Jet Substructure
Without
Trees

Andrew Larkoski
SLAC, Stanford University

with Martin Jankowiak
arXiv:1104.1646

WC ATLAS Forum, May 4, 201 |



Introduction

® We are officially in the LHC Era!

® A |ot of theoretical effort devoted to LHC
Inverse Problem

® One aspect of this is Jet Substructure
Program

® Can we find efficient methods for
distinguishing QCD jets from jets which
come from heavy particle decays?



Introduction

® Jets: Our view into perturbative QCD

® Partons shower and hadronize into
collimated jets of energy




Introduction

® Jets: Our view into perturbative QCD

® Partons shower and hadronize into
collimated jets of energy

* How do we identify
the two hard cells
as jets!?

»" o Use an algorithm

to “undo” parton

shower




Introduction

® How do we study jets!?
® Jet Observables

® Simplest Examples: jet mass, jet
transverse momenta
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Introduction

® How do we study jets!?

® (Good observables can be calculated in
perturbation theory

® “|RC safety’: Robust against soft and
collinear splittings
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® Unclustering

® Define a branching tree with a sequential
jet algorithm



Introduction

® Unclustering

® Define a branching tree with a sequential
jet algorithm

Ellis, Soper

® kT-type sequential jet algorithm Catnietal
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Introduction

® kT-type sequential jet algorithm

® ) Merge closest pair of particles
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Introduction

® kT-type sequential jet algorithm

® ) Merge closest pair of particles
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Introduction

® kT-type sequential jet algorithm

® 3) Continue until no pair of particles is
close

Jet

® |dea: Clustering procedure
defines a branching tree!
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Outline

® Describe a new method for studying jets

® How to find angular and mass scales
within a jet

® Prominence:A trick for reducing noise
® Jet Observables in this framework
® An application: Identifying top quark jets

® Discussion



Angular Correlation Function

> pripr;ARGO(R — AR;;) Y pirp;O(R — ARy))
G(R) =" ~

—. J —.
7] 17]

® |RC safe = computable in perturbation
theory

® Ris not measured wrt jet center
® Distinct from angular profile

® Quantifies jet scaling in an IRC safe way
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Angular Correlation Function

® |edges in G(R)= separation of hard subjets
) -
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Angular Correlation Function

® |edges in G(R)= separation of hard subjets
of T -
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® Which correspond toRscmething physical?
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Angular Correlation Function

® How to find ledges
® Find peaks in the derivative!
® Problem: really want ratio of masses

® Take derivative of log G(R)



Angular Correlation Function

® How to find ledges
® Find peaks in the derivative!
® Problem: really want ratio of masses
® Take derivative of log G(R)

® QCD is scale invariant ‘

® TJake derivative wrt log R

® Reduces noise at small R
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Angular Correlation Function

® | ook for peaks in dlog G(R)/dlog R
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Angular Correlation Function

® | ook for peaks in dlog G(R)/dlog R

® Angular structure function:

; privr; AR K (R — AR;j)
AG(R) = R Z
( ) ; pTiijAR%j@(R — AR@;‘)

i#£J

® K is taken to be a smooth gaussian kernel:

(R—AR;;)?
e dR%

AR/
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Angular Correlation Function

Question: Does AG(R) determine interesting ledges!?

5.0 _ _ B L e .
4.5} 15-_
4.0} |
j o 10; ﬁ
< 3.5 & |
| 3| ”
3.0} -
j 5t |
2.5} S | ] | Y \/_}
ol o | ol meN M\
15 -10 -05 00 05 1.0 15 0.0 05" 10 15 20 25 3.0
] R
Answer:Yes!
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Prominence

® AG(R)picks out physical peaks beautifully!
® Still some noise: how can we reduce it!
® How do we define interesting peaks!?

® By height!?
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Prominence

® AG(R)picks out physical peaks beautifully!
® Still some noise: how can we reduce it!
® How do we define interesting peaks!?

® By height!?

AG(R)
s this little

bump interesting!?

25



Prominence

® Quiz: What is the highest mountain in the
contiguous US!?
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Prominence

® Quiz: What is the highest mountain in the
contiguous US!?

¢ Mt.Whitney, CA

® What is the most prominent mountain in the
contiguous US!?
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Prominence

® Quiz: What is the highest mountain in the
contiguous US?

¢ Mt.Whitney, CA

® What is the most prominent mountain in the
contiguous US!?

o Mt. Rainier,WA




Prominence

® Why is Mt. Rainier the most prominent
mountain?

® Prominence ~ amount mountain sticks out
above ambient landscape

® How does this help us?
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Prominence

® Why is Mt. Rainier the most prominent
mountain?

® Prominence ~ amount mountain sticks out
above ambient landscape

® How does this help us?

AG(R)

Prominence of little .-~ \

bump is tiny!




Review

® Our program for studying jets:
® Define a jet using your favorite algorithm
® From its constituents, compute G(R)
® To find ledges in G(R), find peaks in AG(R)

® |nteresting peaks have a prominence
greater than some value

® [wo parameters: delta-function smoothing
dR, minimum prominence
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Jet Substructure Observables

® |[RC safe observables from AG(R):

15;

fﬂ”\/mu\__
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Jet Substructure Observables

® |[RC safe observables from AG(R):
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Jet Substructure Observables

® |RC safe observables from AG(R):

IR P ]
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- ® Height of peaks
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Jet Substructure Observables

® |RC safe observables from AG(R):

IR P ]
15] 5

. Number of peaks

* |ocation of peaks in R
* Height of peaks



Jet Substructure Observables

® Our approach:
® Bin jets by the number of peaks

® Related to the number of subjets

36



Jet Substructure Observables

® Our approach:
® Bin jets by the number of peaks
® Related to the number of subjets
® |n each peak number bin:
® | ocation in R of all peaks

® |nvariant mass of pairs of subjets from
peak height

® An explosion of observables!
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Jet Substructure Observables

® Our expectations:

Nsubjets
® Npeaks = ( 9 )
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Jet Substructure Observables

® Our expectations:

Nsubjets
® Npeaks = ( 9 )

o QCD: Flat distributions of peak
locations; small invariant mass of subjets
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Jet Substructure Observables

® Our expectations:

a3 Nsubjets
® Npeaks — 9

o QCD: Flat distributions of peak
locations; small invariant mass of subjets

® Heavy Particle: Peaks in distributions
correlated with masses and momenta

40



Jet Substructure Observables

® Our expectations:

Nsubjets
® Npeaks = ( 9 )

o QCD: Flat distributions of peak
locations; small invariant mass of subjets

® Heavy Particle: Peaks in distributions
correlated with masses and momenta

® Should be substantial discrimination
power!
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Application: Top Tagger
® Jets at the LHC
® Very energetic, especially once at 14 TeV
® QCD Jets will have large mass

2m
® Radius of jet ~

pr
® At Tevatron, tops have small pr
o At LHC, tops will be boosted

® Can have top quark jets!
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Application: Top Tagger
® Our Top Tagger:
® Use observables from AG(R)
® Expectations:

® TJop quark jets will have 3 subjets

® Separation of subjets will be strongly
correlated with mw, m;

® Separation of subjets in QCD jet will be
uncorrelated with any mass scale
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Application: Top Tagger
® Our Top Tagger:
® Within a pr bin:
® Keep jets with |,2 or 3 peaks in AG(R)

® Parton shower can smear subjets

® Record each location in R and peak
height for peaks with minimum
prominence

® Also include mass of jet as discriminant
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Application: Top Tagger

® More on the number of peaks:

3.6

< 3.0:

® npeak = | bin =» W decay products are
unresolved or subjets form an equilateral
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Application: Top Tagger
® More on the number of peaks:

® npeak = | bin =» W decay products are
unresolved or subjets form an equilateral
triangle

® npeak = 2 bin =» W decay products have
large mass with b but not with each
other or subjets form an isoceles triangle
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Application: Top Tagger
® More on the number of peaks:

® npeak = | bin =» W decay products are
unresolved or subjets form an equilateral
triangle

® npeak = 2 bin =» W decay products have
large mass with b but not with each
other or subjets form an isoceles triangle

® npeak = 3 bin=»All subjets of top are
resolved

® Higher bins: hard radiation
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Application: Top Tagger
Use data generated for BOOST 2010

Karagoz, Spannowsky, Vos

Simulate detector by .| x .| binning in 1), ¢

Find jets in events with FastJet 2.4.2 Cacciari Salam
implementation of CA with R= 1.5

Study QCD jets and top quark jets in pt
bins ranging from 200-800 GeV

Set minimum prominence to 4.0

Set delta function smoothing width to 0.06
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Application: Top Tagger
® Example: study 500-600 GeV pt bin

® Peak number distribution with minprom = 4.0
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Application: Top Tagger

® Example: study 500-600 GeV pt bin

® Variables in npeak = 3

0.30
0.25
0.20
0.15
0.10
0.05

0.20
0.15
0.10
0.05

" 25 50 75 100

0.30
0.25
0.20
0.15
0.10
0.05

05 1 15

0.20
0.15
0.10
0.05

50 100 150
51

Moy,

Top
0.14
0.12 QCD
0.10
0.08
0.06
0.04

0.02
05 1 15 2

Rs.

0.15
0.10

0.05

80 160 240 &



200

£100;

Application: Top Tagger
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e Correlation of
separation of
subjets and their
Invariant mass
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Application: Top Tagger

® General procedure:

® |n each pt and peak bin, use all
observables for discrimination

® Use Monte Carlo to sample cut locations
and then compute efficiencies

® Recombine results from npeak = I, 2, 3
bins

® Compute overall efficiencies for signal
and background jets
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Application: Top Tagger
® Results: Sig Eff:
of | 50%
S~ —— | 40%
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| 20%
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Application: Top Tagger

® Comparing to other top taggers:

Karagoz, Spannowsky, Vos
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Application: Top Tagger
® Jop tagger competitive with other methods

in the literature

® |mportant: Still substantial optimization that
can be done

® Better choice of variables?
® Prominence as a function of pt!?

® Use more information about structure of
top jet!
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Future/Current Directions

® Probing Perturbative QCD and UE
® What is ensemble average of AG(R)?

® What are the quark and gluon
contributions!?

® Can we distinguish UE models!?
® Adaptive Grooming
® |RC safe scales are defined

® Can these scales be used to improve
mass resolution!?
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Summary

® |ntroduced a method for finding scales
within a jet without using branching tree

® First Application: Top Tagger competitive
with other methods

® Many other possible applications!
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