
Background for SUSY searches in ATLAS

Monica D'Onofrio, University of Liverpool

Run Number: 167661, Event Number: 1841258

Date: 2010-10-26 06:59:35 CEST

West-coast ATLAS Forum May 18th 2011

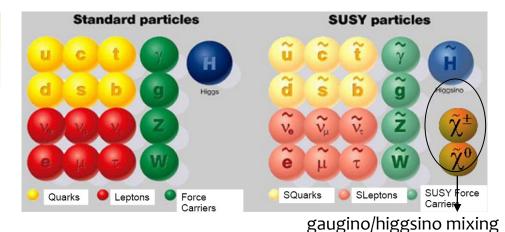
SLAC -from CERN via EVO 3

Supersymmetry

New spin-based symmetry relating fermions and bosons

Q|Boson> = Fermion

Q Fermion> = Boson


- Minimal SuperSymmetric SM (MSSM):
 - Mirror spectrum of particles
 - Enlarged Higgs sector: two doublets with 5 physical states

 $H_{U}, H_{D} \longrightarrow h, H, A, H^{\pm}$

- Unification of forces possible
- Define R-parity = (-1)^{3(B-L)+2s}
 - R = 1 for SM particles
 - R = -1 for MSSM partners

If conserved, provides Dark Matter Candidate

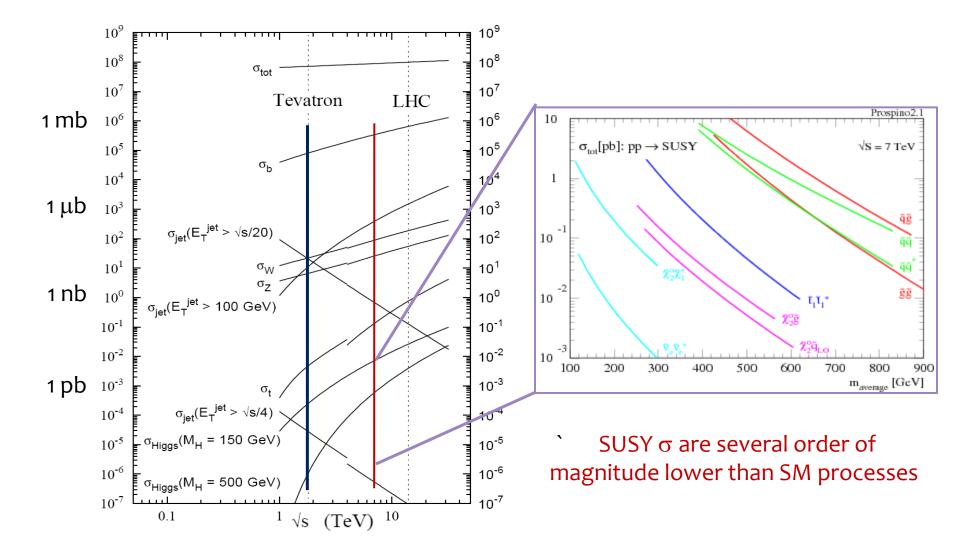
(Lightest Supersymmetric Particle)

Naturally solve the hierarchy problem

No SUSY particles found yet! \rightarrow SUSY must be broken $L = L_{SUSY} + L_{Soft}$

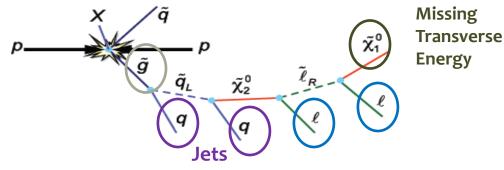
SUSY phenomenology

Breaking mechanism and R-parity determines phenomenology and the search strategy Exploit unbalanced Generic MSSM In R-parity conserving momentum from LSP MSUGRA/CMSSM scenarios, $\tilde{\chi}_1^{\circ}$ (or $\tilde{\nu}$) is LSP. Signatures: GMSB, GGM Gravitino very light (<< MeV) \rightarrow is Missing E_{T} + jets (+ leptons) the LSP. Neutralino can be NLSP: $\widetilde{\chi}_1^0 \to \overline{G}\gamma$ AMSB Signatures (R-parity cons.): Missing $E_T + 2\gamma$ (+lepton/jets) Split-SUSY **RPV-scenarios** Depending on the mass spectrum if small $\chi^{\pm} - \chi_1^{o}$ mass difference, Dedicated techniques long-lived charginos expected Signatures: squarks/gluinos heavy displaced vertex kinked tracks Typical signatures: Long-Lived / quasi stable particles (R-hadrons) If R-parity not conserved, search for resonances


Outline

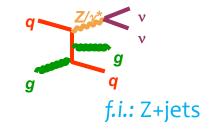
Focus on searches for R-parity conserving SUSY:

- Searches for SUSY in final state events with large E_T^{Miss}, high p_T jets (including b-jets) with and without leptons
 - Data-driven or partially data-driven techniques for:
 - QCD-multijet background
 - W/Z+jets processes
 - Top production
- Summary and conclusions


Note: will show only publicly available material with the 2010 dataset (35 pb⁻¹). On-going update of analysis for PLHC (~170 pb⁻¹) and EPS (up to 500 pb⁻¹?)

Production cross sections

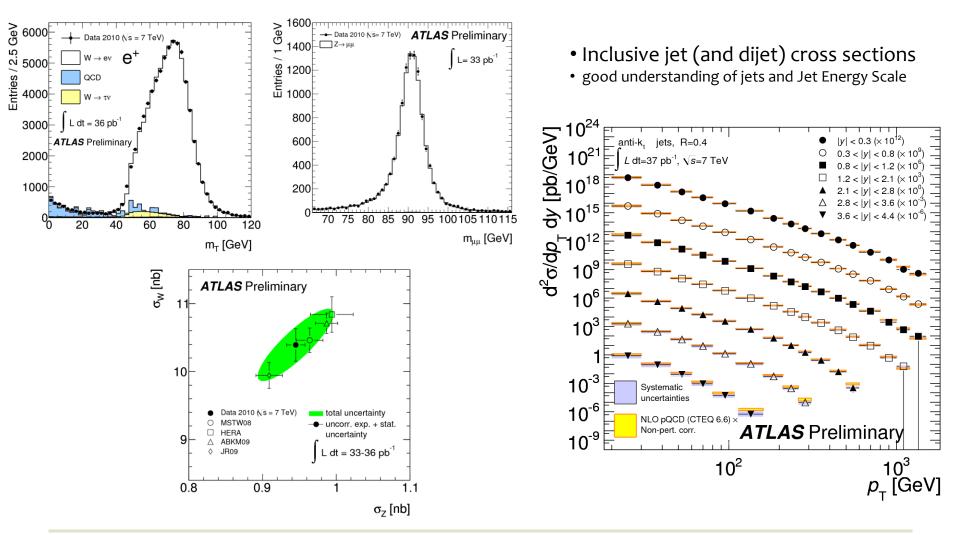
SUSY Event Topology


Complex (and model-dependent) squark/gluino cascades

- Focus on signatures covering large classes of models while strongly rejecting SM background
 - large Missing E_T
 - High transverse momentum jets
 - Leptons
 - Perform separate analyses with and without lepton veto (0-lepton / 1-lepton / 2-leptons)
 - B-jets: to enhance sensitivity to third generation squarks

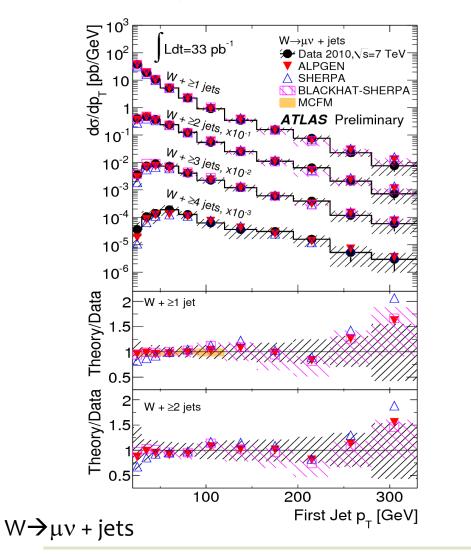
SM processes as background

- SUSY events present same signature as:
 - QCD events with mismeasured jets/semileptonic HF decay
 - $Z \rightarrow vv + jets$ (MET+jets, irreducible background)
 - W $\rightarrow \ell v$ + jets (MET+jets(+leptons) where $\ell = e, \mu, \tau$)
 - Top production processes

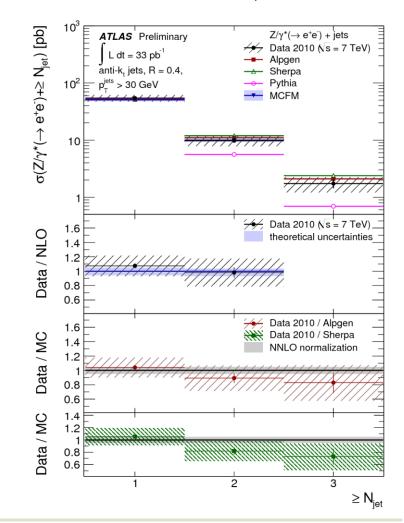

- Different approaches have been followed, depending on the analysis, with some common features:
 - Whenever possible, use of data-driven techniques
 - to estimate absolute normalization and/or shapes
 - defining 'control' samples and making closure tests

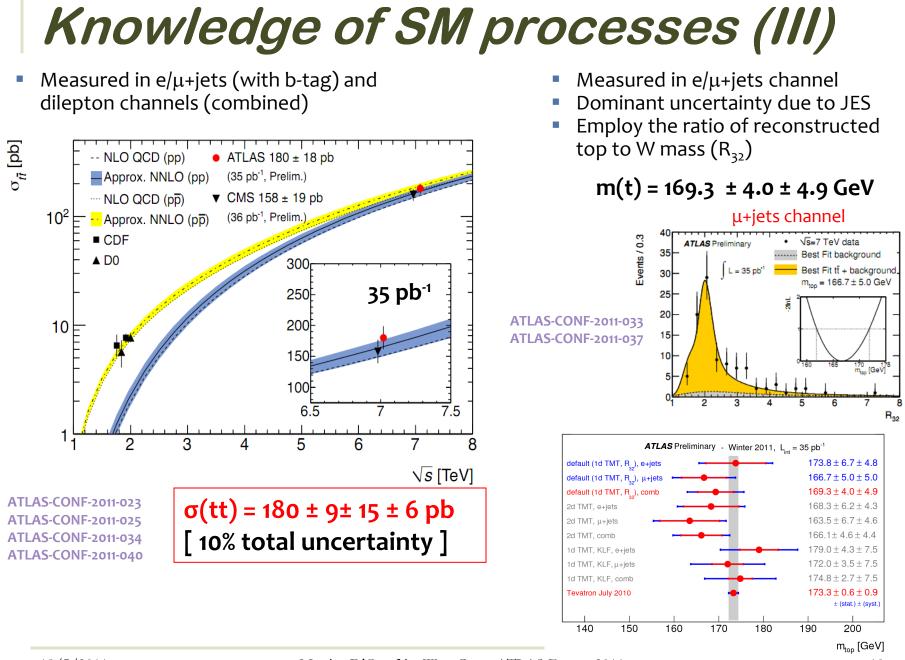
With 35 pb⁻¹ in several cases use Monte Carlo tools to model observable shapes

- Data-driven methods sometimes affected by large statistical uncertainties
- Goodness of Monte Carlo tools extensively tested!


Knowledge of SM processes (I)

- W/Z (in e/μ) cross sections with very first data
- Excellent reconstruction and identification of e and μ




Knowledge of SM processes (II)

W / Z + jets cross sections

Searches for SUSY

Object identifications

Common tools and requirements for 'good events' are used

Primary vertex

At least 1 good vertex with N_{tracks}>4

Jets

- anti-k_T, R=0.4
- p_T > 20 or 30 GeV, |η| up to 2.8

• Reject events compatible with noise or cosmics

B-Jets

• Exploit Secondary vertex reconstruction algorithm

Electrons

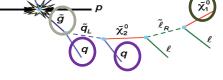
- p_T > 20 GeV, |η|<2.47
- reject events if electron candidates are in transition region (1.37<|η|<1.52)

Muons

- p_T > 20 GeV, |η|<2.4
- combined/extrapolated info from ID and Muon spectrometer
- Sum p_T of tracks <1.8 GeV in Δ R<0.2

Missing E_T

Calculated from objects and clusters


Remove overlapping objects

- If $\Delta R(jet,e) < 0.2$, remove jet
- If 0.2< Δ R(jet,e)<0.4, veto electron, if Δ R(jet, μ)<0.4, veto muon

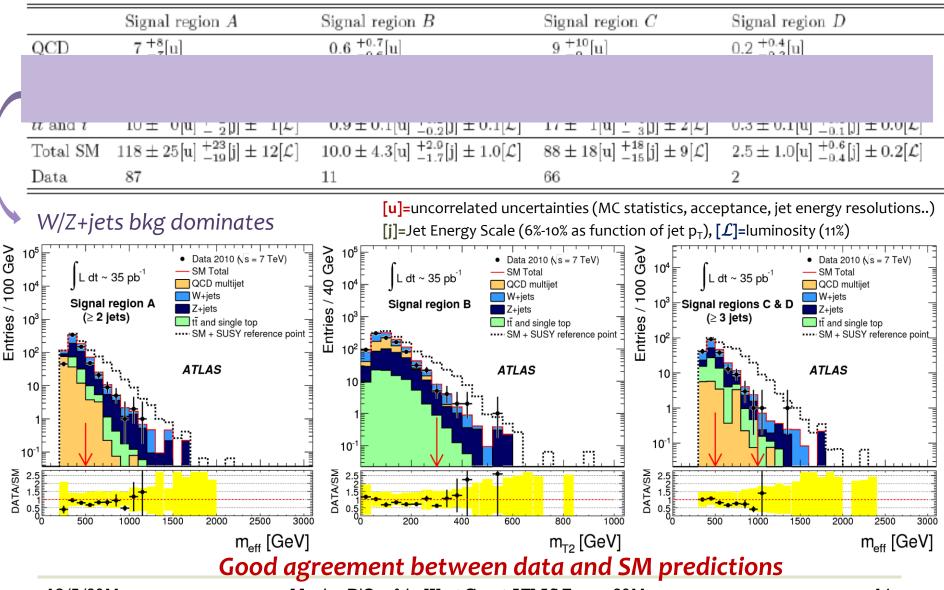
arXiv:1102.5290 (Sub. PLB)

Search in no-lepton final states

- Select events with jets, missing E_T and no lepton (e/ μ veto)
- Signal regions definition on the basis of jet multiplicity $(n \ge 2 \text{ jets or } n \ge 3 \text{ jets})$, jet p_T and E_T^{Miss} thresholds and:

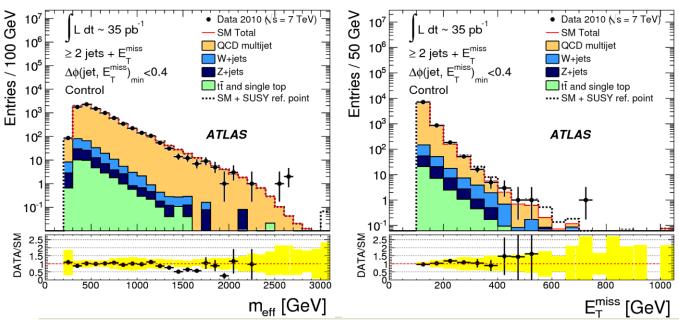
Scalar sum of objects p_T Effective mass (m_{eff})

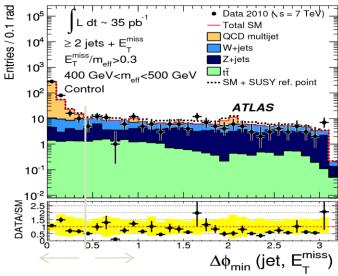
$$m_{eff} \equiv \sum_{i=1}^{n} |p_{T}^{(i)}| + E_{T}^{miss}$$


Stransverse mass (m_{T_2})

 $m_{T2}(\vec{p}_T^{(1)}, \vec{p}_T^{(2)}, \vec{p}_T) \equiv \min_{\vec{q}_T^{(1)} + \vec{q}_T^{(2)} = E_T^{miss}} \{ \max(m_T(\vec{p}_T^{(1)}, \vec{q}_T^{(1)}), m_T(\vec{p}_T^{(2)}, \vec{q}_T^{(2)}) \}$

Phys.Lett.B463:99-103,1999 J.Phys.G29:2343-2363,2003


- <u>/</u> i-	-1	$m_T^2(\vec{p}_T^{(i)}, \vec{q}_T^{(i)}) \equiv 2 \mid \vec{p}_T^{(i)} \parallel \vec{q}_T^{(i)} \mid -2 \vec{p}_T^{(i)} \cdot \vec{q}_T^{(i)}$							
		A	В	С	D	4 signal regions			
ion	Number of required jets	≥ 2	≥ 2	≥ 3	≥ 3				
-selection	Leading jet $p_{\rm T}$ [GeV]	> 120	> 120	> 120	> 120	٦			
e-se	Other jet(s) $p_{\rm T}$ [GeV]	> 40	> 40	> 40	> 40	 Due to trigger requirements 			
Pr	$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100	> 100	> 100				
tion	$\Delta \phi(\text{jet}, \vec{P}_{\text{T}}^{\text{miss}})_{\text{min}}$	> 0.4	> 0.4	> 0.4	> 0.4	QCD-multijet rejection			
selecti	$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	_	> 0.25	> 0.25				
al se	$m_{\rm eff}$ [GeV]	> 500	_	> 500	> 1000				
Final	$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	_	> 300	_	_	 Enhance sensitivity to SUSY 			


Results for SUSY in jets+MET

QCD for 0-lepton

- QCD-multijet background due to misreconstructed jets and neutrinos from HF leptonic decays
 - E_T^{Miss} expected to be aligned to one of the jets
- Use partially data-driven estimate:
 - Rescale MC samples (PYTHIA and ALPGEN) in control region $\rightarrow \Delta \phi$ (jet, E_T^{Miss}) < 0.4

After rejection: QCD ~5% of TOT Bkg

Cross-checked with

- \rightarrow fully data-driven
 - techniques (Jet smearing)
- → Use control region based on reversed E_T^{Miss}/m_{eff} for rescaling

18/5/2011

QCD for O-lepton: cross checks Non-Gaussian tail of jet response function

Entries / 0.05

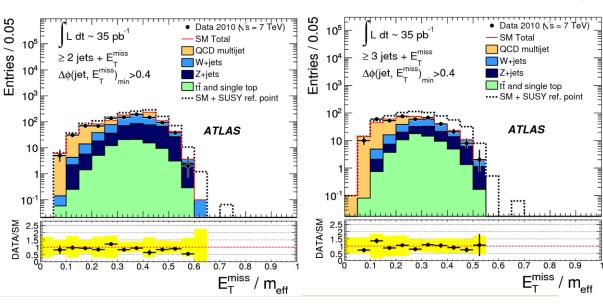
 10^{2}

10

10

 10^{-2}

10⁻¹


- Baseline QCD estimation consistent with fully data-driven technique:
 - High MET events 'generated' from data, smearing down low MET events on a jet-by-jet basis with measured jet energy resolution functions

(1)
$$R_{2} = \frac{(\vec{p}_{T} \cdot (\vec{p}_{T} + \vec{p}_{T,Miss}))}{|\vec{p}_{T} + \vec{p}_{T,Miss}|}$$

Assume source of E_T^{Miss} associated with jets only

(2)

-- Use additional control regions reversing $E_T^{Miss/}m_{eff}$ requirements

• Data 2010 (Vs= 7 TeV)

SM Total
QCD multijet

tt and single top

W+jets

Z+iets

SM + SUSY reference point

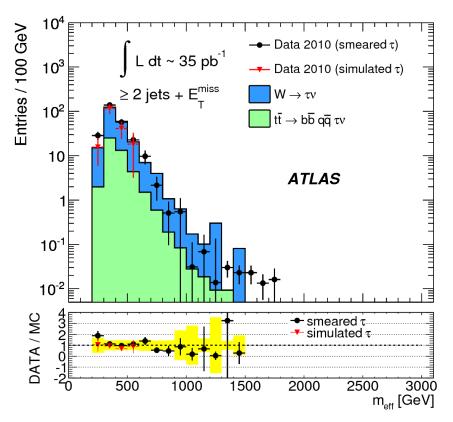
p_{Tlead jet} >200 GeV

Monica D'Onofrio, West Coast ATLAS Forum 2011

dt ~ 35 pb

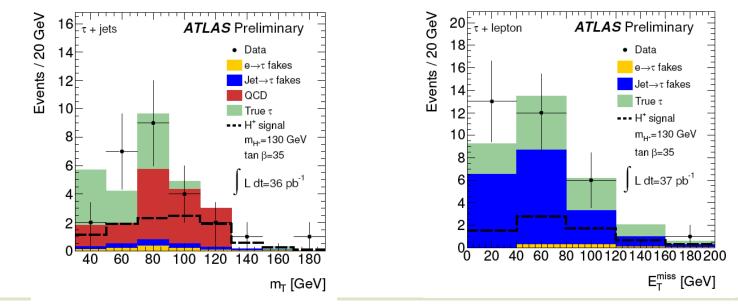
ATLAS

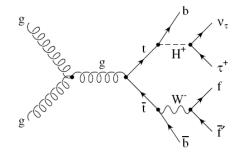
 R_{2}


W+jets (and top background)

- Non-QCD bkg dominated by
 - $W \rightarrow \tau v, W \rightarrow (missed)e/\mu$
 - Top pair production (t $\rightarrow \tau$ +jets)
- Central value derived from MC:
 - W+jets: ALPGEN normalized to NNLO
 - Top: MC@NLO (+HERWIG and JIMMY), CTEQ6.6 PDF

Cross checks on data:

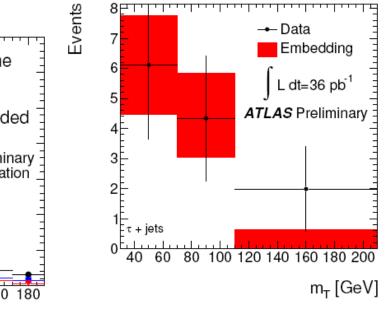

- Control regions with leptons removed from W data
 - In-situ checks for τ background, derived from W→μν events
 - 2 'replacement' methods:
 - □ smeared resolution function: hadronic τ decay products considered as a single additional τ -jet $\rightarrow \tau$ -jet smearing function calculated from $W \rightarrow \tau \nu$ MC
 - full simulation (embedding)


Finally use MC \rightarrow theoretical/modeling uncertainties comparable to statistical uncertainty from data-driven estimates

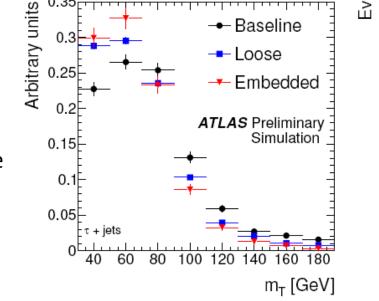
Embedding method for tau: an example

- Method used for data-driven estimates in searches for charged Higgs in τ-hadronic final states:
 - τ+jets and τ+leptons
- SM background estimated with data-driven techniques:
 - **D** Fake τ : e, μ or jets misidentified as τ jets \rightarrow rate from data
 - e,μ: matrix method; Jets: in γ+jet samples
 - QCD-multijets: in control samples with loose-no-tight τ candidates
 - **Real** τ (relevant for τ +jets): from top and W+jets with embedding method

ATLAS-CONF-2011-051


Estimate of true-*τ* background

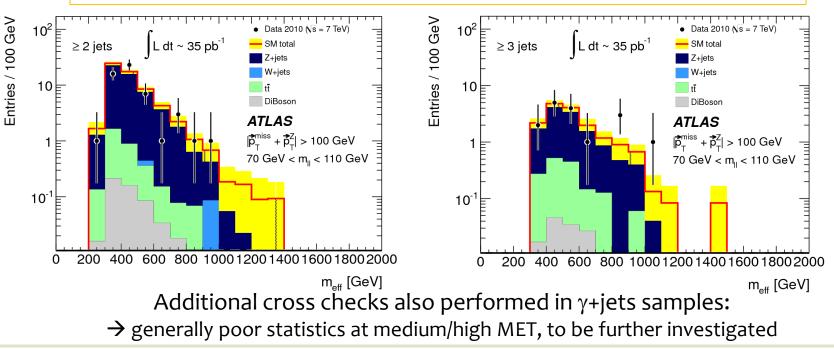
- Control samples with single and top pair production and W+jets events with muons:
 - Replace muon with simulated τ lepton
 - Re-reconstruct new hybrid events
 - Use these events instead of simulation:
 - \rightarrow Advantage: whole event is taken from data including pile-up, HF jets etc.


0.35

μ+jets sample:

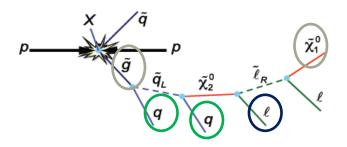
- one isolated m, pT>20 GeV
- at least 3 jets, pT>20 GeV
- at least 1 b-tagged jet
- m(jj) in [M_w± 20 GeV]
- MET>30 GeV, Σ ET > 200 GeV

Method is statistically limited at the moment: \rightarrow Use loose selection with respect to baseline

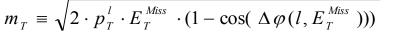


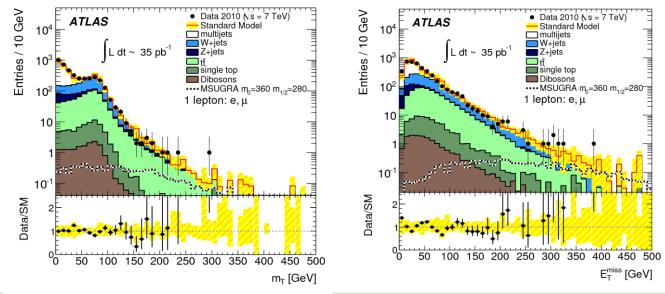
Z + jets in SUSY jets+MET

- Z+jets background is dominated by the irreducible $Z \rightarrow vv + jets$
- Central value derived from MC:
 - **Z+jets:** ALPGEN normalized to NNLO
- Control regions with leptons removed from Z data


Z+jets control sample

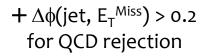
MET recalculated for each event artificially removing the leptons from Z-decay. Corrections for μ vs ν coverage done with MC

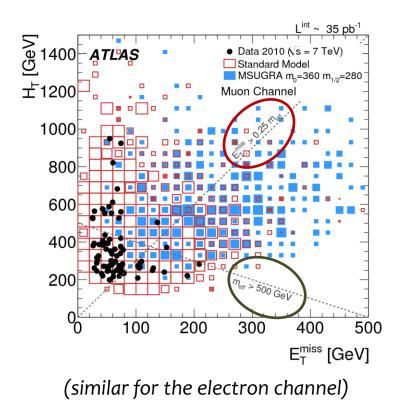



Search in 1-lepton final states

- Require exactly 1 lepton (e or µ, p_T>20 GeV)
 + ≥3 jets [p_T> 60,30,30 GeV]
 - Privilege signatures from gluino/squark cascade decays with intermediate steps
 - Isolated lepton suppresses QCD multijet background and facilitates triggering

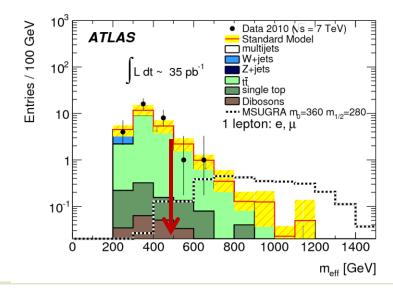
• Use m_T as additional discriminating variable, Missing E_T and jets and leptons p_T




Signal region and results

Signal region:

- $m_T > 100 \text{ GeV} \rightarrow$ to suppress W+jets and top pair production
- MET/m_{eff} > 0.25 \rightarrow to suppress QCD background
- m_{eff} >500 GeV \rightarrow to enhance sensitivity to SUSY particles

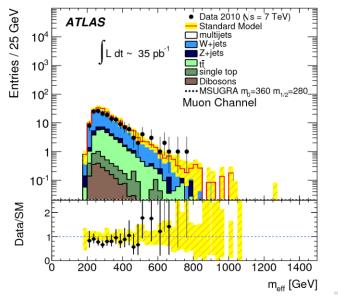


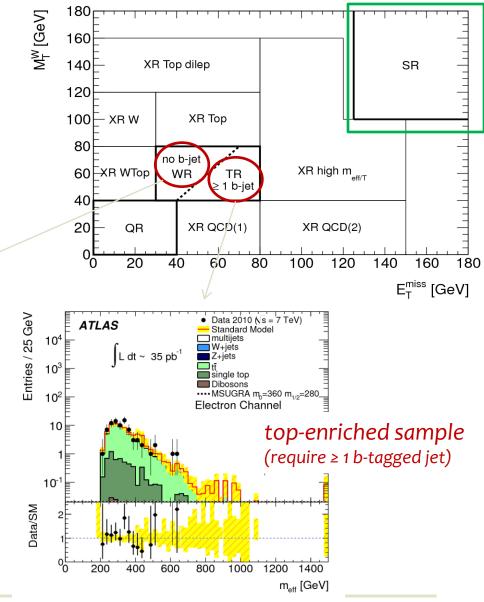
$$H_{T} = p_{T}^{l} + \sum_{i=1}^{3} p_{T}^{jet_{i}}$$
$$m_{eff} = H_{T} + E_{T}^{Miss}$$

After all cuts:

- One event observed in each channel
- Main background: top ~ 70%, rest = W+jets
- Estimated with partially data-driven methods

SM background estimation (I)

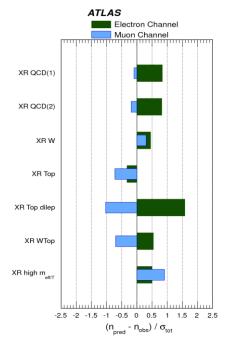

Exploit use of control regions:


- Based on E_T^{Miss} VS M_T
- Define samples enriched in a given process
- Constrain MC predictions to data in that region (rely on MC shapes)
- Extrapolate to other regions (with MC). Ex.:

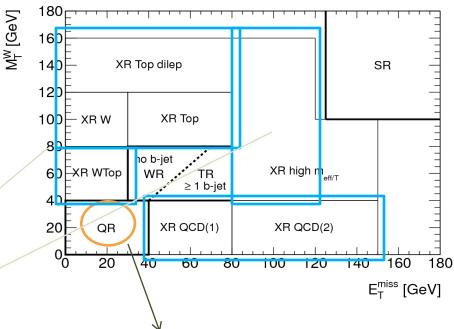
 N^{tt}_{SR} (pred) =($N^{data}_{CR} - N^{BkgMC}_{CR}$)× ($N^{tt}_{SR,MC}$ / $N^{tt}_{CR,MC}$)

 Systematic uncertainties on extrapolation factors

W-enriched sample(require < 1 b-tagged jet)



SM background estimation (II)


Exploit use of control regions:

- Based on E_T^{Miss} VS M_T
- Define samples enriched in a given process
- Constrain MC predictions to data in that region (rely on MC shapes)
- Extrapolate to other regions (with MC). Ex.:
- N^{tt}_{SR} (pred) =(N^{data}_{CR} – N^{BkgMC}_{CR})× ($N^{tt}_{SR,MC}$ / $N^{tt}_{CR,MC}$)
- Systematic uncertainties on extrapolation factors

Additional control regions at low M_T or low Missing E_T used to validate the assumption on MC shape.

Pull: $\frac{N_{pred} - N_{obs}}{\sigma_{TOT}}$

Used to estimate QCD in other CR

Main uncertainties:

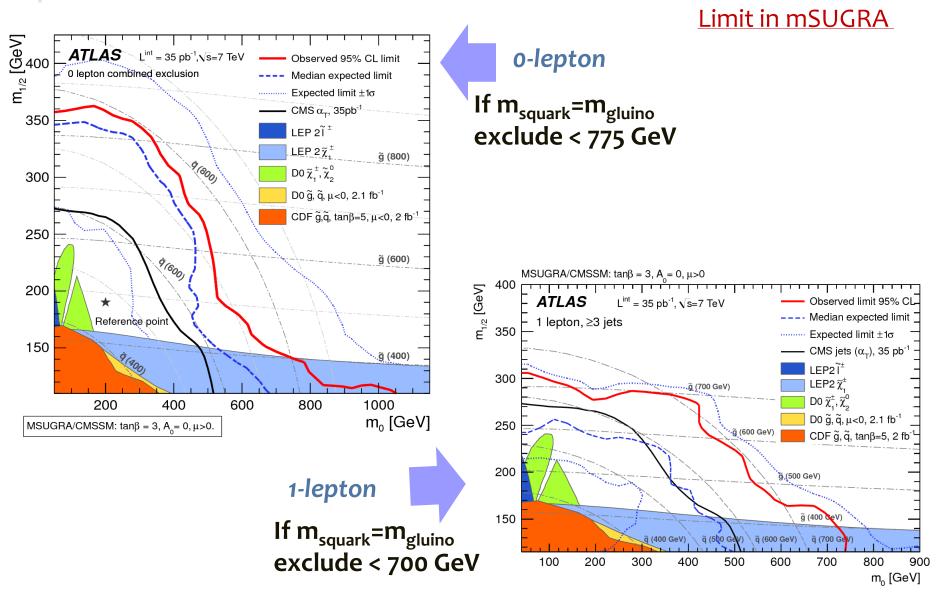
- 1. <u>Theory/modeling:</u> 50% W+jets (uncertainty on m_{eff} NLO shape), 25% top (comparison between generators)
- 2. <u>B-tagging:</u> ~ [10-25]%

Likelihood method (1-lepton)

Fill all useful information into a likelihood => minimize to estimate bkgs

 $L(n|\mu, b, \theta) = P_{SR} \times P_{WR} \times P_{TR} \times P_{QR} \times C_{Syst}$

> One poisson for signal region and for each control region


 \rightarrow simultaneous fit of all regions (signal and control)

Systematic uncertainties treated as nuisance parameters

Electron channel	Signal region	Top region	W region	QCD region	
Observed events	1	80	202	1464	
Fitted top events	$1.34 \pm 0.52 \ (1.29)$	$65.0 \pm 12.3 \ (62.9)$	$31.8 \pm 15.8 (31.0)$	40.1 ± 11.3	
Fitted W/Z events	$0.47 \pm 0.40 \ (0.46)$	$11.2 \pm 4.6 \ (10.2)$	$161 \pm 27 \ (146)$	170 ± 34	
Fitted QCD events	$0.0^{+0.3}_{-0.0}$	3.7 ± 7.6	9.4 ± 19.6	1254 ± 51	
Fitted sum of background events	1.81 ± 0.75	80 ± 9	202 ± 14	1464 ± 38	
Muon channel	Signal region	Top region	W region	QCD region	
Observed events	1	93	165	346	
Fitted top events	$1.76 \pm 0.67 \ (1.39)$	$85.0 \pm 10.5 \ (67.1)$	$41.8 \pm 18.6 (33.0)$	49.7 ± 10.2	
Fitted W/Z events	$0.49 \pm 0.36 \ (0.71)$	$7.7 \pm 3.3 (11.6)$	120 ± 26 (166)	71.4 ± 16.4	
Fitted QCD events	$0.0^{+0.5}_{-0.0}$	0.3 ± 1.2	3.4 ± 12.1	225 ± 22	
Fitted sum of background events	2.25 ± 0.94	93 ± 10	165 ± 13	346 ± 19	

Fitted predictions in agreement with observation

0 and 1-lepton results

Searches in E^{Miss}+b-jets

arXiv:1103.4344 Submitted to PLB

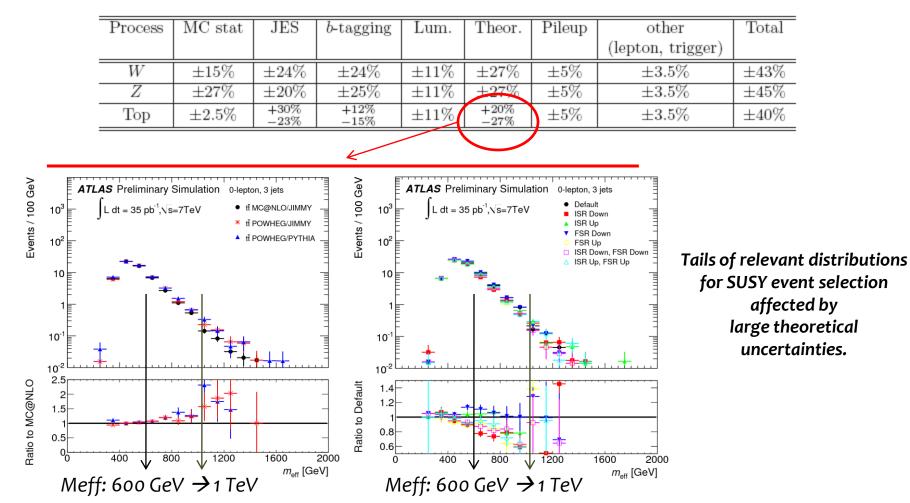
Third generation squarks might be lighter than 1st, 2nd generation \rightarrow possibly high cross sections: Final state enriched in b-jets \rightarrow search direct pair or gluino-mediated production ī∂/t in events with jets b/ Ь (≥1 b-jet) +E^{Miss} (+ 000 q ĥ $0/ \ge 1$) leptons $\checkmark \tilde{\chi}_1^0$ δ/ ĩ∂/t Event selection 0-lepton 1-lepton 1-lepton Monte Carlo data-driven 12.2 ± 5.0 12.3 ± 4.0 14.7 ± 3.7 $t\bar{t}$ and single top 0-lepton 1-lepton W and Z 6.0 ± 2.0 0.8 ± 0.4 no-lepton ($p_T > 20 \text{ GeV}$) \geq 1 lepton ($p_{\rm T} > 20 \, {\rm GeV}$) 1.4 ± 1.0 0.4 ± 0.4 QCD jet $p_{\rm T} > 120, 30, 30 \text{ GeV}, |\eta| < 2.5$ jet $p_{\rm T} > 60, 30 \text{ GeV}, |\eta| < 2.5$ Total SM 19.6 ± 6.9 13.5 ± 4.1 14.7 ± 3 $E_{\rm T}^{\rm miss} > 100 \, {\rm GeV}$ $E_{T}^{miss} > 80 \text{ GeV}$ 15Data 9 9 $E_{\rm T}^{\rm miss}/m_{\rm eff} > 0.2$ At least 1 b-tagged jet (SV0, $L/\sigma(L) > 5.72$, $p_T > 30$ GeV, $|\eta| < 2.5$) 10⁴ 10 Events / 20 GeV ATLAS Preliminary ATLAS Preliminary $m_T > 100 \text{ GeV}$ $\Delta \phi_{min} > 0.4 \text{ rad}$ Data 2010 10³ L dt = 35 pb⁻¹, \s = 7 TeV 10^{3} L dt = 35 pb^{-1} , $\sqrt{s} = 7 \text{ TeV}$ 10² 10 o-lepton 1-lepton Signal regions: QCD production QCD production ••••• ã 400 GeV. ť 210 GeV •••• ã 500 GeV Ď 380 GeV o-lepton: M_{eff} > 600 GeV 1-lepton: $M_{eff} > 500 \text{ GeV}$ 10^{-1} 10⁻¹ 10 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 0 50 0 $E_{\rm T}^{\rm miss}$ [GeV] E^{miss}_T [GeV]

SM Background: 0-lepton

→QCD: Partially data-driven →Top/Boson+jets: MC estimate

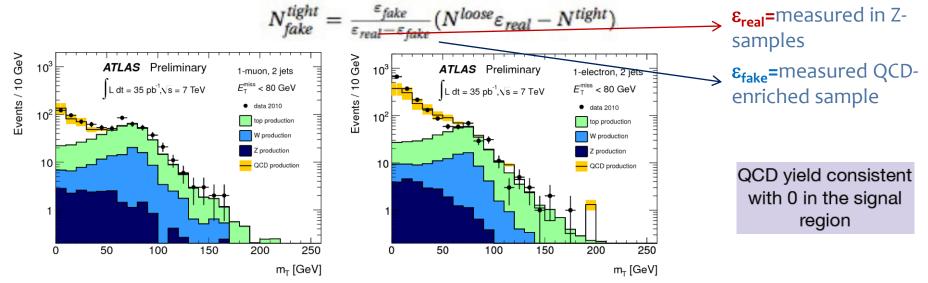
 10^{6} Events / 0.2 rad Take Meff shape from $\Delta \phi_{min} < 0.4$ 0-lepton, 3 jets ATLAS Preliminary 10⁵ after b-tagging Uncertainties (~60%) driven by L dt = 35 pb⁻¹,√s = 7 TeV Data 2010 10^{2} SM Total statistics op production W production 10^{3} Z production 10⁴ QCD production Events / 50 GeV 10² 0-lepton, 3 jets ATLAS Preliminary •••• ä 500 GeV, b 380 GeV $\Delta \phi = < 0.4$ 10^{3} L dt = 35 pb⁻¹,√s = 7 TeV 10 Data 2010 SM Total op production 10² 1 N production production 10⁻¹ QCD production 10 ⊨ q 500 GeV, b 380 GeV 10⁻²-04 0.8 1.2 1.6 2 2.4 2.8 3.2 0 $\Delta \phi_{\rm min}$ 10⁻¹ From MC: take fraction of QCD events passing 10⁻² 400 800 2000 1200 1600 $\Delta \phi_{\min} > 0.4$ $m_{\rm eff}$ [GeV]

Revert $\Delta \phi_{min}$ < 0.4


O-lepton bkg details (b-jets)

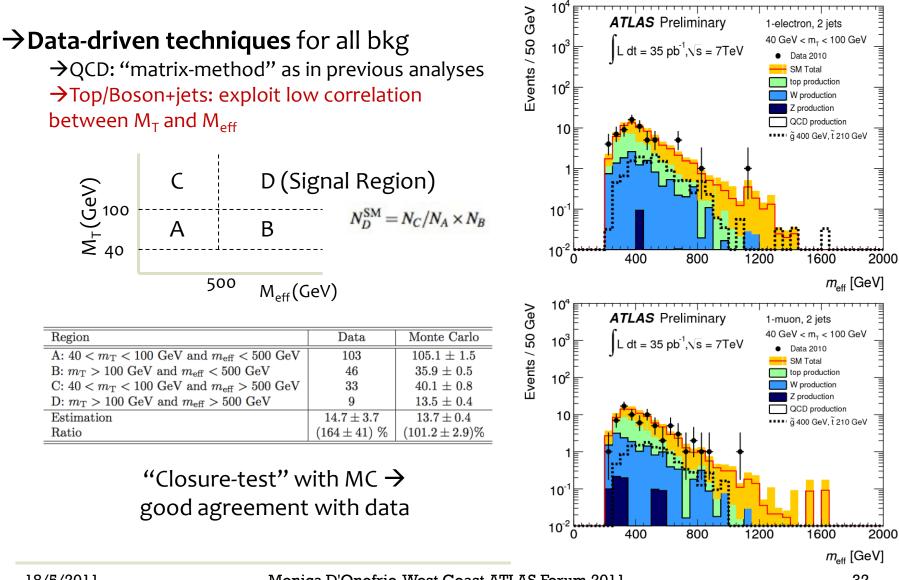
 Breakdown of non-QCD SM-background contributions (from MC) for 0lepton analysis at each stage of the selection (per pb⁻¹)

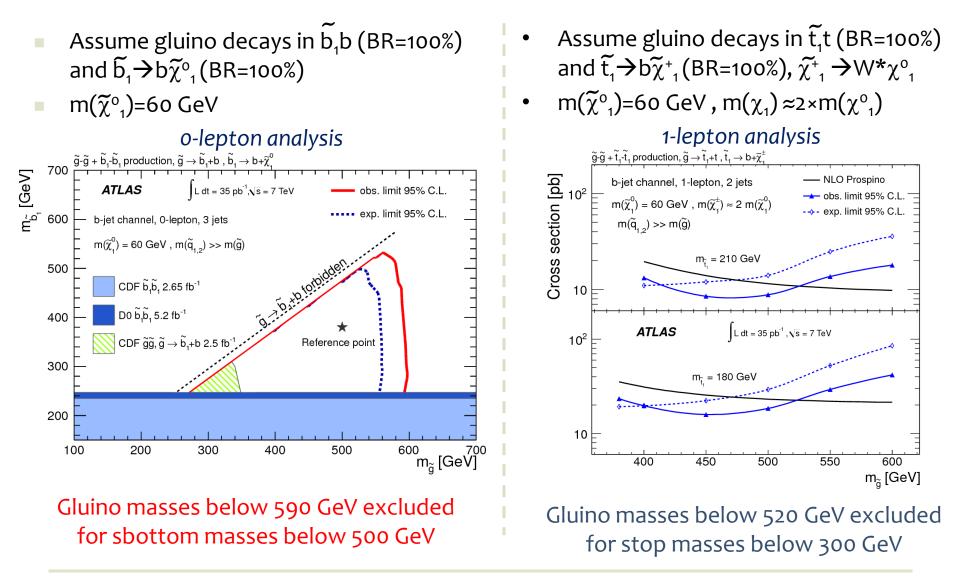
-	Cut	$t\bar{t}$	W+ jets	Wbb	Z + jets	Zbb	single top
-	$E_{\rm T}^{\rm miss} > 100 { m ~GeV}$	3.55 ± 0.02	9.29 ± 0.1	$5 0.1 \pm 0.01$	4.66 ± 0.14	0.054 ± 0.002	0.30 ± 0.02
	$E_{\mathrm{T}}^{\mathrm{miss}}/\mathrm{m_{eff}} > 0.2$	3.05 ± 0.02	8.36 ± 0.1	$4 0.09 \pm 0.01$	4.28 ± 0.14	0.047 ± 0.001	0.26 ± 0.02
	1 b-tagged jet	2.15 ± 0.02	0.69 ± 0.0	$4 0.06 \pm 0.01$	0.28 ± 0.03	0.022 ± 0.001	0.16 ± 0.01
	$\Delta \phi_{min} > 0.4$	1.60 ± 0.02	0.42 ± 0.02		0.19 ± 0.03	0.016 ± 0.001	0.11 ± 0.01
_	$m_{eff} > 600 \text{ GeV}$	0.33 ± 0.01	0.11 ± 0.02	$2 0.006 \pm 0.002$	0.05 ± 0.01	0.0031 ± 0.0003	0.02 ± 0.01
-				-			
		Select	ion I	Expected events	Observed E	vents	
		$E_{\rm T}^{\rm miss} > 10$	00 GeV	4800 ± 1600	5834		
		E_{T}^{miss}/m_{ef}	f > 0.2	2800 ± 900	3221		
		b-ta	g	620 ± 200	656		
		$\Delta \phi_{min}$:	> 0.4	90 ± 30	91		
		$m_{eff} > 60$	0 GeV	20 ± 7	15		
Events / 0.2 rad	$10^{6} \text{ ATLAS Prelimin} \\ 10^{5} \int L dt = 35 \text{ pb}^{-1}, \text{ Ns} \\ 10^{4} 10^{2} 10^{2} 10^{2} 10^{2} 10^{-1} \\ 10^{-1} 10^{-2} 0 0.4 0.8 1.2 12 $	before b-tag	gging	b-tagging	N 10 ⁵		2-lepton, 3 jets after b-tagging • Data 2010 SM Total top production CCD production GCD production QCD


Systematic uncertainties

o-lepton analysis: theoretical uncertainties larger than JES at high meff values

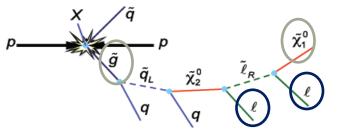
1 lepton bkg details (b-jets)


QCD estimation from a Matrix method relying on 2 data sets differing only in the lepton ID criteria: tight (standard) and loose (relaxed):


 Breakdown of non-QCD SM-background contributions for 1-lepton analysis at each stage of the selection

Cut	Top	W	Z	QCD	Di-boson production	Cut		Top	W	Z	QCD	Di–boson production
1 electron with $p_{\rm T}>20~{\rm GeV}$	24.4	3760	631.4	16865	6.2	1 muon with $p_{\rm T}>20$) GeV	24.4	4700	770	4880	6.8
$2~{\rm jets}~(p_{\rm T}>60, 30~{\rm GeV})$	17.2	59.6	21.2	590	1.0	2 jets ($p_{\rm T} > 60, 30$ C	GeV)	17.3	70	15.5	65	1.0
$E_{\rm T}^{\rm miss} > 80 { m ~GeV}$	4.6	10.4	0.3	6.6	0.2	$E_{\rm T}^{\rm miss} > 80 {\rm ~GeV}$	7	4.7	12	0.63	0.02	0.21
$m_{\rm T}>100~{\rm GeV}$	1.0	0.38	0.025	0.08	0.0021	$m_{\rm T}>100~{\rm GeV}$		1.0	0.57	0.037	$1 imes 10^{-4}$	0.02
1 b-tag	0.70	0.016	$3 imes 10^{-4}$	0.06	0.0013	1 b-tag		0.67	0.03	0.002	_	0.002
$m_{\rm eff} > 500~{\rm GeV}$	0.18	0.011	_	_	-	$m_{\rm eff} > 500~GeV$	7	0.17	0.013	_	_	_

SM Background: 1-lepton (II)

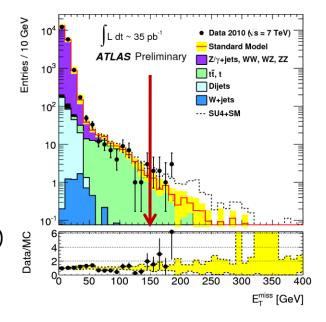


Interpretation in pheno-MSSM

2-leptons analysis

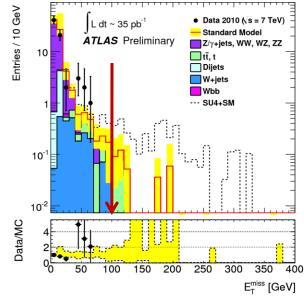
- Search for dilepton (e,µ) pairs from neutralino/chargino decays
- Two search strategies, requiring oppositesign (OS) and same-sign (SS) dileptons events

Event selection


- exactly two leptons
- M(II) > 5 GeV

Signal regions

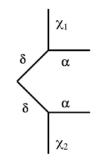
- OS: $E_T^{Miss} > 150 \text{ GeV}$
- SS: E_T^{Miss} > 100 GeV


Main SM Background

- OS: top pair (estimate in CR)
- SS: misidentified leptons
 (fakes) → data-driven as in
 previous analyses

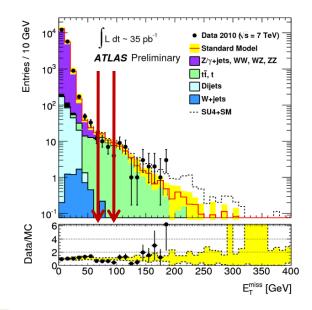
Opposite-Sign

Same-Sign



Top background for OS

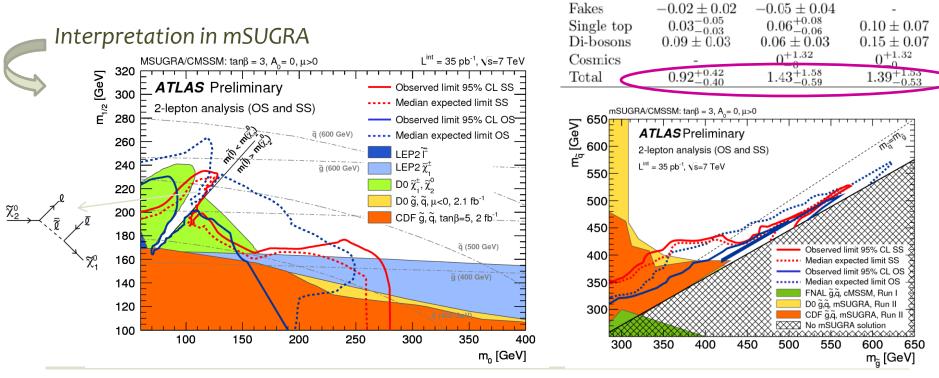
Dileptonic top decays $tt \rightarrow l^+ vb l^- vb$


"Top tagging" algorithm based on contransverse mass (m_{ct})

 $m_{CT}^{2}(\chi_{1},\chi_{2}) = [E_{T}(\chi_{1}) + E_{T}(\chi_{2})]^{2} - [\mathbf{p}_{T}(\chi_{1}) - \mathbf{p}_{T}(\chi_{2})]^{2}$

Control Sample

- E_T^{Miss} [60,80] GeV, ≥ 2 jets with $p_T > 20$ GeV
- Calculate m_{CT} from 4-vectors of leptons and jets \rightarrow must be consistent with tt bounds
- m(jet,l1) and m(jet,l2) consistent with top decays


Data CR: 15 top-tagged events MC CR: 21.3±3.8 (18.8 from ttbar)

Estimation in Signal Region \rightarrow

$$(N_{tt})_{SRch} = \left((N_{data}^{tag})_{CR} - (N_{non-tt,MC}^{tag})_{CR} \right) f_{MC}^{CR \to SR}$$
$$f_{MC}^{CR \to SR} = (N_{top,MC})_{SRch} / (N_{top,MC}^{tag})_{CR}$$

Results

- Agreement between data and SM expectations within uncertainties:
- Use sum of ee,µµ,eµ channel for SS, combination of the three channels for OS
- 95% C.L. upper limits on effective cross section $\sigma \cdot A \cdot BR$ from new physics:
 - SS: σ<0.07 pb
 - ee: 0.09 pb, μμ: 0.21 pb, eμ: 0.22 pb

Monica D'Onofrio, West Coast ATLAS Forum 2011

 $\mu^{\pm}\mu^{\pm}$

 0.035 ± 0.012

 0.05 ± 0.01

 $\mu^{\pm}\mu^{\mp}$

 $1.00^{+0.50}_{-0.45}$

 0.14 ± 0.17

0.014 -0

Same Sign. $E_{\rm T}^{\rm miss} > 100 {\rm ~GeV}$

Opposite Sign, $E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$

 $e^{\pm}\mu^{\pm}$

0

 0.03 ± 0.026

 0.021 ± 0.009

 0.026 ± 0.011

0+1.32

 $0.08 \stackrel{+1.32}{_{-0.03}}$

,±,,∓

 $1.24 \pm 0.62 \\ -0.56$

 0.08 ± 0.08

 $e^{\pm}e^{\pm}$

0

 0.12 ± 0.12

 0.015 ± 0.005

 0.019 ± 0.008

 0.14 ± 0.13

 $e^{\pm}e^{\mp}$

 $0.62_{-0.28}$

 0.19 ± 0.15

Data

Fakes

Di-bosons

Cosmic

Total

Data

Z+jets

tŦ

Charge-flip

Bkg estimate methods

Difficult to summarize, but let's try ...

MC based approach: MC based estimate where both the shape and the rate in the signal region (SR) are estimated from MC

Mixed data and MC based via overall corrections : estimate where the MC rate is constrained by data in a control sample (CS), but the MC is used to extrapolate from the control sample to the signal region.

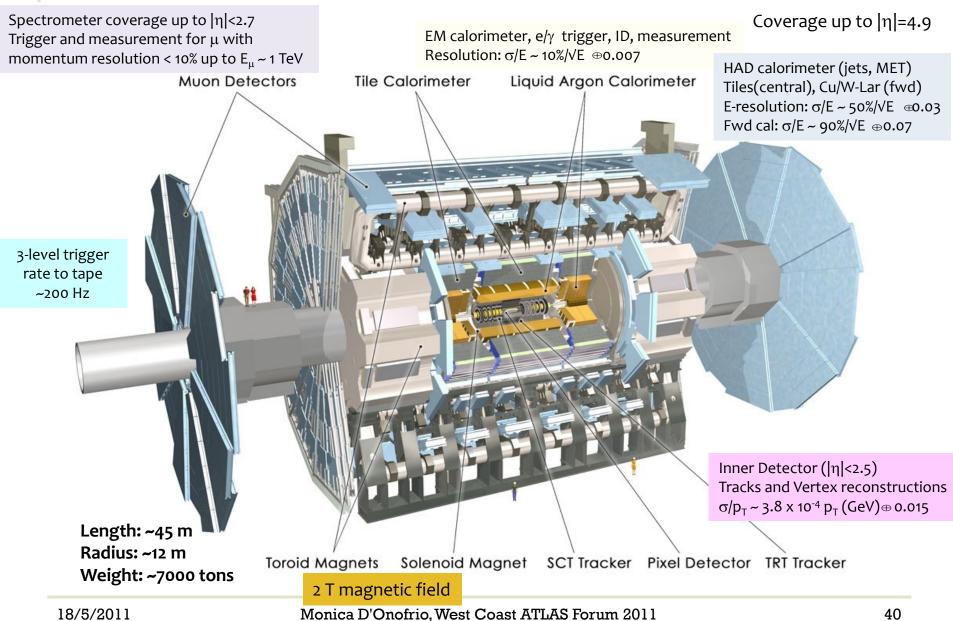
$$N_{SR,est.}^{V} = \frac{N_{SR,MC}^{V}}{N_{CS,MC}^{V}} \times (N_{CS,data} - N_{CS,bkg})$$

→ Pros: remove uncertainties on Lumi and total σ , factorize part of detector and theoretical uncertainties (if Control Sample CS ~ similar topology)

→Cons: central value possibly affected by large statistical fluctuation in CS. Theoretical uncertainties might be quite large.

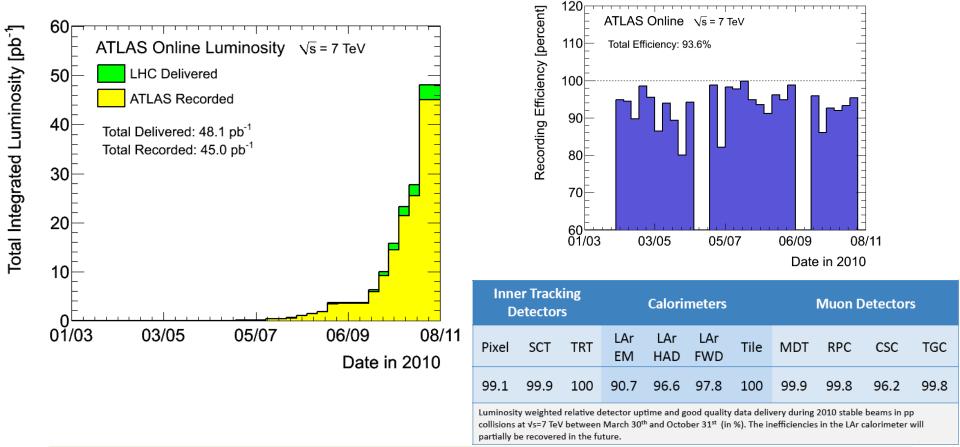
Event based correction on data: A quasi data-driven approach, where both the number of events and the shape are taken from a data CS. In case correction factors must be applied to account for the acceptance and ID efficiency of the events in the CS → taken from data when possible, otherwise from Monte Carlo.

Conclusions


- Several approaches followed to estimate SM background contributions in SUSY searches, depending on the analysis variables (jet multiplicity, explicit lepton requirement, with/without b-tagging)
 - Common features:
 - define control regions orthogonal to signal samples
 - use MC tools to estimate shapes, data-driven techniques for normalization

Only a few examples shown here

- Larger use of data-driven techniques with more data:
 - Analyzing already 170 pb⁻¹ of 2011 data
 - in most cases, use of MC samples unavoidable (acceptance corrections, control sample-to-signal region corrections).
 → Reducing theoretical uncertainties might be the key-issue for kinematic regimes interesting for searches



The ATLAS detector

The 2010 ATLAS pp data

- Profiting at best from the excellent LHC performance:
 - Maximum values of 6 pb⁻¹ luminosity per day
 - Instantaneous luminosity values up to 2 × 10³² cm⁻² s⁻¹
- Detector efficiency above 90%

~ 35 pb-1 of data used in the analyses presented here

Electron Performance Results 2000 9 1 GeV 1200 Data L dt = 37 pb⁻¹ ATLAS Preliminary Data $\int Ldt = 39 \text{ pb}^{-1}$ ATLAS Preliminary Events / 1 075 MC Z→ee Fit to data 1600 1000 Bkg. from fit to data Pythia MC (direct J/ψ) Fit to data Events/(0.0 1200 Events/(0.0 1000 Events/ σ_{data}= 1.73+/-0.08 GeV |η|<2.47 800 Fit to MC+data bkg. $\sigma_{\rm MC}$ = 1.49+/-0.02 GeV = 3080 ± 2 MeV 600 = 3083 ± 1 MeV 800 = 132 ± 2 MeV σ_{data} = 134 ± 1 MeV σ_{MC} 400 600 |h|<2.47 400 200 (1.37<|n|<1.52 excluded 200 70 95 105 2.5 80 85 90 100 110 1.5 3 3.5 75 2 m_{ee}[GeV] Mee [GeV] 300 GeV Entries / 0.1 250 Data L dt = 39 pb ATLAS Preliminary → Data 2010 (\s = 7 TeV) $L dt = 36 \text{ pb}^{-1}$ MC Ž→ ee Events / 1 250 Fit to data $Z \rightarrow ee$ ATLAS Preliminary 200 |η_| < 2.47 QCD 2.5 < |η₂₀| < 4.9 200 = 2.96 ± 0.1 GeV σ_{data} 150 = 2.32 ± 0.03 GeV σ_{MC} 150 forward-central Zs 100 100 electrons above the tracker acceptance 50 50

18/5/2011

80

90

100

120

110

m_{ee} [GeV]

0<u></u>

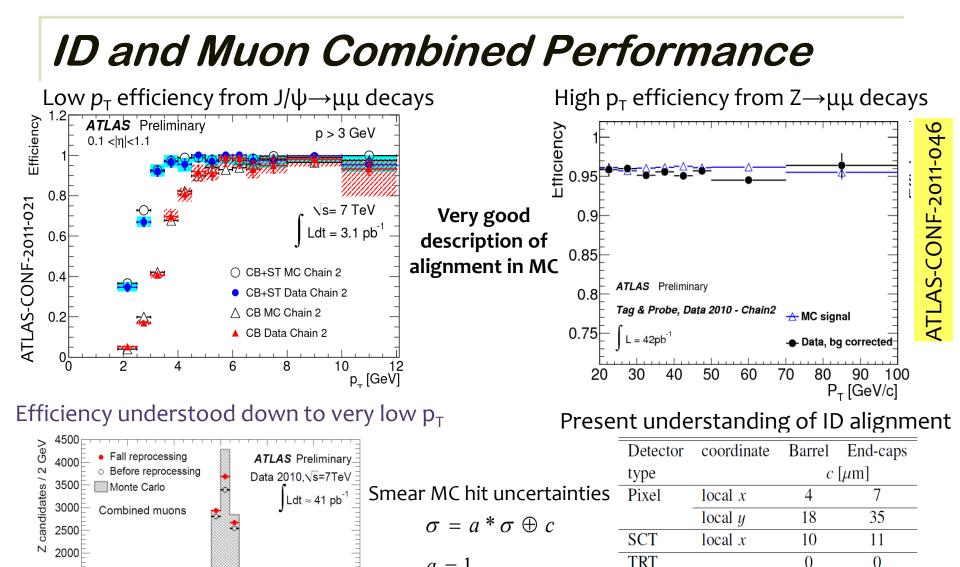
Monica D'Onofrio, West Coast ATLAS Forum 2011

ATLAS-CONF-2011-041

-3

-2

-1


n

4

У₇

3

2

a = 1

Improved momentum scale and resolution muon scale uncertainty is < 1%

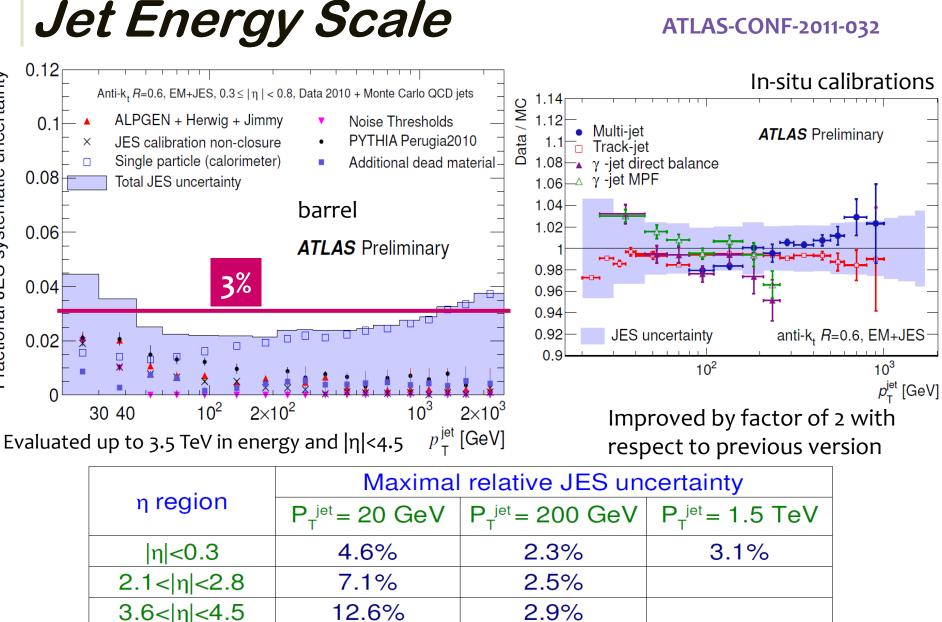
dimuon mass resolution 1.8% barrel and 3% end-cap

70

80

90

100


110

 $M_{\mu^+\mu^-}$ (GeV)

120

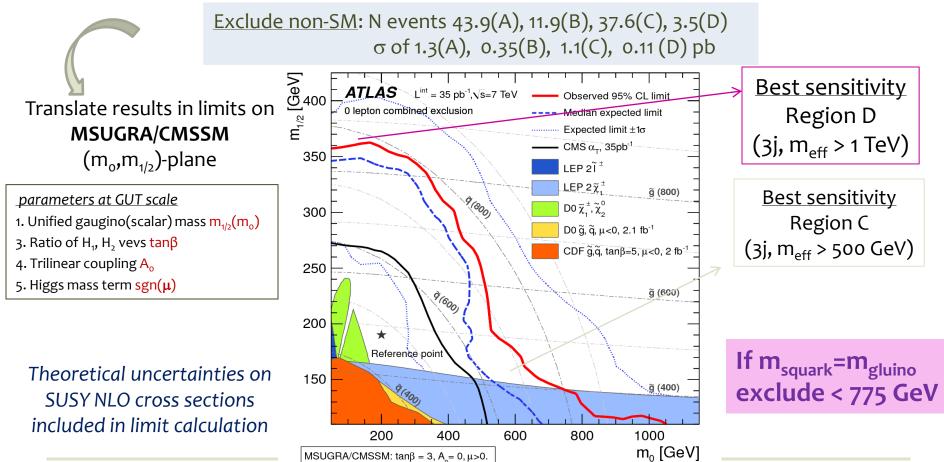
500

60

systematic uncertainty Fractional JES

Jet Energy and Etmiss Resolutions

PbPb data only sample reaching this high in $\sum E_{T}$ σ(p_T)/p₁ 0.2 Data 2010 √s = 7 TeV – EM+JES 90c E_x^{miss} , E_y^{miss} Resolution [GeV] 0.18 anti-k, R = 0.6 cluster jets GCW cell-based E^{miss} Inl<4.5 0.0<|y|<0.8 GCW 80E 0.16 Data Pb+Pb $\sqrt{s_{NN}}$ = 2.76 TeV: L dt = 1.7 µb⁻¹ ---- LCW 0.14 Fit: 0.48\Σ E_T 70E Data p+p \sqrt{s} = 7 TeV: L dt = 0.34 nb⁻¹ 0.12 ----------------------GS 60 Fit: 0.48\Σ E_T 0.1 50E 0.08 . dt = 35 pb⁻¹ 0.06 40 0.04 ATLAS Preliminary **30**E 0.02 20 Diff % (Data-MC) 14.5 TeV 20E 0 10E ATLAS Preliminary -20 10^{-1} 10 200 40 50 60 70 80 90100 300 400 500 30(p, +p,)/2 (GeV) ΣE_{T} [TeV]


Advanced calibrations \rightarrow improve resolution by 10-30% Monte Carlo agrees with data within 10%

Interpretation of the results

Use profile likelihood ratio: $\Lambda(\mu) = -2(\ln L(n \mid \mu, \hat{b}, \hat{\theta}) - \ln L(n \mid \hat{\mu}, \hat{b}, \hat{\theta}))$

• include correlations of uncertainties where appropriate

→ Estimate upper limits at 95% C.L. on N signal events and effective cross sections independently of new physics models (background-only hypothesis)

Monica D'Onofrio, West Coast ATLAS Forum 2011

18/5/2011

Results (b-jets)

Good agreement between data and SM predictions within systematic uncertainties in both channels

0-lepton, 3 jets

Data 2010

SM Total

OCD production

•••• ĝ 500 GeV, ĥ 380 GeV

o-lepton analysis

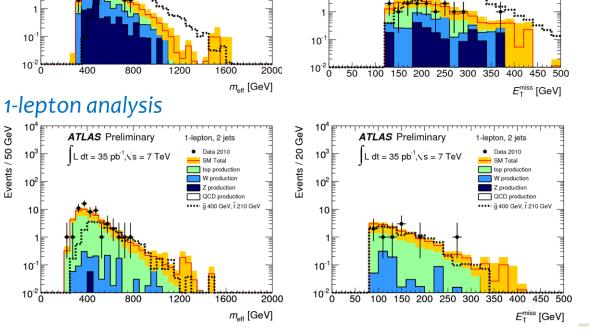
ATLAS Preliminary

L dt = 35 pb⁻¹,√s = 7 TeV

Events / 50 GeV

10³

10²


10

	0-lepton 1-lepton		1-lepton	
		Monte Carlo	data-driven	
$t\bar{t}$ and single top	12.2 ± 5.0	12.3 ± 4.0	14.7 ± 3.7	
W and Z	6.0 ± 2.0	0.8 ± 0.4	-	
QCD	1.4 ± 1.0	0.4 ± 0.4	$0^{+0.4}_{-0.0}$	
Total SM	19.6 ± 6.9	13.5 ± 4.1	14.7 ± 3.7	
Data	15	9	9	

Interpret the results as 95%C.L. upper limits on N signal events independently of new physics models:

> N(o-lepton) > 10.5 N(1-lepton)>4.7

Effective cross sections: σ (0-lepton) > 0.32 pb σ (1-lepton) > 0.13 pb

Events / 20 GeV

 10^{3}

10² ⊨

10

ATLAS Preliminary

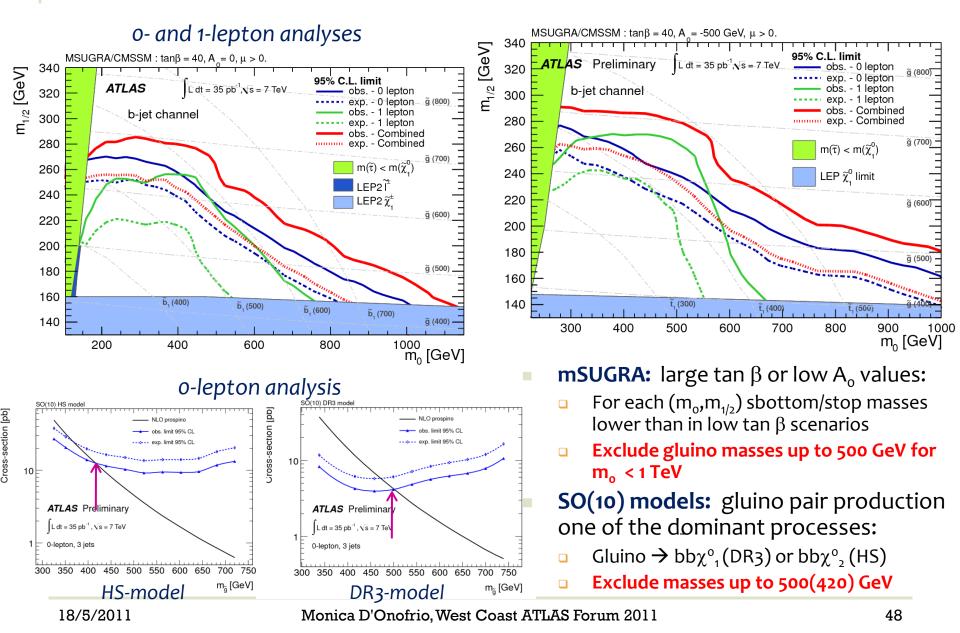
L dt = 35 pb⁻¹,√s = 7 TeV

0-lepton, 3 jets

op production

N production

Z production


QCD production

•••• ĝ 500 GeV, ĥ 380 GeV

18/5/2011

Monica D'Onofrio, West Coast ATLAS Forum 2011

Specific SUSY models

Top-tagger: m_{CT}

- In the decay of a two pair-produced heavy states which decay via $\delta \rightarrow \alpha \chi_i$ $m^2 = (2\alpha \mu_i) = [E_{-}(2\alpha)]^2 = [P_{-}(2\alpha)]^2$
 - $m_{CT}^2(\chi_1,\chi_2) = [E_T(\chi_1) + E_T(\chi_2)]^2 [\mathbf{p_T}(\chi_1) \mathbf{p_T}(\chi_2)]^2$
- m_{CT} distributions have endpoints defined by m(δ), m(α) and the vector sum of transverse momenta of the visible particles upstream of the system for which the contransverse mass is calculated (p_b)
- For the top-pair system m_{CT} (II), m_{CT} (jj), m_{CT} (j l, jl) can be constructed

Contransverse mass tagger

- 1. Event with least 2 jets with p_T > 20 GeV
- 2. Consider all 2 jet permutations j_1 , j_2 , such that the two jets have $p_T > 20$ GeV and $p_T(j_1) + p_T(j_2) + p_T(\ell_1) + p_T(\ell_2) > 100$ GeV
- 3. $m_{CT}(\ell_1, \ell_2)$ in the allowed area of the $(m_{CT}(\ell_1, \ell_2), p_b(\ell \ell))$ plane
- 4. Build all pairs $((j_i \ell_1)(j_j \ell)_2)$ such that $m(j_i \ell_1) < 155$ GeV and $m(j_j \ell_2) < 155$ GeV
- One combination with m_{CT}(jj) in the allowed area of the m_{CT}(jj), p_b(jj) plane
- 6. $m_{CT}(j\ell, j\ell)$ should be compatible with $t\overline{t}$

• Efficiency m_{CT} tagger = 85%

Tovey, JHEP 0804 (2008) 034

- control region for ttbar:
 - m_{cT}-tagged events
 - 60<E_T^{Miss}<80 GeV

Polesello, Tovey, JHEP 1003 (2010) 030
decay via χ_1

α

α

 χ_2

δ

δ

Other backgrounds for 2-lepton

Electron charge-flip:

- Relevant for Same-Sign dilepton final states
- Background from dilepton top events:
 - Hard bremsstrahlumng process

$$e_{\mathrm{hard}}^{\mp} \rightarrow \gamma_{\mathrm{hard}} e_{\mathrm{soft}}^{\mp} \rightarrow e_{\mathrm{soft}}^{\mp} e_{\mathrm{soft}}^{\mp} e_{\mathrm{hard}}^{\pm}$$

- Charge mis-identified rate taken from Zee MC samples as a function of $|\eta|$
- Validated in Z→ee data
- Z+jets:

- $Z \rightarrow e\mu$ from MC (low statistics in data)
- Semi-data driven estimation for $Z \rightarrow ee, \mu\mu$
- Control region:
 - 81<m(ll)<101 GeV
 - E_T^{Miss} < 20 GeV
- Corrected for predicted number of W and top in control region
- Cosmics:
 - 2 methods considered \rightarrow
 - matrix method based on impact parameter
 - Trigger Lifetime
 - Both consistent to zero
 - Define an upper bound: Ncos < 1.32 at 68% CL, Ncos < 3.45 at 95% CL

Monica D'Onofrio, West Coast ATLAS Forum 2011

 $N_{Z/\gamma^*}^{\text{est,SR}} = \beta \cdot N_{Z/\gamma^*}^{\text{data,CR}} \qquad \beta = \frac{N_{Z/\gamma^*}^{\text{MC,SR}}}{N_{Z/\gamma^*}^{\text{MC,CR}}}$

Monte Carlo samples used

- Analyses generally employ MC samples generated with:
 - Alpgen associated with HERWIG (not ++) and JIMMY for W+jets and Z+jets (including Wbb, Zbb)
 - MLM matching scheme to combine samples with different final state parton multiplicities (up to 5 for inclusive, up to 3 for Wbb/Zbb)
 - PYTHIA used for low DY region and $Z \rightarrow \tau \tau$ (τ -decays with TAUOLA)
 - SHERPA samples used for cross check in some cases
 - Large "production" on-going for 2011 analyses
- V+jets predictions normalized to NNLO cross sections (FEWZ)
 - CTEQ6L1 for ALPGEN and SHERPA samples
 - MRST2007lomod (LO modified) for PYTHIA samples (for low mass DY)

Example from H →WW* analysis

ALPGEN	10.5×10^3 [34,35]
PYTHIA	10.5×10^3 [34,35]
ALPGEN	10.7×10 ² [35,36]
PYTHIA	9.9×10 ² [35, 36]
ALPGEN	3.9×10^3 [36]
PYTHIA	4.0×10^3 [36]
	PYTHIA ALPGEN PYTHIA ALPGEN

Search on SM Higgs H→ W*W

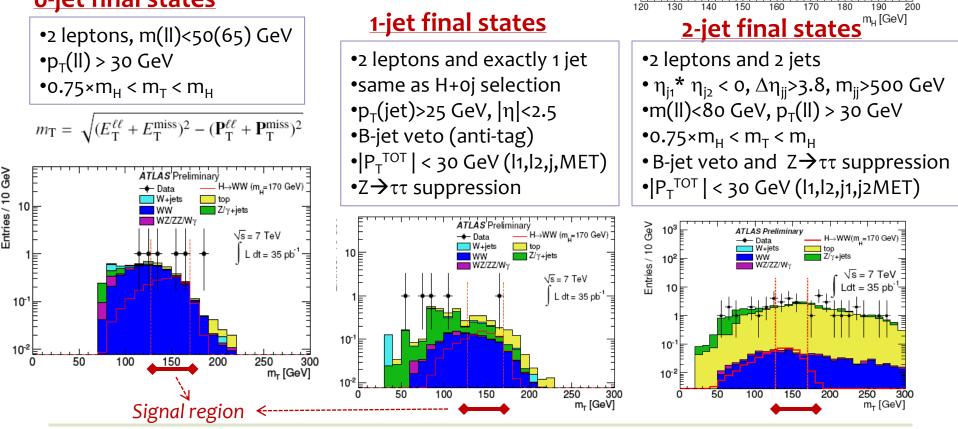
ATLAS-CONF-2011-005

gg→H

qq→qqH

(H+2j)

(H+0/1j)-

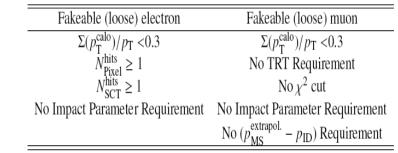

SM Higgs \rightarrow W W* \rightarrow N N (I = e, μ)

→H)×Br(H→WW*) [pt

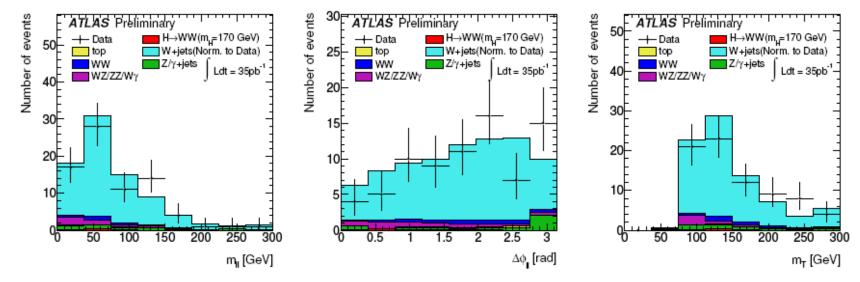
a(pp-

- Strong sensitivity in 120 < m(H_{SM}) < 200 GeV</p>
- Cut-based analysis
 - combine H + 0 jet, H + 1 jet and H + 2 jet
- Dominant backgrounds: DiBoson, tt,V+jets

0-jet final states

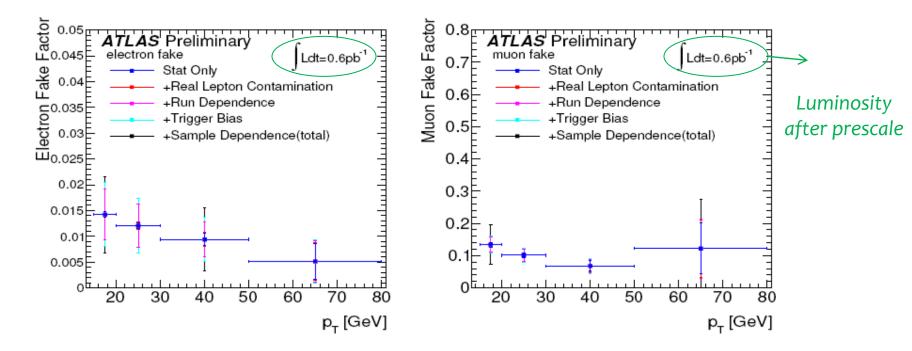


W+jets background


- Define control sample enriched in W+jets:
 - One lepton must satisfy ID and isolation cuts of the analysis
 - Require second lepton to satisfy loose set of cuts (*fakeable*)
 - \rightarrow W+jets expectations in signal region (SR):

 $d\sigma/dX(SR) = d\sigma/dX(CR) \times f_1$

 $f_I = fake factor = Prob(loose \rightarrow ID)$



Good agreement data/MC in shape for kinematic distributions

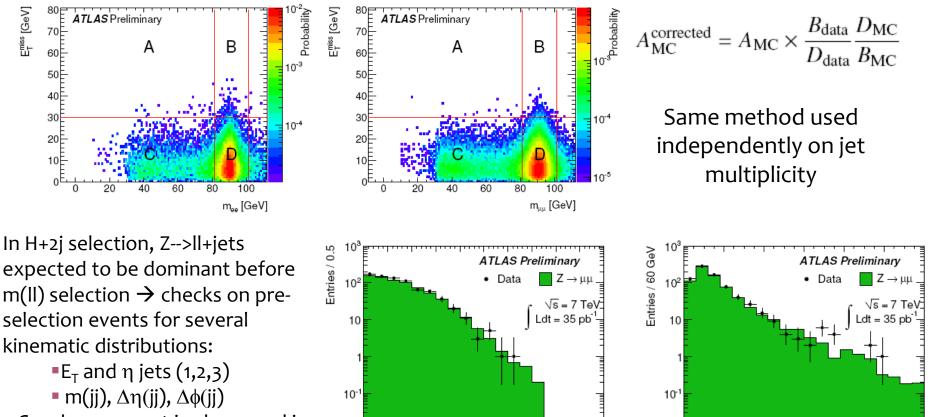
Fake factor

- Control sample defined in multi-jets events with at least a fakeable lepton.
- Real lepton contamination (from W,Z) removed
- ~ 50% uncertainties, mostly dominated by sample and trigger selection dependence

W+jets estimates in H→WW*

	ee-channel	$\mu\mu$ -channel	<i>eµ</i> -channel		
Before topological selection					
Expected events (excluding W+jets)	3.77	1.29	8.03		
Observed one identified+one fakeable leptons	30	6	41		
Estimated W+jets in the control region	26.2 ± 5.6	4.7 ± 2.5	33.0 ± 6.4		
Estimated W+jets in the signal region	$0.2 \pm 0.0 \pm 0.1$	$0.5 \pm 0.3 \pm 0.2$	$0.5 \pm 0.2 \pm 0.2$		
After all selection ($m_H = 170 \text{ GeV}$)					
Expected events (excluding W+jets)	0.3	0.1	0.6		
Observed one identified+one fakeable leptons	3	0	2		
Estimated W+jets in the control region	2.7 ± 1.7	0.0	1.4 ± 1.4		
Estimated <i>W</i> +jets in the signal region	$0.02 \pm 0.01 \pm 0.01$	$0.0\pm0.1\pm0.1$	$0.01 \pm 0.01 \pm 0.02$		

ee-channel	$\mu\mu$ -channel	<i>eµ</i> -channel			
Before topological selection					
3.0	2.3	4.7			
18	3	36			
15.0 ± 4.2	0.7 ± 1.7	31.3 ± 6.0			
$0.1 \pm 0.0 \pm 0.1$	$0.2 \pm 0.2 \pm 0.1$	$0.5 \pm 0.2 \pm 0.2$			
After all selection (m_H =170 GeV)					
0.2	0.1	0.4			
3	0	2			
2.8 ± 1.7	0.0	1.6 ± 1.4			
$0.03 \pm 0.02 \pm 0.01$	$0.0\pm0.1\pm0.1$	$0.02 \pm 0.02 \pm 0.01$			
	$ \begin{array}{r} \text{pological selection} \\ $	pological selection 3.0 2.3 18 3 15.0±4.2 0.7 ± 1.7 $0.1\pm0.0\pm0.1$ $0.2\pm0.2\pm0.1$ ection (m_H =170 GeV) 0.2 0.2 0.1 3 0 2.8±1.7 0.0			


■ H+1j

H+2j: negligible

H+oj

Z+jets (and low DY) background

Scaling the yield in MC by a E_{τ}^{Miss} mis-modeling factor using control regions

Good agreement in shape and in absolute normalization (within 10%)

4 5 6 7 10^{-2}

 $\Delta \eta_{\rm o}$

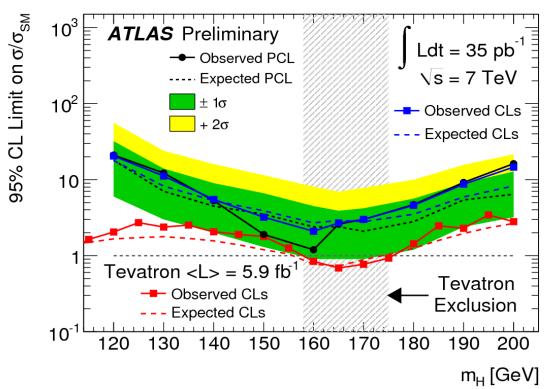
0

200

400

600

800


 10^{-2}

0 1 2 3 1000 120 M_{ii} [GeV]

1200

Results for SM Higgs \rightarrow W W*

Channe1	Signal	top	WW	$WZ/ZZ/W\gamma$	Z+jets	W+jets	Total Bkg.	Observed
	H + 0j							
eμ	$0.62 \pm 0.01 \pm 0.18$	0.09	0.71	0.02	0.00	0.01	$0.83 \pm 0.07 \pm 0.13$	1
ee	$0.20 \pm 0.01 \pm 0.07$	0.03	0.20	0.00	0.00	0.02	$0.25 \pm 0.08 \pm 0.04$	1
$\mu\mu$	$0.44 \pm 0.01 \pm 0.12$	0.08	0.53	0.01	0.00	0.00	$0.62 \pm 0.05 \pm 0.10$	1
	H+1j							
eμ	$0.31 \pm 0.01 \pm 0.09$	0.26	0.18	0.01	0.00	0.02	$0.47 \pm 0.08 \pm 0.16$	0
ee	$0.08 \pm 0.01 \pm 0.03$	0.10	0.05	0.00	0.05	0.03	$0.23 \pm 0.04 \pm 0.06$	0
$\mu\mu$	$0.21 \pm 0.01 \pm 0.06$	0.15	0.16	0.00	0.25	0.00	$0.56 \pm 0.09 \pm 0.14$	1
	H+2j							
$e\mu$	$0.03 \pm 0.01 \pm 0.01$	0.01	0.00	0.00	0.00	0.00	$0.01 \pm 0.01 \pm 0.01$	0
ee	$0.01 \pm 0.01 \pm 0.01$	0.00	0.00	0.00	0.00	0.00	0.00	0
$\mu\mu$	$0.02 \pm 0.01 \pm 0.01$	0.00	0.01	0.00	0.00	0.00	$0.01 \pm 0.01 \pm 0.01$	0

Upper limit on $\sigma x BR(H \rightarrow WW^*)$ $m_H = 120 \text{ GeV} : 54 \text{ pb}$ $m_H = 160 \text{ GeV} : 11 \text{ pb}$ $m_H = 200 \text{ GeV} : 71 \text{ pb}$