
CPU Hardware Architecture and 
Performance Optimization

G. Amadio (CERN)



Our Main Goals

● Understand the architecture of modern CPU hardware

○ Hardware evolution

○ Main features of modern hardware

● Understand how to analyze the performance of our code

○ How to identify performance bottlenecks

○ What to measure and how to measure it

● Combine architectural knowledge and performance analysis

○ How to interpret performance measurements

○ What changes to make to the software

2



CPU Hardware
Architecture and Evolution



Early Computing Devices

4

1820s

Difference Engine

Automatic mechanical 
calculator designed to 
tabulate polynomial 
functions. Designed and first 
created by Charles Babbage.

1620– 1630

Slide Rule

Uses logarithm scales to help 
with multiplications and also 
computing other functions. 
Extensively used by engineers 
in the last century, before 
computers became powerful.

1642

Pascaline

Mechanical calculator 
invented by Blaise Pascal to 
help his father with tax 
calculations. Could add and 
subtract.

2700 – 2300 BC

Abacus

Used since ancient times, 
until Arabic numerals became 
the norm. Still in use as an 
educational tool.

Images: Wikipedia

https://en.wikipedia.org/wiki/Pascal%27s_calculator
https://en.wikipedia.org/wiki/Abacus
https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/Difference_engine


Ada Lovelace, the first computer programmer

5

Augusta Ada King, Countess of Lovelace (10 December 
1815 – 27 November 1852) was an English mathematician 
and writer, known for her work on Charles Babbage's 
proposed mechanical general-purpose computer, the 
Analytical Engine. She was the first to recognize that the 
new machine had applications beyond simple calculations. 
She arguably wrote the first “computer program”. In her 
article entitled “note G” on the Analytical Engine, she 
described in detail an algorithm to compute a sequence of 
Bernoulli numbers using it.

Source: Wikipedia

https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Bernoulli_number


The Turing Machine: concept of first generic computer

State transition diagram

Universal 
Turing 

Machine

0 0 0 00 0 1 1 0 1 01 0 11 0 1 01 0 1
Infinite tape

S1

S3

S2

S4

S5

S6

H

HEAD: READ/WRITE/MOVE

doi:10.1112/plms/s2-42.1.230

source: https://aturingmachine.com

1

A Turing machine is capable of computing
any computable sequence.

6

https://aturingmachine.com/
https://doi.org/10.1112/plms/s2-42.1.230
https://aturingmachine.com
https://en.wikipedia.org/wiki/Turing_machine


From Turing Machine to Stored-Program Computer

7

1936

Turing Machine

Conceptually the first general 
computing machine.

1937

Harvard IBM Mark I

Inspired on the Analytical Engine. 
One of the earliest general-purpose 
electromechanical computers.
First computer bug discovered on 
it by Grace Hopper.

1942-1945

ABC, Colossus, ENIAC

First truly digital computers, 
based on boolean logic and 
vacuum tubes.

1947

Solid-State Transistor

The first solid-state transistor 
was a based on a point-contact 
connection to a crystal by closely 
spaced thin gold foils.

1949

Assembly Language

Beginning of standardization of how 
to program computer with abstract 
instruction sets.

1950

EDVAC

First stored-program computer, 
based on John von Neumann’s 
architecture concept from 1945.



John von Neumann Architecture

Central Processing Unit
(CPU)

Memory Unit

Control Unit

Arithmetic/Logic UnitInput 
Device

Output 
Device

8



9

https://ourworldindata.org/moores-law


Integrated Circuit-Based Microprocessors

10

1970

Intel 4004

First Intel
microprocessor.
2,300 Transistors.

1972

Intel 8008

First 8 bit microprocessor.
3,500 Transistors.

1975

MOS 6502

Powered many popular devices, 
such as the Apple II, Atari 2600, 
Commodore 64, and the NES.
3,510 Transistors.

1976

Zilog Z80

8-bit microprocessor.
Powered devices such as
Sega Master System and Mega Drive,
and Sinclair’s ZX Spectrum.

1978

Intel 8086

First 16-bit microprocessor. 29,000 Transistors.
Its successor, the Intel 8088, a slightly modified 
version, powered first IBM PC.

1985

Intel 80386

32-bit microprocessor.
275,000 Transistors, 33MHz.
Cemented Intel’s PC market
dominance.

https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-8086.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-8008.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-4004.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-8086-and-the-ibm-pc.html


Intel’s 8086 Registers and Assembly

11

Source: Wikipedia

; _strtolower:
; Copy a null-terminated ASCII string, converting
; all alphabetic characters to lower case.
; ES=DS
; Entry stack parameters
;   [SP+4] = src, Address of source string
;   [SP+2] = dst, Address of target string
;   [SP+0] = Return address
;
_strtolower proc
            push    bp             ;Set up the call frame
            mov     bp,sp
            push    si
            push    di
            mov     si,[bp+6]       ;Set SI = src (+2 due to push bp)
            mov     di,[bp+4]       ;Set DI = dst
            cld                     ;string direction ascending
            
loop:       lodsb                   ;Load AL from [si], inc si
            cmp     al,'A'          ;If AL < 'A',
            jl      copy            ; Skip conversion
            cmp     al,'Z'          ;If AL > 'Z',
            jg      copy            ; Skip conversion
            add     al,'a'-'A'      ;Convert AL to lowercase
copy:       stosb                   ;Store AL to [di], inc di
            or      al,al           ;If AL <> 0,
            jne     loop            ; Repeat the loop
            
done:       pop     di              ; restore di and si
            pop     si
            pop     bp              ;Restore the prev call frame
            ret                     ;Return to caller

         end     proc

https://en.wikipedia.org/wiki/Intel_8086


Intel x86 Assembly

12



Registers available in the x86-64 instruction set

By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

SSE4.2AVX/AVX2

AVX512

13

https://commons.wikimedia.org/w/index.php?curid=32745525


Instruction Sets

● CISC (Complex Instruction Set Computer)
○ Intel x86 and AMD64

■ Most laptop and desktop PCs, Playstation 5, Xbox One

○ IBM System z (mainframe computers)
● RISC (Reduced Instruction Set Computer)

○ ARM
■ Amazon Graviton (AWS VMs)
■ Apple M1–M4 (iPhone, iPad, iMacs)
■ Ampere Altra, Fujitsu A64FX, etc
■ Qualcomm (mobile phones, tablets)
■ Nintendo Game Boy Advance, DS, 3DS and Switch, Raspberry Pi, etc

○ IBM’s PowerPC
■ Apple Macintosh (1994–2005), Nintendo GameCube and Wii, Playstation 3, Xbox 360

○ DEC Alpha, MIPS, Motorola 68000, RISC-V, SPARC, SuperH
■ Apple II (M68k), Nintendo 64, PlayStation 1 and 2 (MIPS), Sega Saturn and Dreamcast (SuperH)

14



Programming Language Evolution

15

1947
Assembly

Low-level language. 
High correspondence 
between language and 
hardware instructions.

Code written in 
assembly is converted 
to machine code using 
an assembler, which 
was a big upgrade over 
previous forms of 
programming.

1954
Fortran

One of the earliest 
high-level imperative 
programming 
languages.

Introduced procedural 
programming, double 
precision, and complex 
numbers. Still popular 
in HPC, including in 
GPU application 
programming.

1963
BASIC

Beginner's All-purpose 
Symbolic Instruction 
Code is a family of 
high-level languages.

BASIC became popular 
during the 8-bit era, but 
declined in popularity 
in the 90s, when more 
advanced languages 
like C were the norm.

1979
C++

C++ was designed with 
systems programming, 
embedded software, 
and efficiency in mind.

Although many think of 
C++ as a superset of C 
or C with classes, their 
latest versions are not  
fully compatible. Used 
extensively in HEP and 
HPC nowadays.

1972
C

Originally developed to 
implement many of the 
utilities for UNIX OSs. 
Still in wide use today.

C is a portable, 
imperative language 
with a static type 
system and which 
supports structured 
programming.



50 Years of Microprocessor Trend Data

16

source: https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


50 Years of Microprocessor Trend Data

17

source: https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Breakdown of Dennard’s Scaling

18

● Power density per unit area stopped decreasing
● Frequency could no longer keep increasing after each die shrink

○ But the transistor numbers kept growing

● Single-thread performance gains continued, albeit at a slower pace
○ More complexity: pipelining, superscalar, out-of-order execution, SIMD

● AMD and Intel bring 64-bit CPUs to the mainstream market
○ Intel with IA-64, and AMD with amd64 (x86_64), announced in 1999

● From symmetric multiprocessing (SMP) to multithreading (SMT)
○ In the ‘90s, dual socket high-end servers became popular
○ First SMT capable CPU was the Intel Pentium 4, released in 2002

● First dual core processors began to appear in mid 2000s
● The era of parallelism is born

https://en.wikipedia.org/wiki/Dennard_scaling


Instruction-Level Parallelism

19

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write BackTime

Operation-Level Parallelism

Pipelining

Superscalar Execution



Symmetric multithreading (SMT)

20

CPU

Without SMT

With SMT

CPU

CPU CPU 0

Thread 1Thread 2

CPU 1

Thread 1

Thread 2

Core 0

Logical
Core 0

Logical 
Core 1

Threads scheduled one at a time on each physical core

Threads run simultaneously on two logical cores

Throughput:

Throughput:

Time



21

CPU Architecture
Generic Dual Core CPU

Source: Systems Performance 2nd Edition, Brendan Gregg

● Logical Components
○ Control Unit
○ Arithmetic Logic Units (ALUs)
○ Floating Point Unit (FPU)
○ Branch Predictor Unit (BPU)
○ Memory Management Unit (MMU)
○ Translation Lookaside Buffer (TLB)

● Memory Subsystem
○ L1(~32–512KB per core)
■ L1 Instruction Cache
■ L1 Data Cache

○ L2 (~1–8MB per core)
■ Instruction/Data Shared Cache

○ L3 (up to ~8MB–1.1GB per socket)
■ Last level cache (LLC)

https://www.oreilly.com/library/view/systems-performance-2nd/9780136821694/


Memory Hierarchy

22

1

CPU Registers & L1 Cache
L1 Latency: 1–5 cycles
L1 Size: 32–512K / core

3

L3 Cache
Latency: ~40 cycles
Size: 8MB – 1.1GB

5

SSD, HDD, Tape Storage
SSD Latency: 10–70 µs
HDD Latency: 10–15 ms
Tape Latency: varies, minutes to hours, 
depends on if tape is already mounted

2

L2 Cache
Latency: ~12 cycles

Size: ~1M / core

4

Main Memory
Latency: 100–400 cycles
Size: 10s of GB to few TB

L2

L1

L3

DRAM

Storage



23

    Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html 

Latency Numbers Every Programmer Should Know

(~5 CPU cycles)

https://colin-scott.github.io/personal_website/research/interactive_latency.html


Virtual Memory

24

● First appeared in the Atlas computer in 1962
● Memory Management Unit (MMU)
● Memory managed in pages

○ Page sizes are usually 4K, 16K, 64K
○ May also support “huge pages” of 2MB, 1GB

● Hides fragmentation of physical memory
● Memory hierarchy managed by the kernel
● Makes application programming easier

○ Memory looks contiguous
○ No need to worry about fragmentation
○ Seems to own whole address space
○ Enabled timesharing features

Main Memory

MMU IOMMU

CPU Other
Devices

Virtual    Addresses Device    Addresses

Physical Addresses

https://www.computerhistory.org/timeline/1962/


Page
Fault

Virtual
Address

The Translation Lookaside Buffer

“A translation lookaside buffer (TLB) 
is a memory cache that is used to 
reduce the time taken to access a 
user memory location.
It is a part of the chip's memory 
management unit (MMU). The TLB 
stores the recent translations of 
virtual memory to physical memory 
and can be called an 
address-translation cache.”

25

CPU
Core

TLB

MMU

Page Table
(Main Memory)

L1 L2

TLB miss

TLB hit

Physical
Address

Virtual to Physical Translation

Disk

https://en.wikipedia.org/wiki/Translation_lookaside_buffer

https://en.wikipedia.org/wiki/Translation_lookaside_buffer


● First dual core CPUs debut in 2004
○ Pentium D, based on Pentium 4
○ AMD Athlon X2

● Quickly evolved from 2 to 4 cores
○ Stagnated at 4 cores for several years

● Ryzen brought AMD back in the game
○ Offered more cores, forced Intel to do the same

● ARM finally begins move from phones to servers
○ Amazon Graviton, Fujitsu A64FX, Ampere Altra

● Innovations in packaging led to multi-chip CPUs
○ AMD EPYC, Intel Sapphire and Emerald Rapids

The Parallel Era

26

AMD EPYC Bergamo

Fujitsu A64FX

Intel Emerald Rapids



27

Ampere Roadmap 2020 – 2026

Source: Ampere



Non-Uniform Memory Architecture (NUMA)

28

CPU CPU

CPU CPU

I/O

Core 1 Core 2 Core 3 Core 4

L1/L2 L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3 Core 4

L1/L2 L1/L2 L1/L2 L1/L2

Shared L3

DRAM



29

Source: AMD



30

AMD Zen4 Architecture in detail

Source: AMD



31
Source: Intel



SIMD Vectorization

Scalar 
processing

SIMD 
processing

Instructions
Data
Results

32



● Intel® Pentium Processor (1993)
        32bit

● Multimedia Extensions (MMX in 1997)
              64bit integer support only

● Streaming SIMD Extensions (SSE in 1999 to SSE4.2 in 2008)
                         32bit/64bit integer and floating point, no masking

● Advanced Vector Extensions (AVX in 2011 and AVX2 in 2013)
                                            Fused multiply-add (FMA), HW gather support (AVX2)

● Many Integrated Core Architecture (Xeon Phi™ Knights Corner in 2013)
                                                                                      HW gather/scatter, exponential

● AVX512 on Knights Landing, Skylake Xeon, and Core X-series (2016/2017)
                                                                                      Conflict detection instructions

History of Intel® SIMD ISA Extensions

= 32 bit word

33



● AVX 10
○ Supported on both P-cores and E-cores
○ Brings benefits of AVX512 to smaller registers

● Advanced Matrix Extensions (AMX)
○ Targeted at AI applications
○ SIMD for small matrix operations
○ Available on 4th and 5th generation Xeon

● Advanced Performance Extensions (APX)
○ Adds new features that improve general-purpose performance
○ Expands x86 instruction set with more general-purpose registers (from 16 to 32)
○ New REX2 prefix provides uniform access to the new registers
○ Adds conditional forms of load, store, and compare/test instructions
○ New prefix increase average instruction length, but there are less instructions overall

Evolution of Intel® SIMD ISA Extensions

34



35

Microarchitecture of 
a Modern Intel Core

Intel Golden Cove Core

● Front End
○ Instruction Fetch and Decode
○ Branch Predictor Unit (BPU)
○ L1 Instruction Cache
○ Instruction TLB

● Back End
○ Execution Engine

■ Scheduler
■ Register File
■ Execution Units (EUs)

○ Memory Subsystem
■ Load/Store Units (LSU)
■ L1 / L2 Data Cache
■ Data TLB

By Saneandsad - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=113727886

https://commons.wikimedia.org/w/index.php?curid=113727886


Meteor Lake Hybrid Architecture

36

Ultra Mobile
Mobile Desktop

Meteor Lake Block Diagram

Source: Intel



37

Source: Intel



38

Source: Intel



39

Source: Intel



40

Source: Intel



● Modern machines have up to 8 sockets
● Trend towards reduction back to 2 onlySockets2

Modern Hardware

41

● Has always been there
● Run copies of your code on each nodeSystems1

● Higher frequency no longer possible
● 128 cores in each socket now commonCores3
● Hardware has N physical cores
● OS sees 2N logical cores, shared exec.Threads4
● Superscalar execution
● Multiple instructions executed at oncePorts5
● Parallel instruction execution steps
● Fetch / Decode / Execute / Write BackPipelining6
● SSE4.2, AVX2, AVX512, AVX10
● PowerPC Altivec, ARM SVE, etcSIMD Vectors7

1

3

6

7

2

4

5



Summary

42

● We’ve come a long way, modern hardware is quite complex
○ NUMA Architecture (multi socket)
○ High parallelism (multicore, superscalar)
○ Advanced Packaging (chiplets)
○ Hybrid Architectures (performance/efficiency)
○ Variable CPU frequency scaling (turbo boost, thermal throttling)
○ Accelerators and Heterogeneity (GPUs, NPUs, FPGAs, ASICs)

● Performance does not come for free, we needed to adapt our software
○ Concurrency and Parallelism (processes, threads, SIMD)
○ Memory alignment, access patterns, fragmentation
○ Code layout, compiler optimizations, data structures, software design
○ Need the right tools to guide us: profilers, static analysis, etc
○ Need the right methodology: identify causes of bottlenecks, address the right issue


