Jet Substructure Without Trees

Andrew Larkoski SLAC, Stanford University with Martin Jankowiak arXiv:1104.1646

WC ATLAS Forum, May 4, 2011

- We are officially in the LHC Era!
- A lot of theoretical effort devoted to LHC Inverse Problem
- One aspect of this is Jet Substructure Program
 - Can we find efficient methods for distinguishing QCD jets from jets which come from heavy particle decays?

- Jets: Our view into perturbative QCD
- Partons shower and hadronize into collimated jets of energy

- Jets: Our view into perturbative QCD
- Partons shower and hadronize into collimated jets of energy

- How do we identify the two hard cells as jets?
- Use an algorithm to "undo" parton shower

- How do we study jets?
 - Jet Observables
 - Simplest Examples: jet mass, jet transverse momenta

- How do we study jets?
 - Good observables can be calculated in perturbation theory
 - "IRC safety": Robust against soft and collinear splittings

- Unclustering
 - Define a branching tree with a sequential jet algorithm

- Unclustering
 - Define a branching tree with a sequential jet algorithm
- kT-type sequential jet algorithm Catani, et al.
 - 1) Compute $d_{ij} = \min[p_{T,i}^{2n}, p_{T,j}^{2n}] \frac{\Delta R_{ij}^2}{R^2}$ $\Delta R_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$

- kT-type sequential jet algorithm
 - 2) Merge closest pair of particles

- kT-type sequential jet algorithm
 - 2) Merge closest pair of particles

- kT-type sequential jet algorithm
 - 2) Merge closest pair of particles

- kT-type sequential jet algorithm
 - 2) Merge closest pair of particles

- kT-type sequential jet algorithm
 - 2) Merge closest pair of particles

- kT-type sequential jet algorithm
 - 3) Continue until no pair of particles is close

14

 Idea: Clustering procedure defines a branching tree!

Jet

Outline

- Describe a new method for studying jets
 - How to find angular and mass scales within a jet
- Prominence: A trick for reducing noise
- Jet Observables in this framework
- An application: Identifying top quark jets
- Discussion

$$\mathcal{G}(R) \equiv \frac{\sum_{i \neq j} p_{Ti} p_{Tj} \Delta R_{ij}^2 \Theta(R - \Delta R_{ij})}{\sum_{i \neq j} p_{Ti} p_{Tj} \Delta R_{ij}^2} \approx \frac{\sum_{i \neq j} p_i \cdot p_j \Theta(R - \Delta R_{ij})}{\sum_{i \neq j} p_i \cdot p_j}$$

- IRC safe = computable in perturbation theory
- *R* is **not** measured wrt jet center
 - Distinct from angular profile
 - Quantifies jet scaling in an IRC safe way

• Ledges in $\mathcal{G}(R)$ = separation of hard subjets

• Ledges in $\mathcal{G}(R)$ = separation of hard subjets

- How to find ledges
 - Find peaks in the derivative!
 - Problem: really want ratio of masses
 - Take derivative of $\log \mathcal{G}(R)$

- How to find ledges
 - Find peaks in the derivative!
 - Problem: really want ratio of masses
 - Take derivative of $\log \mathcal{G}(R)$
- QCD is scale invariant
 - Take derivative wrt log R
 - Reduces noise at small R

• Look for peaks in $d \log \mathcal{G}(R) / d \log R$

- Look for peaks in $d \log \mathcal{G}(R) / d \log R$
- Angular structure function:

$$\Delta \mathcal{G}(R) \equiv R \; \frac{\sum_{i \neq j} p_{Ti} p_{Tj} \Delta R_{ij}^2 K(R - \Delta R_{ij})}{\sum_{i \neq j} p_{Ti} p_{Tj} \Delta R_{ij}^2 \Theta(R - \Delta R_{ij})}$$

• K is taken to be a smooth gaussian kernel:

$$\delta(R - \Delta R_{ij}) \simeq \frac{e^{-\frac{(R - \Delta R_{ij})^2}{dR^2}}}{dR\sqrt{\pi}}$$

Question: Does $\Delta G(R)$ determine interesting ledges?

- $\Delta \mathcal{G}(R)$ picks out physical peaks beautifully!
 - Still some noise: how can we reduce it?
- How do we define interesting peaks?
 - By height?

- $\Delta \mathcal{G}(R)$ picks out physical peaks beautifully!
 - Still some noise: how can we reduce it?
- How do we define interesting peaks?
 - By height?

Is this little bump interesting?

Quiz: What is the highest mountain in the contiguous US?

- Quiz: What is the highest mountain in the contiguous US?
 - Mt. Whitney, CA
- What is the most *prominent* mountain in the contiguous US?

- Quiz: What is the highest mountain in the contiguous US?
 - Mt. Whitney, CA
- What is the most *prominent* mountain in the contiguous US?
 - Mt. Rainier, WA

- Why is Mt. Rainier the most prominent mountain?
 - Prominence ~ amount mountain sticks out above ambient landscape
- How does this help us?

- Why is Mt. Rainier the most prominent mountain?
 - Prominence ~ amount mountain sticks out above ambient landscape
- How does this help us?

Prominence of little bump is tiny!

Review

- Our program for studying jets:
 - Define a jet using your favorite algorithm
 - From its constituents, compute $\mathcal{G}(R)$
 - To find ledges in $\mathcal{G}(R)$, find peaks in $\Delta \mathcal{G}(R)$
 - Interesting peaks have a prominence greater than some value
- Two parameters: delta-function smoothing *dR*, minimum prominence

- Entire curve is IRC safe
- Location of peaks in R

- Location of peaks in R
- Height of peaks

- Location of peaks in R
- Height of peaks
- Number of peaks

- Our approach:
 - Bin jets by the number of peaks
 - Related to the number of subjets

- Our approach:
 - Bin jets by the number of peaks
 - Related to the number of subjets
 - In each peak number bin:
 - Location in *R* of all peaks
 - Invariant mass of pairs of subjets from peak height
 - An explosion of observables!

• Our expectations:

•
$$n_{\text{peaks}} \simeq \begin{pmatrix} n_{\text{subjets}} \\ 2 \end{pmatrix}$$

- Our expectations:
 - $n_{\text{peaks}} \simeq \begin{pmatrix} n_{\text{subjets}} \\ 2 \end{pmatrix}$
 - QCD: Flat distributions of peak locations; small invariant mass of subjets

• Our expectations:

•
$$n_{\text{peaks}} \simeq \begin{pmatrix} n_{\text{subjets}} \\ 2 \end{pmatrix}$$

- QCD: Flat distributions of peak locations; small invariant mass of subjets
- Heavy Particle: Peaks in distributions correlated with masses and momenta

• Our expectations:

•
$$n_{\text{peaks}} \simeq \begin{pmatrix} n_{\text{subjets}} \\ 2 \end{pmatrix}$$

- QCD: Flat distributions of peak locations; small invariant mass of subjets
- Heavy Particle: Peaks in distributions correlated with masses and momenta
- Should be substantial discrimination power!

- Jets at the LHC
 - Very energetic, especially once at 14 TeV
- QCD Jets will have large mass • Radius of jet ~ $\frac{2m}{p_T}$
 - At Tevatron, tops have small p_T
 - At LHC, tops will be boosted
 - Can have top quark jets!

- Our Top Tagger:
 - Use observables from $\Delta \mathcal{G}(R)$
 - Expectations:
 - Top quark jets will have 3 subjets
 - Separation of subjets will be strongly correlated with m_W, m_t
 - Separation of subjets in QCD jet will be uncorrelated with any mass scale

- Our Top Tagger:
 - Within a p_T bin:
 - Keep jets with 1, 2 or 3 peaks in $\Delta \mathcal{G}(R)$
 - Parton shower can smear subjets
 - Record each location in R and peak height for peaks with minimum prominence
 - Also include mass of jet as discriminant

- More on the number of peaks:
 - npeak = I bin → W decay products are unresolved or subjets form an equilateral triangle

- More on the number of peaks:
 - npeak = I bin → W decay products are unresolved or subjets form an equilateral triangle
 - npeak = 2 bin → W decay products have large mass with b but not with each other or subjets form an isoceles triangle

- More on the number of peaks:
 - npeak = I bin → W decay products are unresolved or subjets form an equilateral triangle
 - npeak = 2 bin → W decay products have large mass with b but not with each other or subjets form an isoceles triangle
 - npeak = 3 bin → All subjets of top are resolved

- More on the number of peaks:
 - npeak = I bin → W decay products are unresolved or subjets form an equilateral triangle
 - npeak = 2 bin → W decay products have large mass with b but not with each other or subjets form an isoceles triangle
 - npeak = 3 bin → All subjets of top are resolved
 - Higher bins: hard radiation

- Use data generated for BOOST 2010 Karagoz, Spannowsky, Vos
- Simulate detector by .1 x .1 binning in η,ϕ
- Find jets in events with FastJet 2.4.2 Cacciari, Salam implementation of CA with R = 1.5
- Study QCD jets and top quark jets in pt bins ranging from 200-800 GeV
- Set minimum prominence to 4.0
- Set delta function smoothing width to 0.06

- Example: study 500-600 GeV pt bin
- Peak number distribution with minprom = 4.0

- Example: study 500-600 GeV pt bin
- Variables in npeak = 3

Correlation of separation of subjets and their invariant mass

Top: m ~ R
QCD: m, R

uncorrelated

- General procedure:
 - In each pt and peak bin, use all observables for discrimination
 - Use Monte Carlo to sample cut locations and then compute efficiencies
 - Recombine results from npeak = 1, 2, 3
 bins
 - Compute overall efficiencies for signal and background jets

• Comparing to other top taggers:

- Top tagger competitive with other methods in the literature
- Important: Still substantial optimization that can be done
 - Better choice of variables?
 - Prominence as a function of pt?
 - Use more information about structure of top jet?

Future/Current Directions

- Probing Perturbative QCD and UE
 - What is ensemble average of $\Delta \mathcal{G}(R)$?
 - What are the quark and gluon contributions?
 - Can we distinguish UE models?
- Adaptive Grooming
 - IRC safe scales are defined
 - Can these scales be used to improve mass resolution?

Summary

 Introduced a method for finding scales within a jet without using branching tree

• First Application: Top Tagger competitive with other methods

• Many other possible applications!