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Introduction

• We are officially in the LHC Era!

• A lot of theoretical effort devoted to LHC 
Inverse Problem

• One aspect of this is Jet Substructure 
Program

• Can we find efficient methods for 
distinguishing QCD jets from jets which 
come from heavy particle decays?
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Introduction

• Jets: Our view into perturbative QCD

• Partons shower and hadronize into 
collimated jets of energy
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Introduction

• Jets: Our view into perturbative QCD

• Partons shower and hadronize into 
collimated jets of energy
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• How do we identify
the two hard cells 
as jets?

• Use an algorithm 
to “undo” parton 
shower



Introduction

• How do we study jets?

• Jet Observables

• Simplest Examples: jet mass, jet 
transverse momenta
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Introduction

• How do we study jets?

• Good observables can be calculated in 
perturbation theory

• “IRC safety”: Robust against soft and 
collinear splittings
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Introduction

• Unclustering

• Define a branching tree with a sequential 
jet algorithm
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Introduction

• Unclustering

• Define a branching tree with a sequential 
jet algorithm

• kT-type sequential jet algorithm

• 1) Compute
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Introduction

• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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• kT-type sequential jet algorithm
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Introduction

• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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Introduction

• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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Introduction

• kT-type sequential jet algorithm

• 3) Continue until no pair of particles is 
close

• Idea: Clustering procedure                
defines a branching tree!
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Outline

• Describe a new method for studying jets

• How to find angular and mass scales 
within a jet

• Prominence: A trick for reducing noise

• Jet Observables in this framework

• An application: Identifying top quark jets

• Discussion

15



Angular Correlation Function

• IRC safe = computable in perturbation 
theory

• R is not measured wrt jet center

• Distinct from angular profile

• Quantifies jet scaling in an IRC safe way
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be used to decompose a jet into subjets. This unclustering procedure has seen a wide
variety of phenomenological applications, especially in the context of tagging jets that
result from boosted heavy particle decays, e.g . filtering in boosted Higgs searches [11].
A closely related procedure, referred to as pruning [27], vetoes on QCD-like branches
with the goal of sharpening jet mass resolution. This family of procedures offers a
number of tunable parameters, allowing the user to control how much and what kind
of substructure is identified. A disadvantage of these procedures is that, in order for
them to be most effective, the clustering tree must accurately reconstruct the parton
shower history of the jet. In practice the CA and kT algorithms reconstruct the most
probable shower history, which need not coincide with the actual shower history. In
addition, the parameters which define the unclustering typically impose a hard line
between QCD-like behavior and non-QCD-like behavior that can fail to accommodate
jets that deviate too much from “most probable” jets.

The goal of this paper is to explore an alternative procedure for identifying and
characterizing substructure within jets. The discussion is organized as follows. In
Section 2, we introduce the “angular correlation function” G(R) and discuss how
structure in G(R) can be used to construct IRC safe jet observables. In particular
we use G(R) to extract angular scales R∗ and mass scales m∗ directly from the con-
stituents of a jet without use of a clustering tree. These angular and mass scales
correspond to the angular separations and invariant masses of pairs of hard substruc-
ture in the jet. In Section 3, we present an application of these ideas to the tagging of
boosted top quarks. We find that the resulting top tagging algorithm is competitive
with other methods in the literature. Given the straightforward approach we take in
applying G(R) to top tagging, this good performance ‘out of the box’ is encouraging.
In Section 4 we discuss other possible applications of the methods introduced in this
paper.

2 Angular Correlation Function

To characterize substructure in a jet J we define the angular correlation function
G(R) as

G(R) ≡

∑

i "=j
pT ipTj∆R2

ijΘ(R−∆Rij)

∑

i "=j
pT ipTj∆R2

ij

≈

∑

i "=j
pi ·pjΘ(R−∆Rij)

∑

i "=j
pi ·pj

(1)

where the sum runs over all pairs of constituents of J and Θ(x) is the Heaviside step
function. Here pT i is the transverse momentum of constituent i, and ∆Rij is the
Euclidean distance between i and j in the pseudorapidity (η) and azimuthal angle
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• Ledges in         = separation of hard subjets

•         for a top quark jet

Angular Correlation Function
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Figure 1: The angular correlation function G(R) for a sample top jet.

(φ) plane: ∆R2
ij = (ηi − ηj)2 + (φi − φj)2. On the LHS of Eq. (1) the dependence

on transverse momenta is fixed by collinear safety. Provided that ∆Rij is raised to a
positive power, the entire expression is IRC safe. We choose ∆R2

ij in Eq. (1) so that
G(R) has a clear physical interpretation: G(R) is the (fractional) mass contribution
from constituents separated by an angular distance of R or less. An important point
here is that R does not mark the distance with respect to any fixed center.

For a jet with no substructure, G(R) is featureless. In contrast, if a jet has
significant substructure at an angular scale R = R∗, G(R) exhibits a discontinuous
ledge at R = R∗, see Fig. 1. Such a ledge corresponds to two or more hard subjets
separated by a distance R∗ from one another, with the ledge drop determined by the
invariant mass of the subjets. Notice that these ledges are closely related to mass
drops as exploited in a variety of jet substructure studies [8–12]. We expect that a
typical QCD jet will have an angular correlation function that is more or less smoothly
varying without any sharp ledges, while for a jet with significant substructure G(R)
will have one or more sharp ledges at angular scales R = R∗ corresponding to distinct
separations between hard subjets in the jet. This suggests several jet observables
that can be defined from G(R). Given a procedure for finding ledges in G(R), we can
consider: (i) the total number of ledges; (ii) the angular scales R = R∗ at which ledges
are found; and (iii) the ledge drops at each R = R∗. We will see that, once suitably
defined, each of the resulting observables proves useful in characterizing substructure
within jets.

In effect, G(R) defines a continuous family of jet shape observables. Each G(R0)
for a given R0 differs from most jet shape observables in that: (i) it does not contain
any preferred or reference four-vectors (e.g. the energy center of the jet); and (ii)
it involves a sum over two-particle correlations. For example, the radial jet energy
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• Ledges in         = separation of hard subjets

• Which correspond to something physical?
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Angular Correlation Function

• How to find ledges

• Find peaks in the derivative!

• Problem: really want ratio of masses

• Take derivative of 
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Angular Correlation Function

• How to find ledges

• Find peaks in the derivative!

• Problem: really want ratio of masses

• Take derivative of 

• QCD is scale invariant

• Take derivative wrt log R 

• Reduces noise at small R
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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• Look for peaks in

• Angular structure function:

• K is taken to be a smooth gaussian kernel:

Angular Correlation Function
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the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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• Mt. Whitney, CA
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contiguous US?

• Mt. Rainier, WA
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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be used to decompose a jet into subjets. This unclustering procedure has seen a wide
variety of phenomenological applications, especially in the context of tagging jets that
result from boosted heavy particle decays, e.g . filtering in boosted Higgs searches [11].
A closely related procedure, referred to as pruning [27], vetoes on QCD-like branches
with the goal of sharpening jet mass resolution. This family of procedures offers a
number of tunable parameters, allowing the user to control how much and what kind
of substructure is identified. A disadvantage of these procedures is that, in order for
them to be most effective, the clustering tree must accurately reconstruct the parton
shower history of the jet. In practice the CA and kT algorithms reconstruct the most
probable shower history, which need not coincide with the actual shower history. In
addition, the parameters which define the unclustering typically impose a hard line
between QCD-like behavior and non-QCD-like behavior that can fail to accommodate
jets that deviate too much from “most probable” jets.

The goal of this paper is to explore an alternative procedure for identifying and
characterizing substructure within jets. The discussion is organized as follows. In
Section 2, we introduce the “angular correlation function” G(R) and discuss how
structure in G(R) can be used to construct IRC safe jet observables. In particular
we use G(R) to extract angular scales R∗ and mass scales m∗ directly from the con-
stituents of a jet without use of a clustering tree. These angular and mass scales
correspond to the angular separations and invariant masses of pairs of hard substruc-
ture in the jet. In Section 3, we present an application of these ideas to the tagging of
boosted top quarks. We find that the resulting top tagging algorithm is competitive
with other methods in the literature. Given the straightforward approach we take in
applying G(R) to top tagging, this good performance ‘out of the box’ is encouraging.
In Section 4 we discuss other possible applications of the methods introduced in this
paper.

2 Angular Correlation Function

To characterize substructure in a jet J we define the angular correlation function
G(R) as

G(R) ≡

∑

i "=j
pT ipTj∆R2

ijΘ(R−∆Rij)

∑

i "=j
pT ipTj∆R2

ij

≈

∑

i "=j
pi ·pjΘ(R−∆Rij)

∑

i "=j
pi ·pj

(1)

where the sum runs over all pairs of constituents of J and Θ(x) is the Heaviside step
function. Here pT i is the transverse momentum of constituent i, and ∆Rij is the
Euclidean distance between i and j in the pseudorapidity (η) and azimuthal angle
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Jet Substructure Observables

• Our approach:

• Bin jets by the number of peaks

• Related to the number of subjets

• In each peak number bin:

• Location in R of all peaks

• Invariant mass of pairs of subjets from 
peak height

• An explosion of observables!
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• QCD: Flat distributions of peak 
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Figure 4: (a) pT plot and (b) angular structure function ∆G(R) for a QCD jet with diffuse
substructure and pT ∼ 600 GeV. In the pT plot, the small cell at the end of the arrow is
so soft that it is barely visible. Prominent peaks in ∆G(R) are distributed approximately
uniformly in R. For a minimum prominence of 4.0, ∆G(R) has a single peak at R1∗ = 1.09.
Note the scale of ∆G(R) as compared to the top jet in Fig. 2(b).

than nmax
p prominent peaks. When a prominent peak is resolvable, however, the

resulting angular scale Ri∗ corresponds to an angular separation between two or more
hard substructures in the jet. For a QCD jet, the distribution of prominent peaks
should be roughly uniform in R, since QCD is approximately scale invariant. For a
jet that is initiated by a heavy particle decay, the angular scales Ri∗ will be peaked at
values characteristic of the decay kinematics of the heavy particle. The corresponding
partial masses will be correlated to mass scales intrinsic to the heavy particle decay. In
contrast, for QCD jets the partial masses will be peaked at small values, as determined
by the soft and collinear singularities of QCD.

Some of the foregoing discussion is illustrated in Figs. 2 and 4. In Fig. 2 we show
a boosted top jet with a clean three-pronged substructure. In the pT plot in Fig. 2(a)
the distances Ri∗ between the three hardest cells are indicated. From Fig. 2(b) we
see that it is these same three angular scales that show up as prominent peaks in
the angular structure function ∆G(R). Less prominent peaks correspond to soft-
hard correlations in the jet. The substructure of the QCD jet in Fig. 4(a) is quite
different, with a single hard core surrounded by soft diffuse radiation. The mass of
the jet is largely due to these soft, wide-angle emissions, and the most prominent peak
in ∆G(R) corresponds to correlations between the hard core of the jet and one such
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Jet Substructure Observables

• Our expectations:

•  

• QCD: Flat distributions of peak 
locations; small invariant mass of subjets

• Heavy Particle: Peaks in distributions 
correlated with masses and momenta

• Should be substantial discrimination 
power!

41



Application: Top Tagger

• Jets at the LHC

• Very energetic, especially once at 14 TeV

• QCD Jets will have large mass

• Radius of jet ~ 

• At Tevatron, tops have small pT

• At LHC, tops will be boosted

• Can have top quark jets!
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Application: Top Tagger

• Our Top Tagger:

• Use observables from 

• Expectations:

• Top quark jets will have 3 subjets

• Separation of subjets will be strongly 
correlated with mW, mt

• Separation of subjets in QCD jet will be 
uncorrelated with any mass scale
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Application: Top Tagger

• Our Top Tagger:

• Within a pT bin:

• Keep jets with 1, 2 or 3 peaks in 

• Parton shower can smear subjets

• Record each location in R and peak 
height for peaks with minimum 
prominence

• Also include mass of jet as discriminant
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Application: Top Tagger

• More on the number of peaks:

• npeak = 1 bin      W decay products are 
unresolved or subjets form an equilateral 
triangle
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Figure 5: (a) pT plot and (b) angular structure function∆G(R) for a top jet with pT ∼ 500
GeV. The decay products of theW± are not individually resolved, with most of the radiation
from the W± (φ ∼ 2.8) contained within a single, hard cell. For a minimum prominence of
4.0, ∆G(R) has a single peak at R1∗ = 0.39.

emission. Prominent peaks in ∆G(R) for this QCD jet are distributed approximately
uniformly in R, as expected.

The close correspondence between structure in the pT plots apparent by eye and
the structure identified by the angular structure function ∆G(R) is encouraging. To
investigate the effectiveness of this procedure more thoroughly will require testing
it against a concrete application, where the characteristics of the observables np,
Ri∗, and mi∗ can be explored in greater detail. A good testbed will involve jets with
complex substructure. For this reason we choose to construct a top tagging algorithm
as a first application.

3 Top tagging

If every top jet had the clean three-pronged structure apparent in Fig. 2(a) then
constructing an efficient top tagger would be straightforward. In practice, recon-
struction of the top is complicated by a number of factors, including: (i) the finite
resolution of the detector, which degrades mass and angular resolution; (ii) collinear
radiation, which can make it difficult to resolve subjets initiated by hard partons
that are close together; and (iii) the boost from the top rest frame to the lab frame,
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Application: Top Tagger

• More on the number of peaks:

• npeak = 1 bin      W decay products are 
unresolved or subjets form an equilateral 
triangle

• npeak = 2 bin      W decay products have 
large mass with b but not with each 
other or subjets form an isoceles triangle
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Application: Top Tagger

• More on the number of peaks:

• npeak = 1 bin      W decay products are 
unresolved or subjets form an equilateral 
triangle

• npeak = 2 bin      W decay products have 
large mass with b but not with each 
other or subjets form an isoceles triangle

• npeak = 3 bin     All subjets of top are 
resolved
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Application: Top Tagger

• More on the number of peaks:

• npeak = 1 bin      W decay products are 
unresolved or subjets form an equilateral 
triangle

• npeak = 2 bin      W decay products have 
large mass with b but not with each 
other or subjets form an isoceles triangle

• npeak = 3 bin     All subjets of top are 
resolved

• Higher bins: hard radiation
48



Application: Top Tagger

• Use data generated for BOOST 2010

• Simulate detector by .1 x .1 binning in 

• Find jets in events with FastJet 2.4.2 
implementation of CA with R = 1.5

• Study QCD jets and top quark jets in pt 
bins ranging from 200-800 GeV

• Set minimum prominence to 4.0

• Set delta function smoothing width to 0.06

49
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Application: Top Tagger

• Example: study 500-600 GeV pt bin

• Peak number distribution with minprom = 4.0

50
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np

Figure 10: Fractions of top jets (blue) and QCD jets (red) that have np prominent peaks.
Here the minimum prominence is h0 = 4.0 and 500 GeV ≤ pT ≤ 600 GeV. These fractions
exhibit only a small dependence on pT .

tagger could benefit from using variable R (or a filtered jet mass mfilt), we leave the
value of R fixed for simplicity. Before applying any cuts, first presort the candidate
jets into pT bins of width 100 GeV. Then for each candidate jet calculate ∆G(R)
and identify the number of peaks np whose prominence exceeds a fixed minimum
prominence h0 = 4.0. This value of h0 has been selected by scanning over a range
h0 ∈ [1.0, 10.0] and choosing h0 to minimize the background efficiency over a wide
range of pT and signal efficiencies. Within each pT bin further sort the candidate jets
into three peak bins (np = 1, 2, 3), throwing out jets with np = 0 or np > 3. This
np cut removes a sizable fraction (∼ 15%) of QCD jets, while rejecting only ∼ 3%
of top jets, see Fig. 10. For discrimination between top jets and QCD jets to be
most effective one would like to disentangle the correlations between the observables
as much possible; for simplicity, however, we choose to make rectangular cuts in the
space of observables. In particular, in the np = 3 bin we choose to impose cuts on six
of the seven available observables, excluding m1∗, which is the least discriminating
observable. More specifically, we impose the following cuts:

1. mJ > mt min

2. R1∗ < Rmax
1∗ , R2∗ < Rmax

2∗ , R3∗ < Rmax
3∗

3. m2∗ > mmin
2∗ , m3∗ > mmin

3∗

A candidate jet that passes this set of cuts is tagged as a top jet. In the np = 1, 2
bins we employ the corresponding set of cuts, except in contrast to the np = 3 bin,
we make use of all of the observables. Also, we impose an additional cut mJ < mt max

in the np = 1 bin only, since the smaller number of observables in the np = 1 bin

13



Application: Top Tagger

• Example: study 500-600 GeV pt bin

• Variables in npeak = 3
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Figure 6: Distributions for observables in the np = 3 bin with 500 GeV ≤ pT ≤ 600
GeV. Distributions for top jets (QCD jets) are shown in blue (red). Angular scales Ri∗ and
partial masses mi∗ are ordered so that R1∗ ≤ R2∗ ≤ R3∗. For QCD the Ri∗ distributions
are consistent with scale-invariant emission, while the mi∗ distributions peak towards small
partial masses. For tops the Ri∗ and mi∗ distributions are peaked at angular and mass
scales characteristic of top decay kinematics.

GeV. These predictions for the Ri∗ and mi∗ match up well with the distributions in
Fig. 6, although in practice the corresponding identifications only hold on the average.
Note that the kinematic constraints of the top quark decay imply strong correlations
between Ri∗ and mi∗ for each i. This is illustrated in Fig. 7, where R2∗ has been
plotted against m2∗ in the np = 3 bin. For QCD jets R2∗ and m2∗ are uncorrelated.

In contrast to top jets, QCD jets have no intrinsic scales. Since QCD is ap-
proximately scale invariant and the derivative in ∆G(R) is with respect to logR,
we expect the R∗ distributions to be approximately uniform. Imposing the ordering
R1∗ ≤ R2∗ ≤ R3∗ then has the consequence that the R1∗ distribution should peak at
R = 0, the R2∗ distribution should peak at intermediate R, and the R3∗ distribution
should peak towards large R. This is consistent with what is seen in Fig. 6, up to
edge effects at large R in the R3∗ distribution. The partial masses of QCD jets are
peaked towards small mi∗, as we expect given that the physics of mi∗ is qualitatively
similar to the physics of jet masses mJ .
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Application: Top Tagger

52

• Correlation of 
separation of 
subjets and their 
invariant mass

• Top: m ~ R
• QCD: m, R 

uncorrelated

Top
QCD
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Figure 7: Correlations between R2∗ and m2∗ in the np = 3 bin with 500 GeV ≤ pT ≤
600 GeV. For the top kinematic constraints imply strong correlations between R2∗ and
m2∗, while for QCD jets the two are uncorrelated. Correlations for top jets (QCD jets) are
depicted in blue (red).
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Figure 8: The jet mass mJ for tops (blue) and QCD (red) in the np = 3 bin with 500 GeV
≤ pT ≤ 600 GeV.
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Application: Top Tagger

• General procedure:

• In each pt and peak bin, use all 
observables for discrimination

• Use Monte Carlo to sample cut locations 
and then compute efficiencies

• Recombine results from npeak = 1, 2, 3 
bins

• Compute overall efficiencies for signal 
and background jets
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Application: Top Tagger

• Results:
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Fig. 3. Mistag rate versus efficiency after optimisation for the studied top-taggers in linear scale (a) and logarithmic scale (b).
Tag rates were computed averaging over all pT subsamples (a,b) and for the subsample containing jet with pT range 300–400
GeV (c) and 500–600 GeV (d)

We finally consider a top-tagger that employs pruning
to groom the jets (described in detail in Section 3.3). For
the purposes of this study, we included an additional step:
To identify the W boson subjet, the final jet is unclustered
to three subjets (by undoing the last merging) and the
minimum-mass pairing is chosen to be the W boson, as in
the CMS tagger.

To generate the pruning tagger efficiency curves in
Fig. 3, the parameters zcut and Dcut are scanned over the
ranges 0.01–0.2 and (0.1–0.85)×(2m/pT )jet. We then scan
the cuts on the jet and W boson subjet masses, with the
only constraint being that the top jet mass is always re-
quired to be greater than 120 GeV. We define two working
points, that yield an average efficiency of 20% and 50%.
The tagger parameters of both working points are given
in Table 1. The tagging rates for signal and background
as functions of anti-kT jet pT are shown in Fig. 4. The tag
rates are relatively flat for pT ! 400 GeV, after a turn-on
for lower pT .

In general all grooming-based taggers that we tested
have a flatter efficiency above pT of 400 GeV than the

ungroomed approaches. This reflects the relative stabil-
ity of the groomed variables as a function of pT . Splitting
scales, in particular, are sensitive to the pT of the initial
jets, however groomed masses correspond closely to phys-
ical quantities and hence are Lorentz-boost invariant.

The overall mistag rates for the different taggers at
the different working points are summarised in Table 2.
For the 20% working point it is clear that the groom-
ing based taggers perform strongly, suppressing the back-
ground by a factor of 20–100. For the samples we chose,
the pruning approach performs best. The ungroomed tag-
ging approaches are more competitive at the 50% work-
ing point, which is often at the limit of the applicable
range for the grooming-based approaches. It can be seen
that the pruning-based approach actually performs worst
at this working point. This seems to be the reflection of
the fact that grooming approaches produce a narrow top
mass peak, typically containing around 60% of the signal
for top jets. To produce an overall efficiency of around
50% , in combination with the mjet > 120GeV require-
ment, we must then choose a large mass window. This

Our Tagger
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Figure 11: The performance of the top tagger as given by the HERWIG event samples.
The background efficiency vs. signal efficiency for our top tagger is compared to other
algorithms in the literature in (a). This figure is reproduced from [36] with the results
from our tagger added. Here the candidate jets have transverse momenta 500 GeV ≤ pT ≤
600 GeV. For Fig. (a) only, candidate jets have been clustered with the anti-kT algorithm
with R = 1.0, as was done in the BOOST study. As a consequence the performance in
(a) is better than in (b), where the large jet radius degrades top mass resolution. In (b)
the background efficiency is plotted as a function of pT for signal efficiencies of εS = 50%
(black), 40% (blue), 30% (green) and 20% (red). Efficiencies at a given pT0 are calculated
from a pT window of 100 GeV centered at pT0. Note that, as a consequence, each point is
not statistically independent. Error bands are statistical.

np = 1 mt min mt max Rmax
1∗ mmin

1∗ εS(%) εB(%)
300− 400 GeV 177 GeV 300 GeV 0.96 78 GeV 23.8 1.9
500− 600 GeV 175 GeV 300 GeV 0.57 74 GeV 27.0 2.6

np = 2 mt min Rmax
1∗ Rmax

2∗ mmin
1∗ mmin

2∗ εS(%) εB(%)
300− 400 GeV 157 GeV 0.85 1.59 30 GeV 77 GeV 57.2 11.4
500− 600 GeV 159 GeV 0.57 1.00 36 GeV 55 GeV 59.6 9.8

np = 3 mt min Rmax
1∗ Rmax

2∗ Rmax
3∗ mmin

2∗ mmin
3∗ εS(%) εB(%)

300− 400 GeV 102 GeV 0.81 1.03 2.11 26 GeV 79 GeV 82.9 15.9
500− 600 GeV 155 GeV 0.62 0.66 1.35 46 GeV 73 GeV 73.6 7.9

Table 1: Sample optimized cut parameters at a (total) signal efficiency of εS = 50% for two
different pT bins. In the rightmost column we show the signal and background efficiencies
obtained within each np bin taken separately; i.e. these numbers do not take into account
what fraction of candidate jets end up in each np bin. Signal efficiency increases substantially
with np.
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Application: Top Tagger

• Comparing to other top taggers:
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Fig. 3. Mistag rate versus efficiency after optimisation for the studied top-taggers in linear scale (a) and logarithmic scale (b).
Tag rates were computed averaging over all pT subsamples (a,b) and for the subsample containing jet with pT range 300–400
GeV (c) and 500–600 GeV (d)

We finally consider a top-tagger that employs pruning
to groom the jets (described in detail in Section 3.3). For
the purposes of this study, we included an additional step:
To identify the W boson subjet, the final jet is unclustered
to three subjets (by undoing the last merging) and the
minimum-mass pairing is chosen to be the W boson, as in
the CMS tagger.

To generate the pruning tagger efficiency curves in
Fig. 3, the parameters zcut and Dcut are scanned over the
ranges 0.01–0.2 and (0.1–0.85)×(2m/pT )jet. We then scan
the cuts on the jet and W boson subjet masses, with the
only constraint being that the top jet mass is always re-
quired to be greater than 120 GeV. We define two working
points, that yield an average efficiency of 20% and 50%.
The tagger parameters of both working points are given
in Table 1. The tagging rates for signal and background
as functions of anti-kT jet pT are shown in Fig. 4. The tag
rates are relatively flat for pT ! 400 GeV, after a turn-on
for lower pT .

In general all grooming-based taggers that we tested
have a flatter efficiency above pT of 400 GeV than the

ungroomed approaches. This reflects the relative stabil-
ity of the groomed variables as a function of pT . Splitting
scales, in particular, are sensitive to the pT of the initial
jets, however groomed masses correspond closely to phys-
ical quantities and hence are Lorentz-boost invariant.

The overall mistag rates for the different taggers at
the different working points are summarised in Table 2.
For the 20% working point it is clear that the groom-
ing based taggers perform strongly, suppressing the back-
ground by a factor of 20–100. For the samples we chose,
the pruning approach performs best. The ungroomed tag-
ging approaches are more competitive at the 50% work-
ing point, which is often at the limit of the applicable
range for the grooming-based approaches. It can be seen
that the pruning-based approach actually performs worst
at this working point. This seems to be the reflection of
the fact that grooming approaches produce a narrow top
mass peak, typically containing around 60% of the signal
for top jets. To produce an overall efficiency of around
50% , in combination with the mjet > 120GeV require-
ment, we must then choose a large mass window. This
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Figure 11: The performance of the top tagger as given by the HERWIG event samples.
The background efficiency vs. signal efficiency for our top tagger is compared to other
algorithms in the literature in (a). This figure is reproduced from [36] with the results
from our tagger added. Here the candidate jets have transverse momenta 500 GeV ≤ pT ≤
600 GeV. For Fig. (a) only, candidate jets have been clustered with the anti-kT algorithm
with R = 1.0, as was done in the BOOST study. As a consequence the performance in
(a) is better than in (b), where the large jet radius degrades top mass resolution. In (b)
the background efficiency is plotted as a function of pT for signal efficiencies of εS = 50%
(black), 40% (blue), 30% (green) and 20% (red). Efficiencies at a given pT0 are calculated
from a pT window of 100 GeV centered at pT0. Note that, as a consequence, each point is
not statistically independent. Error bands are statistical.

np = 1 mt min mt max Rmax
1∗ mmin

1∗ εS(%) εB(%)
300− 400 GeV 177 GeV 300 GeV 0.96 78 GeV 23.8 1.9
500− 600 GeV 175 GeV 300 GeV 0.57 74 GeV 27.0 2.6

np = 2 mt min Rmax
1∗ Rmax

2∗ mmin
1∗ mmin

2∗ εS(%) εB(%)
300− 400 GeV 157 GeV 0.85 1.59 30 GeV 77 GeV 57.2 11.4
500− 600 GeV 159 GeV 0.57 1.00 36 GeV 55 GeV 59.6 9.8

np = 3 mt min Rmax
1∗ Rmax

2∗ Rmax
3∗ mmin

2∗ mmin
3∗ εS(%) εB(%)

300− 400 GeV 102 GeV 0.81 1.03 2.11 26 GeV 79 GeV 82.9 15.9
500− 600 GeV 155 GeV 0.62 0.66 1.35 46 GeV 73 GeV 73.6 7.9

Table 1: Sample optimized cut parameters at a (total) signal efficiency of εS = 50% for two
different pT bins. In the rightmost column we show the signal and background efficiencies
obtained within each np bin taken separately; i.e. these numbers do not take into account
what fraction of candidate jets end up in each np bin. Signal efficiency increases substantially
with np.
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anti-kT, R=1.0, 500 GeV < pT < 600 GeV
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Application: Top Tagger

• Top tagger competitive with other methods 
in the literature

• Important: Still substantial optimization that 
can be done

• Better choice of variables?

• Prominence as a function of pt?

• Use more information about structure of 
top jet?
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• Probing Perturbative QCD and UE

• What is ensemble average of           ?

• What are the quark and gluon 
contributions?

• Can we distinguish UE models?

• Adaptive Grooming

• IRC safe scales are defined

• Can these scales be used to improve 
mass resolution?

Future/Current Directions
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Summary

• Introduced a method for finding scales 
within a jet without using branching tree

• First Application: Top Tagger competitive 
with other methods

• Many other possible applications!
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