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Our Main Goals

e Understand the architecture of modern CPU hardware
o Hardware evolution
o Main features of modern hardware
e Understand how to analyze the performance of our code
o How to identify performance bottlenecks
o  What to measure and how to measure it
e Combine architectural knowledge and performance analysis

o How to interpret performance measurements

o  What changes to make to the software




CPU Hardware
Architecture and Evolution



Early Computing Devices

2700 - 2300 BC

Abacus

Used since ancient times,
until Arabic numerals became
the norm. Still in use as an
educational tool.

Images: Wikipedia

1620- 1630

Slide Rule

Uses logarithm scales to help
with multiplications and also
computing other functions.
Extensively used by engineers
in the last century, before
computers became powerful.

1642

Pascaline

Mechanical calculator
invented by Blaise Pascal to
help his father with tax
calculations. Could add and
subtract.

1820s

Difference Engine

Automatic mechanical
calculator designed to
tabulate polynomial
functions. Designed and first
created by Charles Babbage.



https://en.wikipedia.org/wiki/Pascal%27s_calculator
https://en.wikipedia.org/wiki/Abacus
https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/Difference_engine

Ada Lovelace, the first computer programmer

Augusta Ada King, Countess of Lovelace (10 December
1815 — 27 November 1852) was an English mathematician
and writer, known for her work on Charles Babbage's
proposed mechanical general-purpose computer, the
Analytical Engine. She was the first to recognize that the
new machine had applications beyond simple calculations.
She arguably wrote the first “computer program”. In her
article entitled “note G” on the Analytical Engine, she

described in detail an algorithm to compute a sequence of
Bernoulli numbers using it.

Source: Wikipedia



https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Bernoulli_number

The Turing Machine: concept of first generic computer

State transition diagram

©

source: https://aturingmachine.com

Universal
Turing A Turing machine is capable of computing
Machine any computable sequence.

HEAD: READ/WRITE/MOVE

Infinite tape



https://aturingmachine.com/
https://doi.org/10.1112/plms/s2-42.1.230
https://aturingmachine.com
https://en.wikipedia.org/wiki/Turing_machine

From Turing Machine to Stored-Program Computer

Turing Machine ABC, Colossus, ENIAC Assembly Language

Conceptually the first general First truly digital computers, Beginning of standardization of how

computing machine. based on boolean logic and to program computer with abstract

vacuum tubes. instruction sets.
1937 1947 1950
1936 1942-1945 1949

Harvard IBM Mark | Solid-State Transistor EDVAC
Inspired on the Analytical Engine. The first solid-state transistor First stored-program computer,
One of the earliest general-purpose was a based on a point-contact based on John von Neumann'’s
electromechanical computers. connection to a crystal by closely architecture concept from 1945.
First computer bug discovered on spaced thin gold foils.

it by Grace Hopper.




John von Neumann Architecture

Central Processing Unit
(CPU)

[ Input Arithmetic/Logic Unit Output ]

Device Device
Memory Unit
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Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced

OurWorldinData.org — Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.



https://ourworldindata.org/moores-law

Integrated Circuit-Based Microprocessors

0RO8S

8526M M
B SRieL 1978

Intel 4004 MOS 6502 Intel 8086

FirstIntel °*

Powered many popular devices,
microprocessor.

such as the Apple Il, Atari 2600,

2,300 Transistors. Commodore 64, and the NES. First 16-bit microprocessor. 29’090 Transist_?rs.
3,510 Transistors. Its successor, the Intel 8088, a slightly modified
version, powered first IBM PC.
1972 1976 1985
1970 1975 1978

Intel 8008 Zilog Z80 Intel 80386
First 8 bit microprocessor. 8-bit microprocessor. 32-bit microprocessor.
3,500 Transistors. Powered devices such as 275,000 Transistors, 33MHz.

Sega Master System and Mega Drive, Cemented Intel's PC market
and Sinclair's ZX Spectrum. dominance.



https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-8086.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-8008.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-4004.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-8086-and-the-ibm-pc.html

Intel's 8086 Registers and Assembly

I fg t te B 1 13 1ty g % % 07 % O 04 O3 % O O (bit position) ; -strtolower: , . )
; Copy a null-terminated ASCII string, converting
Main registers ; all alphabetic characters to lower case.
, ES=DS
AH AL AX (primary accumulator) ; Entry stack parameters
; [SP+4] = src, Address of source string
0000 BH BL BX (base, accumulator) g [SP+2] = dst, Address of target string
; [SP+8] = Return address
CH (5 F CX (counter, accumulator) c
_strtolower proc
DH DL DX (accumula’(or, extended acc) push bp ;Set up the call frame
mov bp, sp
Index registers push si
push di
0000 Sl Source Index mov si, [bp+6] ;Set SI = src (+2 due to push bp)
o mov di, [bp+4] ;Set DI = dst
0000 DI Destination Index cld ;string direction ascending
0000 BP Base Pointer loop: lodsb ;Load AL from [si], inc si
. cmp al,'A’ JIf AL < 'A7,
0000 SP Stack Pointer i1 copy “Skip conversion
cmp al, 'z’ JIf AL > 'Z°,
Program counter j copy ; Skip conversion
0000 1P Instruction Pointer capy: 2ggsb al,’a’-"A l:gigﬁzrzLAiot([)dﬁwe;ziSZi
; or al,al SIf AL <> 9,
Segment registars jne loop ; Repeat the loop
0000 CodeS t
e oce-aesmen done: pop di ;, restore di and si
DS 0000 DataSegment [P Sl
pop bp ;Restore the prev call frame
ES 0000 Extra Segment re; /Return to caller
en proc
SS 0000 Stack Segment

Status register

- (\-|\-|/-| |0/ 'D| I 7| S| Z| '-| /Al | P|/-| €| Flags Source: Wikipedia



https://en.wikipedia.org/wiki/Intel_8086

Intel x86 Assembly

1 __attribute__((noinline)) 1 is_odd:

2 int is_odd(unsigned long long n) 2 mov eax, edi

3 { 3 and eax, 1
4 ret

g LR R 5 collatz_count:

S } 6 Xor edx, edx

6 7 cmp rdi,

7 unsigned int collatz_count(unsigned long long n) 8 jne w7,

8 { 9 jmp WS

9 unsigned int count = 0©; 16 .L10@:

10 11 lea rdi, [rdi+1+rdi*2]

11 while (n != 1) = L e
13 cmp ol Gt

o { . . 14 je L3

13 if (is_odd(n)) 15 .L7:

14 n=3%**n+1; 16 call  is odd

15 else 17 test eax, eax

16 n= INR7 82" 18 jne .L10

17 19 shr rdi

18 ++count ; 20 add ed>f, al
21 cmp rdi A

- } 22 jne .7

20 23 .L3:

21 return count,; 24 mov eax, edx

22 # 25 ret




Registers available in the x86-64 instruction set

AVX/AVX2 SSE4.2

|ZMMO [ YMMO |XMM07||ZMM1 YMM1 [XMM1 ]| |5T(0)[MM0 H] ST(1)[MM1 | [=viaxEax RAX\HI Raw] Reo) RSII\Imw\molRlz\ ]lmstho\ CR4 |

[zmm2  [YMM2_[xmm2 J|[zMM3  [YMM3 [Xwm3 ]| [ ST(2)[MM2 ||| sT(3)[MM3 || [ERfexEsx|RBX|[Ewev] w=o] Ro|[EfwfoR13) [ CR1 | CRS |
[zMM4  [YMM4_[xwMa ][ zMM5  [YMM5 [xmms ]| [ ST(4)[MM4 | sT(5)[MM5 || [EISicxECX|RCX|[EFue]rccr 10| EF]maslr14] | CR2 || CR6 |
|zMM6  [YMM6_[XMM6 ][ zMM7  [YMM7_[xmM7 ]| | ST(6)[MM6 | ST(7)[MM7 || [EEDXEDXRDX|[EFufracR11|Euswfrsor1s| | CR3 || CR7 |

|zMM8  [YMM8 [XMM8 J||ZMM9  [YMM9 [xMM9 || [ExePEBPRBP| [EDIEDIRDI| [_P[EPRIP| [ MXCSR || CRS |
[zMM10 [YMM10 [XMM10][zMM11 [YMM11[xmmiy]| | cw [[FP_ip|FP_bP|Fp_cs| [EdSEsl Rsi| [EdspESPRSP|
[zMM12  [YMM12 [XMM12][ZMM13 [YMM13 [xmm13]| [ sw |
s vina e znns (s o] v | B oot B W o @2 s
,m‘ ZMM17 M18H ZMMlQ“ ZMM20|| ZMMZl“ ZMM22|| ZMM23| |FP_DS|
|ZMM24|| ZMM25|| ZMl\th\ZMMn“ ZMM28|| ZMMZQ“ ZMM30|| ZMM31| |FP_0PCHFP_DPHFP_|P1 ’ Cs H SS H DS ’ ’ GDTR H IDTR | ’ DRO H DR6 | ’CR13|

| Es | Fs | Gs || TR |/ bR |[DR1 | DR7 | [CR14]

[ RFLAGS | DR2 | DR8 | [CR15]|

AVX512

| DR4 | DR10| DR12 | DR14]
| DR5 || DR11 | DR13 | DR15]

By Immae - Own work, CC BY-SA 3.0, https:/commons.wikimedia.org/w/index.php?curid=32745525



https://commons.wikimedia.org/w/index.php?curid=32745525

Instruction Sets

e CISC (Complex Instruction Set Computer)

o Intel x86 and AMD64
m  Most laptop and desktop PCs, Playstation 5, Xbox One
o IBM System z (mainframe computers)

e RISC (Reduced Instruction Set Computer)

o ARM
m  Amazon Graviton (AWS VMs)
Apple M1-M4 (iPhone, iPad, iMacs)
Ampere Altra, Fujitsu A64FX, etc
Qualcomm (mobile phones, tablets)
Nintendo Game Boy Advance, DS, 3DS and Switch, Raspberry Pi, etc
o IBM’s PowerPC
= Apple Macintosh (1994-2005), Nintendo GameCube and Wii, Playstation 3, Xbox 360
o DEC Alpha, MIPS, Motorola 68000, RISC-V, SPARC, SuperH
= Apple Il (M68k), Nintendo 64, PlayStation 1 and 2 (MIPS), Sega Saturn and Dreamcast (SuperH)




Programming Language Evolution

1947

Assembly

1954
Fortran

Low-level language.
High correspondence
between language and
hardware instructions.

Code written in
assembly is converted
to machine code using
an assembler, which
was a big upgrade over
previous forms of
programming.

One of the earliest
high-level imperative
programming
languages.

Introduced procedural
programming, double
precision, and complex
numbers. Still popular
in HPC, including in
GPU application
programming.

Beginner's All-purpose
Symbolic Instruction
Code is a family of
high-level languages.

BASIC became popular
during the 8-bit era, but
declined in popularity
in the 90s, when more
advanced languages
like C were the norm.

Originally developed to
implement many of the
utilities for UNIX OSs.
Still in wide use today.

C is a portable,
imperative language
with a static type
system and which
supports structured
programming.

C++ was designed with
systems programming,
embedded software,

and efficiency in mind.

Although many think of
C++ as a superset of C
or C with classes, their
latest versions are not

fully compatible. Used

extensively in HEP and
HPC nowadays.




50 Years of Microprocessor Trend Data
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50 Years of Microprocessor Trend Data
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https://github.com/karlrupp/microprocessor-trend-data

Breakdown of Dennard’s Scaling

e Power density per unit area stopped decreasing
e Frequency could no longer keep increasing after each die shrink
o  But the transistor numbers kept growing
e Single-thread performance gains continued, albeit at a slower pace
o More complexity: pipelining, superscalar, out-of-order execution, SIMD
e AMD and Intel bring 64-bit CPUs to the mainstream market
o Intel with 1A-64, and AMD with amd64 (x86_64), announced in 1999
e From symmetric multiprocessing (SMP) to multithreading (SMT)

o Inthe ‘90s, dual socket high-end servers became popular
o  First SMT capable CPU was the Intel Pentium 4, released in 2002

e First dual core processors began to appear in mid 2000s

e The era of parallelism is born



https://en.wikipedia.org/wiki/Dennard_scaling

Instruction-Level Parallelism

Pipelining
[ Fetch | Decode | Execute | Write Back |
| Fetch | Decode Execute Write Back
Fetch Decode Execute
" Fetch ' Decode [ Exeeute T irite Back _

Operation-Level Parallelism

Superscalar Execution

| Fetch | Decode | Execute ' WriteBack |
[ Feteh |  Decode  [NENEEEES Write Back
[ Feteh |  Decode  [NENEEEES Write Back
[ Feteh |  Decode  [NENEEEEES Write Back

Decode Execute Write Back
Decode Execute Write Back
Decode Execute I Write Back
Decode Execute I Write Back

Fetch Decode [ Execute
Fetch Decode [ Execute
Fetch Decode Execute
Time Fetch Decode Execute




Symmetric multithreading (SMT)

Without SMT Threads scheduled one at a time on each physical core

gopoooono
Core 0 .
Time >
Throughput: C -

With SMT Threads run simultaneously on two logical cores
pooooooo

0ooooooao

CPU CPU

!
1

0ooooooo
gooooooo
gooooooo

pooooooo oooooooo

0ooooooo

Logical
Core 0

CPU

Logical
Core 1
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000 0db

gooooooo

poooooOO
Throughput:
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CPU Architecture

Generic Dual Core CPU
e Logical Components CPU Core CPY Core
. | Control Unit | ] | Control Unit |
> Control Unit | Registers | oG | Registers |
o Arithmetic Logic Units (ALUS) | ?\LU | Point Unit | ?\LU |
o Floating Point Unit (FPU)
o Branch Predictor Unit (BPU) Lf""set"l Lg\::!c;l e Lle:::'l LeD‘::;l
o Memory Management Unit (MMU) Cache | Cache Cache | Cache
o Translation Lookaside Buffer (TLB) P TLB T
evel-2 Cache evel-2 Cache
e Memory Subsystem

o L1(~32-512KB per core) '
m L1 Instruction Cache '

m L1 Data Cache T
o L2 (~1-8MB per core)

m Instruction/Data Shared Cache
o L3 (up to ~8MB-1.1GB per socket)

m Last level cache (LLC)

Source: Systems Performance 2nd Edition, Brendan Gregg



https://www.oreilly.com/library/view/systems-performance-2nd/9780136821694/

Memory Hierarchy

CPU Registers & L1 Cache

o L1 Latency: 1-5 cycles
L1 Size: 32-512K/ core

L2 Cache

Latency: ~12 cycles [
Size: ~1M / core e L3 Cach
ache
e Latency: ~40 cycles

Size: 8MB - 1.1GB
Main Memory

SSD, HDD, Tape Storage

Latency: 100-400 cycles ./
Size: 10s of GB to few TB °
SSD Latency: 10—70 ps
e HDD Latency: 10-15ms
Tape Latency: varies, minutes to hours,
‘age depends on if tape is already mounted
SO




Latency Numbers Every Programmer Should Know

n ins (~5 CPU cycles) ] Main memory reference: Send 2,000 bytes over Read 1,000,000 bytes

100ns commodity network: 44ns sequentially from SSD:

49,000ns = 49us
" Blegaeins reisrengss tns EEEmmmmmEE 1,000ns = 1ps L] SSD random read:
16,000ns =~ 16us m Disk seek: 2,000,000ns =
’ ’ 2ms
= Branch mispredict: 3ns o — .
SR ~eipres SAE il ElRs | Read 1,000,000 bytes
4 ® e sequentially from memory: n Read 1,000,000 bytes

EmEE L2 cache reference: 4ns 3,000ns = 3us sequentially from disk:

10,000ns = 10ps = ®m 825,000ns = 825us

Round trip in same
datacenter: 500,000ns =
500ps

Mutex lock/unlock: 17ns Packet roundtrip CA to

Netherlands:
150,000,000ns ~ 150ms

100ns =m
1,000,000ns = Ims ==

Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html



https://colin-scott.github.io/personal_website/research/interactive_latency.html

Virtual Memory

e First appeared in the Atlas computer in 1962

e Memory Management Unit (MMU) Main Memory

e Memory managed in pages
o Page sizes are usually 4K, 16K, 64K T Physical Addresses T

o May also support “huge pages” of 2MB, 1GB

e Hides fragmentation of physical memory
. . . . Virtual TAddresses
e Makes application programming easier

o  Memory looks contiguous

o No need to worry about fragmentation CPU Other
Devices

o Seems to own whole address space

o Enabled timesharing features

e Memory hierarchy managed by the kernel



https://www.computerhistory.org/timeline/1962/

The Translation Lookaside Buffer

“A translation lookaside buffer (TLB)
is @ memory cache that is used to

Virtual to Physical Translation

Virtual
Address

Physical
Address

reduce the time taken to access a
user memory location.

It is a part of the chip's memory
management unit (MMU). The TLB
stores the recent translations of

TLB miss

virtual memory to physical memory

PRI Page Table
and can be called an (Mair?Memory)

address-translation cache.”

https://en.wikipedia.org/wiki/Translation_lookaside_buffer



https://en.wikipedia.org/wiki/Translation_lookaside_buffer

The Parallel Era

e First dual core CPUs debut in 2004

o Pentium D, based on Pentium 4
o  AMD Athlon X2

e Quickly evolved from 2 to 4 cores

o Stagnated at 4 cores for several years

e Ryzen brought AMD back in the game
o  Offered more cores, forced Intel to do the same

e ARM finally begins move from phones to servers
o  Amazon Graviton, Fujitsu A64FX, Ampere Altra

e Innovations in packaging led to multi-chip CPUs
o AMD EPYC, Intel Sapphire and Emerald Rapids

Intel Emerald Rapids

Fujitsu A64FX




Ampere Roadmap 2020 - 2026

2020 2021 2022 2023 2024 2025 2026

Ampere® Altra® Family AmpereOne® Family
| ‘ ( A
Up to 80 Cores Up to 128 Cores Up to 192 Cores Up to 256 Cores
7nm 7nm 5nm 3nm

\\
h@a'

e- N \.\\ ‘ .
PS'\?y\“"' ‘ \ P“A;g?&m N \ P“A:?\(—,%ﬁo‘@ \i P‘d:(—ﬁ&cw \\
8-Channel DDR4 8-Channel DDR5

12-Channel DDR5

Generally Available Ready at Fab

Source: Ampere




Non-Uniform Memory Architecture (NUMA)
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AMD EPYC 7001
‘NAPLES'

AMD EPYC 7002
‘ROME’

AMD EPYC 7003
‘MILAN’

AMD EPYC 9004, 8004
‘GENOA, ‘SIENA'

Core Architecture ‘Zen’ ‘Zen 2' ‘Zen 3’ ‘Zen 4’ and ‘Zen 4c’
Cores 8to032 8 to 64 8 to 64 8 t0 128
Ipc Improvement Over N/A ~240/0R0M-235 ~190/° MLN-003 ~140/0EPVC-038
Prior Generation
Up to 384 MB (EPYC 9004)
Max L3 Cache Up to 64 MB Up to 256 MB Up to 256 MB Up to 128 MB (EPYC 8004)
Max L3 Cache with 3D V-Cache™ technology 768 MB Up to 1152 MB
PCle® Lanes Up to 128 Gen 3 Up to 128 Gen 3 Up to 128 Gen 4 piteas Gens
8 bonus lanes Gen 3
CPU Process Technology 14nm 7nm 7nm 5nm
1/0 Die Process Technology N/A 14nm 14nm 6nm
Power (Configurable TDP [cTDP]) 120-200W 120-280W 155-280W 70-400W

Max Memory Capacity

Source: AMD

2 TB DDR3-2400/2666

4 TB DDR4-3200

4 TB DDR4-3200

6 TB DDR5-4800




COMPUTE

AMD “Zen4" x86 cores (Up to12 CCDs / 96 cores /192
threads)

1MB L2/Core, S6MB L3/CCD / Total up to 1,152MB L3

ISA updates: BFLOAT16, VNNI, AVX-512 (256b data path)
Memory addressability with 57b/52b

Virtual/Physical Address

Updated 10D and internal AMD Gen3 Infinity Fabric™
architecture with increased die-to-die bandwidth

Target TDP range: Up to 400W (cTDP)

Updated RAS

Memory

12 channel DDR5 with ECC up to 4800 MHz
Option for 2, 4, 6, 8,10, 12 channel memory interleavingl

RDIMM, 3DS RDIMM

Up to 2 DIMMs/channel capacity with up to 12TB ina 2
socket system (256GB 3DS RDIMMs)1

Source: AMD

AMD Zen4 Architecture in detail

SPS Platform

New socket, increased power delivery and VR

Up to 4 links of Gen3 AMD Infinity Fabric™ with speeds of up
to 32Cbps

Flexible topology options

Server Controller Hub (USB, UART, SPI, 12C, etc.)

Integrated I/0 - No Chipset

ORANGE indicates difference from General Purpose

Up to 160 10 lanes (2P) of PCle® Gen5

Speeds up to 32Gbps, bifurcations supported down to x1
Up to 12 bonus PCle® Gen3 lanes in 2P config (8 lanes-1P)
Up to 32 10 lanes for SATA

64 10 Lanes support for CXL1.1+ w/bifurcations supported
down to x4

Security Features

Dedicated Security Subsystem with enhancements

Secure Boot, Hardware Root-of-Trust

SME (Secure Memory Encryption)

SEV-ES (Secure Encrypted Virtualization & Register Encryption)

SEV-SNP (Secure Nested Paging), AES-256-XTS with more
encrypted VMs



Intel® Xeon® Dle Package Enhancements

Scalable, Balanced Architecture

IEERRNE

4th Gen Intel Xeon

(Four-Tile Architecture)

5th Gen Intel Xeon
(Two-Tile Architecture)

5th Gen Intel® Xeon® Processors Turbo Frequencies
troducing Improved 5 Turbo Ratio Levels

4% Genlntel’ Xeon® CPU

= Improves Turbo Frequencies for Intel® Instruction
AVX heavy and Intel® AMX light Closs ° !

workloads including HPC and Al Sk 28Rkt 28k icay
AVX2 256 Light 256 Moderate 256 Heavy

~2 bins Turbo Frequency Upside on AVX512 512 Ultra-Light 512Light
Intel® AVX-512 Heavy usage AMX AMX Light
Turbo

Frequency

Bih Genlntel” Xeon® CPU_|

~59 i

~5% performance improvement on low T— Cdyn Class
instance (4 or 32) Resnet50 amx_int8, Class o 1 3
amx_bfloat16 and avx_fp32 SSE 128 Light 128 Heavy

he Turbo fi Ity f AVX2 256Light 256 Moderate 256 Heavy
Lowers the Turbo frequency penalty for T T M- oty —

using AVX512 or AMX, broadening AMX AMX Ultra-

usability of these instruction sets Light
Turbo
Frequency

Cdyn Class

512 Moderate 512 Heavy

AMX Moderate AMX Heavy

~9% performance improvement on low = e AV A

load (4T or 8T) LINPACK AVX512

AMX Light AMX Moderate | AMXHeavy

Av& AMX

AVX2 AVX512

Platform e!

Drop-in compatible with 4th Gen Xeon processors
Up to 64 cores per CPU
Up to 5600 MT/s memory speed
Upto 3X shared Last Level Cache (up to 320 MB total)
Upto 20 GT/s UPI 2.0 Speed
Type 3 memory support with Compute Express Link® 11*

Intel® Trust Domain Extension broad support

5t Gen Xeon
o

Co

mpute Express Link® 1] Enhancements

e 3 memory support with 5th Gen Intel® Xeon® proce

2-Tier Memory Support

CXL Memory Buffer

Type 3 Memory Expansion Devices:

Capacity Expansion
= Tier1memory = native DDR, Tier 2 memory = CXL® attached memory
= Supports up to 4 channels of CXL memory across two CXL type 3 devices
= Supports CXL memory latency QoS distress signaling

Increased transactions per second for In-Memory databases
(e.g. Redis)

CXL Mermory Butfer Single Tier Memory Support

12 channel DDR+CXL interleaved memory
= Either for capacity or bandwidth expansion

2 Tier Memory Support Example




SIMD Vectorization

SIMD
processing

Scalar
HEEE processing

]
B Instructions [}
[l Data []

B Results ]




History of Intel® SIMD ISA Extensions

e Intel® Pentium Processor (1993)

1 32bit

e Multimedia Extensions (MMX in 1997)
[T 64bit integer support only

e Streaming SIMD Extensions (SSE in 1999 to SSE4.2 in 2008)
T T T 1 32bit/64bit integer and floating point, no masking

Advanced Vector Extensions (AVX in 2011 and AVX2 in 2013)
CIT T T T T T T 1 Fused multiply-add (FMA), HW gather support (AVX2)

Many Integrated Core Architecture (Xeon Phi™ Knights Corner in 2013)
CT T T T TTTTTTTTTTT ] HWgather/scatter, exponential

e AVX512 on Knights Landing, Skylake Xeon, and Core X-series (2016/2017)
CIT T T T TTTTTTTTTTT] Conflictdetection instructions []=32bitword




Evolution of Intel® SIMD ISA Extensions

e AVX 10

O

o

Supported on both P-cores and E-cores
Brings benefits of AVX512 to smaller registers

e Advanced Matrix Extensions (AMX)

(©)

O

o

Intel® AVX10.2

Intel® AVX10.1 (pre-enabling)

New data movement, transforms

Intel® AVX-512

Targeted at Al applications

128/256/512-bit FP/Int

32 vector registers

8 mask registers

512-bit embedded rounding

Optional 512-bit FP/Int
128/256-bit FP/Int

32 vector registers

8 mask registers

512-bit embedded rounding

SIMD for small matrix operations

Implicit unaligned

Available on 4th and 5th generation Xeon

Intel® AVX Intel® AVX2 E/AVX “promotions” || Scalar/SSE/AVX “promotions”
128/256-bit FP Float16 Native media additions Native media additions

186 registers. 128/256-bit FP FMA || oo aqditions HPC additions

NDS (and AVX128) | 256-bit int Transcendental support Transcendental support
Improved blend PERMD Gather/Scatter Gather/Scatter

MASKMOV Gather Version-based

Flag-based er i
Intel® Xeon P-core only

Intel® Xeon P-core only

and type

Optional 512-bit FP/Int
128/256-bit FP/Int

32 vector registers

8 mask registers

256/512-bit embedded rounding
Embedded broadcast
Scalar/SSE/AVX “promotions”
Native media additions.

HPC additions

Transcendental support
Gather/Scatter

Version-based enumeration
Supported on P-cores, E-cores

e Advanced Performance Extensions (APX)

(@)

O

(@)

Adds new features that improve general-purpose performance

Expands x86 instruction set with more general-purpose registers (from 16 to 32)

New REX2 prefix provides uniform access to the new registers

Adds conditional forms of load, store, and compare/test instructions

New prefix increase average instruction length, but there are less instructions overall




Microarchitecture of
a Modern Intel Core

e Front End
o Instruction Fetch and Decode
o Branch Predictor Unit (BPU)
o L1 Instruction Cache
o Instruction TLB

e Back End

o Execution Engine
m Scheduler
m Register File
m Execution Units (EUs)
o Memory Subsystem
m Load/Store Units (LSU)
m L1/L2 Data Cache
m DataTLB

Intel Golden Cove Core

Front End
BPU
» Instr Fetch

[ 128entryLOBTB | J
| 6144 entry L1 BTB ] ¢

[ 12288entryL2BTB | ” . [256 Entry ITLB
| 2?entry Return Stack | S2KE LIS wey 8-wa
—

| Predecode / Fetch

168/ Cycle Instruction Queue

O A .

MSROM Complex | Simple Simple Simple Simple Simple
h Decoder| |Decoder, Decoder| |Decoder Decoder Decoder
T

T T T T 1
) 1-4 pops 1-4 ops uop Hop Hop Hop Hop
(“akpop | v v v A4 4 v
cache (8 —8 pops—> (2x72) 144 pop Decode Queue
(_ way)
Rename / Allocate - 6 pops max <__>Regisler Alias
Tables
8 pops
(128 Entry Branch |
| Order Buffer ‘ 512 Entry Reorder Buffer
97 Entl:y Uniﬁed.Malh Scheduler 38 Entry Store Sc.heduler 70IEnlry Loqd Schedqler

Port0 _Pot1 Pot5 Port6 Port10 Port7 Pot8 Port4d Pot9  Port3  Port2  Port1

280(248+32) Entry Integer RF

ALU Store | [ Store | [ Store | | Store Load Load | | Load
LEA AGU | | AGU Data Data AGU AGU AGU

114 Store Queue | 192 Load Queue
entry |F il —
MXCSR RF
2x256bit Stores
Execution FP / Vector 1x512bit Store
Engine Execution
—): 1.25/2 MiB L2 10-way 64B / cycle—H‘ 48KiB L1D 12-way

(@8eny | 4 [2048Eny 96 entry DTLB ;
L2 TLB 2x51 2b§l Loads
Load / Store 3x256bit Loads

~7.04mm"2 on Intel 7

By Saneandsad - Own work, CC BY-SA 4.0,

32B/ Cycle

Memory To L3 Cache

https://commons.wikimedia.org/w/index.php?curid=113727886


https://commons.wikimedia.org/w/index.php?curid=113727886

Meteor Lake Hybrid Architecture

Ultra Mobile

Meteor Lake

powering on in Q222, shipping in 2023

New Flexible Tiled Architecture
Hybrid Cores
Lower Power
Next Gen Graphics Engine: tGPU

Integrated Al Acceleration

Desktop

i

Meteor Lake Block Diagram

Security
Engine

6E &
Bluetooth

Display
Engine

Misc. I/O Controller
Power Management Controller

SATA/USB Buffers &
Misc. 1/0 PHY

1/0
Root Hub

PCle 5.0 PHY

Interconnect

Interconnect

E-Core
(Crestmont) | (Crestmont)

Memory
Controller

dlqed4 oS

Interconnect

AHd AJowa XS¥aadi/s¥aa

P-Core

(Redwood Cove)



REDWOOD COVE

New P-core

Targeted for efficient performance

Increased
BW

per core
package*

Improved Improved
Performance feedback Intel

Monitoring Unit Thread Director

Source: Intel

I-TLB +64KB I-Cache Predict i

Decode pop Cache

Allocate / Rename / Move Elimination / Zero Idiom

Scheduler

MulHi Shitt

48KB Data Cache

Shift
2MB ML Cache
Shuffle

FADD

*Architectural simulation vs. Golden Cove architecture. Results may vary across workloads.



IP Cache IP Cache - 1 B5

CRES [MOMNI

64KB Instruction Cache

Bypass Bypass

N e W E -‘ o I e Instruction Data Instruction Data ! |

Decode Decode MSROM Decode Decode Decode : 2 o

Significant improvements over prior E-core T s

Allocate / Rename / Move Elimination / Zero Idiom (6-wide)

Memory Vector/Float

Al ;
IPC gains acceleration ;

L Integer Registers
over prior E- VNNI, ISA i
cores* improvements* Al S R > AL o s

Shift AGU MP STD SHUFFLE  SHUFFLE

SIMUL SIMUL L

LB L

Enhanced -

32KB Data Cache w/ECC
Enhanced Feedback L2Queue
branch Intel Thread .

Up to 4MB L2 Cache

prediction Director I
Source: Intel

*Architectural simulation vs. Gracemont architecture across a broad set of workloads. VNNI
improvements based on doubling the number of VNNI ports. Results may vary.




DCAI Architecture Evolution

& 4thGenIntel® Xeon®
Scalable processors

s 3 >
: € =8

5th Gen Intel® Xeon® Intel® Xeon® Processors
codenamed Emerald Rapids codenamed Granite Rapids

\'ﬁ\ Intel® Xeon® CPU Max Series

v\ 2\ <)

.
F N

Intel® Xeon® Processor Intel® Xeon® Processor

CodeimedSona ot codenamed Clearwater Forest

Intel® Data Center GPU Flex Series B |ntel® Data Center GPU Flex Series

codenamed Arctic Sound-M codenamed Melville Sound

Next-Generation Accelerator

Architecture

u
o codenamed Ponte Vecchio
Codename: Falcon Shores

L @ Intel® Data Center GPU Max Series

, @ " Habana® V“\ s Habana® Next-Generation Accelerator
e Gaudi®2 =4 Gaudi® 3 Architecture

intel. intel. intel. intel
o SASIC 15 new FPGAs on Next Gen

schedule to PRQin 2023 eASIC Acllex o,
10

comeelnel Roadmap:2023-2025

DCAI Investor Webinar March 2023 intel




Intel Process Technology

Angstrom era

Intel

| NEXT

‘ EUV Litho

| Intel

=
Super
MIM Capacitor ’
A A ntel 3

Intel |
First Denser design

FInFET 10nm " libraries

SuperFin Increased
transistor drive
ﬂ : S current
jﬂ et Gt izl
Enhanced Reduced via
Intel FinFET Metal stack resistance

S » enhancements Increased o
Strained 32nm reaseduse

2 Enhanced )\\‘

FINFET
Intel ‘

65nm Enhanced
HKMG

Performance Per Watt

Ribbon
innovation
RibbonFET increased
+PowerVia R etaes

Continued
metal

linewidth
reduction

Enhanced Strain

IR




Modern Hardware

e Has always been there
e Run copies of your code on each node

Systems

e Modern machines have up to 8 sockets

Sockets e Trend towards reduction back to 2 only

e Higher frequency no longer possible
e 128 cores in each socket now common

e Hardware has N physical cores

Threads e OS sees 2N logical cores, shared exec.

e Superscalar execution
e Multiple instructions executed at once

e Parallel instruction execution steps

Pipelining e Fetch / Decode / Execute / Write Back 'L ot
-
(- ] [
o SSE4.2, AVX2, AVX512, AVX10 m [
7 SIMD Vectors e PowerPC Altivec, ARM SVE, etc r—
ofi+7) cfi+6] cfi+5] [cfitd] Nefi¥3) (




Summary

e We've come a long way, modern hardware is quite complex
o NUMA Architecture (multi socket)
o High parallelism (multicore, superscalar)
o  Advanced Packaging (chiplets)
o Hybrid Architectures (performance/efficiency)
o Variable CPU frequency scaling (turbo boost, thermal throttling)
o Accelerators and Heterogeneity (GPUs, NPUs, FPGAs, ASICs)
e Performance does not come for free, we needed to adapt our software
o  Concurrency and Parallelism (processes, threads, SIMD)
o Memory alignment, access patterns, fragmentation
o Code layout, compiler optimizations, data structures, software design
o Need the right tools to guide us: profilers, static analysis, etc

o Need the right methodology: identify causes of bottlenecks, address the right issue




