the academic year 2026/27.
- **Crucial[!]:** the Joint Master's programme 100% go/no-go dependent on the joint diploma availability.

Thank you

Curriculum draft / doodle [S1]

Semester 1 - Latvia:

A:

1)	Introduction to particle physics and detectors,	6.0 ECTS	RTU;
2)	Introduction to accelerator physics and technologies,	6.0 ECTS	RTU;
3)	Statistical Methods in Data Analysis,	3.0 ECTS	UL;
4)	Programming for Research,	3.0 ECTS	UL;
	B:		
1)	High-Performance Computing in Physics	3.0 ECTS	UL;
2)	Quantum Mechanics	6.0 ECTS	UL:
3)	Advanced electrodynamics	6.0 ECTS	UL;
4)	Object reconstruction in HEP	6.0 ECTS	RTU;
	[other elective courses]		

Semester 1: Total A: 18; Total B: 12;

Curriculum draft / doodle [S2]

Semester 2 - Estonia:

^	
/\	٠
$\overline{}$	

1)	Mathematical Structure of the Standard Model	6.0 ECTS	UT;
2)	Computational Physics	3.0 ECTS	UT;
3)	Technical Graphics	3.0 ECTS	UT;
4)	Radiation Safety	3.0 ECTS	UT;
	B:		
1)	Quantum Field Theory I	6.0 ECTS	UT;
2)	Differential Geometry for Physicists	6.0 ECTS	UT;
3)	General Theory of Relativity	6.0 ECTS	UT;
4)	Dosimetric and Scintillation Materials	3.0 ECTS	UT;
5)	Applied physics project	3.0 ECTS	UT;
6)	Vacuum and Cryo-engineering	3.0 ECTS	UT;
7)	Plasma Physics and Its Applications	3.0 ECTS	UT;
8)	Practical works on Physical Measurement and Calibration	3.0 ECTS	UT;
	[other elective courses]		

Semester 2: Total A: 15; Total B: 15;

Curriculum draft / doodle [S3]

Semester	3 -	Lithuania:

	A:		
1)	Particle Physics Data Analysis	5.0 ECTS	VU;
2)	Physics object reconstruction	? ECTS	VU;
3)	Advanced materials for particle detectors	9.0 ECTS	KTU;
	B:		
1)	Cosmology	5.0 ECTS	VU;
2)	Quantum Field Theory II	5.0 ECTS	VU;
3)	Radiation detectors in CERN experiments	5.0 ECTS	VU;
4)	Artificial intelligence	5.0 ECTS	VU;
5)	Methods of parallel computations in physics	5.0 ECTS	VU;
6)	Dynamics of Nonlinear Systems	6.0 ECTS	KTU;
7)	Radiation Therapy Physics	6.0 ECTS	KTU;
8)	Development of Innovations in Physical Science and Technology	6.0 ECTS	KTU;
9)	Research Project 3	6.0 ECTS	KTU;
	[other elective courses]		

Semester 3: Total A: 14; Total B: 16;

EMJM - the target grant

- We explicitly aim to develop a program eligible to be submitted to the Erasmus Mundus Joint Masters (EMJM) call;
- EMJM calls typically close in mid-February → aim to have a project proposal ready for February 2025;
- EMJM:
 - Supports the implementation of Joint-Masters programs for up to 74 months (renewable);
 - Allows for the support of up to 4-5 full editions of a 2-year master's cohorts;
 - Financial support:
 - Institutionally: 750 Eur/month per student for up to 100 students;
 - Stipends: 1'400 Eur/month stipend for up to 60 students;
 - max. 10% of stipends to students of the same nationality;
- At least 1 semester in 2 partner-HEIs other than in the country of residence of the student;
- For our program, at least 1 semester in each of the three Baltic countries;

Mantra of the programme

- We aim to create a highly competitive and unique-in-Europe master's programme aimed at HEP and HEP instrumentation;
- We must strive to create a curriculum and a study experience that is attractive to everyone interested in the field!
- We are small Baltic countries without highly-recognised HE sector in the West; we must seek to change that!
- Mantra:
 - Where other programmes offer 5 lecture-hours per ECTS, we must offer 6;
 - Where other programmes offer 1 tutorial hour per ECTS, we must offer 2;
 - Where other programmes are localised on the campuses of their respective Universities, we offer a chance to spend a semester in three different countries!
- We will also aim to offer, in collaboration with our industrial partners and CERN, internships in the inter-year summer.