
CPU Hardware Architecture and
Performance Optimization

G. Amadio (CERN)

Performance Analysis
on Modern CPUs

Performance is challenging

● Measuring Performance
○ Instrumentation and measurement has some overhead
○ Sophisticated hardware architecture (out of order, superscalar)
○ Variable CPU frequency scaling (turbo boost, thermal throttling)
○ Often missing symbols (JIT, interpreted languages, stripped binaries)
○ Unreliable stack unwinding (deep call stacks, inlining, missing frame pointers)

● Optimization and Tuning
○ Floating-point arithmetics is complicated (denormals)
○ Memory access patterns, fragmentation, (mis-)alignment
○ Concurrency issues (shared resources with hyperthreading, contention)
○ Reliance on compiler optimizations (exceptions vs vectorization, dead code)

44

Instrumentation-Based Profiling

● Use a timer and print out how long a section of code takes to run
○ Simplest form of instrumentation
○ Make changes and measure again

● Use an instrumentation-based profiler
○ May need to compile application with profiling information (-g -pg)
○ Run the application and analyze the output file
○ Examples: gprof, valgrind, uftrace
○ Yields number of calls for each function, unlike sampling
○ Usually suffers from high overhead
○ Cannot use in production systems

45

https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://valgrind.org/
https://uftrace.github.io/

Flat profile example using gprof
$ pack -f 0.5 examples/ellipsoids # compiled with -O2 -g -pg, simulates a packing of ellipsoids, as shown below
100.00% 0.5000 0.0000/min 2.1e-01 ev/s 4.9 s
$ file gmon.out
gmon.out: GNU prof performance data - version 1
$ gprof --no-graph pack | head -n 20
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 34.05 0.95 0.95 7677145 0.00 0.00 HGrid::find_neighbors(Particle const*, std::vector<Particle*>&)
 24.73 1.64 0.69 66007037 0.00 0.00 intersect(Particle const&, Particle const&, float)
 7.89 1.86 0.22 31828514 0.00 0.00 Ellipsoid::support(Vector const&) const
 5.38 2.01 0.15 6685781 0.00 0.00 Particle::world_transform(float) const
 4.30 2.13 0.12 140620355 0.00 0.00 Ellipsoid::bounding_radius() const
 3.94 2.24 0.11 10459271 0.00 0.00 closest_point_triangle(Point&, Point&, Point&, result&)
 3.23 2.33 0.09 13858812 0.00 0.00 Simplex::add_vertex(Vector const&, Point const&, Point const&)
 2.15 2.39 0.06 13858812 0.00 0.00 Simplex::update()
 2.15 2.45 0.06 4288132 0.00 0.00 closest_point_tetrahedron(Point&, Point&, Point&, Point& result&)
 1.79 2.50 0.05 13732871 0.00 0.00 Simplex::reduce()
 1.79 2.55 0.05 481841 0.00 0.00 check_overlap(Particle&)
 1.79 2.60 0.05 1000 0.00 0.00 Ellipsoid::name() const
 1.43 2.64 0.04 6784500 0.00 0.00 time_of_impact(Particle const&, Particle const&, float, float)
 1.43 2.68 0.04 3342851 0.00 0.00 Simplex::reset()
 1.43 2.72 0.04 _init

46

Flat profile example using valgrind
$ valgrind --tool=callgrind -- pack -f 0.5 examples/ellipsoids # no need for -pg
==2140677== Callgrind, a call-graph generating cache profiler
==2140677== Copyright (C) 2002-2017, and GNU GPL'd, by Josef Weidendorfer et al.
==2140677== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2140677== Command: pack -f 0.5 examples/ellipsoids
==2140677==
==2140677== For interactive control, run 'callgrind_control -h'.
100.00% 0.5000 0.0000/min 6.7e-03 ev/s 150.0 s
==2140677==
==2140677== Events : Ir
==2140677== Collected : 29183525425
==2140677==
==2140677== I refs: 29,183,525,425
$ kcachegrind callgrind.out.2140677

47

● Official Linux profiler (source code is part of the kernel itself)
● Both hardware and software based performance monitoring
● Much lower overhead compared with instrumentation-based profiling
● Kernel and user space
● Counting and Sampling

○ Counting — count occurrences of a given event (e.g. cache misses)
○ Event-based Sampling — a sample is recorded when a threshold of events has occurred
○ Time-based Sampling — samples are recorded at a given fixed frequency
○ Instruction-based Sampling — processor follows instructions and samples events they create

● Static and Dynamic Tracing
○ Static — pre-defined tracepoints in software
○ Dynamic — tracepoints created using uprobes (user) or kprobes (kernel)

48

perf – Performance analysis tools for Linux

http://perf.wiki.kernel.org/

Sampling

49

main() f() g()main() g() f() main()f()
no sampling

Time

main()

f()

g()

user space
syscall()

kernel

block interrupt

g()

f()

main()

end

off-cpuon-cpu on-cpu

Tracing

50

Time

main()

f()

g()

user space
syscall()

kernel

block interrupt

g()

f()

main()

main() f() g() g() f()

end

main()

off-cpuon-cpu on-cpu

perf – subcommands
bash ~ $ perf

 usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

 The most commonly used perf commands are:
 annotate Read perf.data (created by perf record) and display annotated code
 archive Create archive with object files with build-ids found in perf.data file
 c2c Shared Data C2C/HITM Analyzer.
 config Get and set variables in a configuration file.
 data Data file related processing
 diff Read perf.data files and display the differential profile
 evlist List the event names in a perf.data file
 list List all symbolic event types
 mem Profile memory accesses
 record Run a command and record its profile into perf.data
 report Read perf.data (created by perf record) and display the profile
 sched Tool to trace/measure scheduler properties (latencies)
 script Read perf.data (created by perf record) and display trace output
 stat Run a command and gather performance counter statistics
 timechart Tool to visualize total system behavior during a workload
 top System profiling tool.
 version display the version of perf binary
 probe Define new dynamic tracepoints
 trace strace inspired tool

 See 'perf help COMMAND' for more information on a specific command.

51

Flat profile example using perf
$ pack -f 0.5 examples/ellipsoids # compiled with -O2 -g
100.00% 0.5000 0.0001/min 3.2e-01 ev/s 3.1 s
$ perf record -F 1000 -e cycles -- pack -f 0.5 examples/ellipsoids
perf record -F 1000 -e cycles -- pack -f 0.5 examples/ellipsoids
100.00% 0.5000 0.0002/min 2.9e-01 ev/s 3.5 s
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.138 MB perf.data (3431 samples)]
$ perf report --stdio | sed -ne /Overhead/,25p
Overhead Command Shared Object Symbol
........
#
 34.07% pack pack [.] HGrid::find_neighbors
 29.13% pack pack [.] intersect
 8.23% pack pack [.] Ellipsoid::support
 5.74% pack pack [.] Particle::world_transform
 3.72% pack pack [.] closest_point_tetrahedron
 3.65% pack pack [.] closest_point_triangle
 2.42% pack pack [.] Simplex::update
 2.27% pack pack [.] Ellipsoid::bounding_radius
 2.25% pack pack [.] Simplex::contains
 2.19% pack pack [.] check_overlap
 0.95% pack libm.so.6 [.] __sincos
 0.61% pack pack [.] HGrid::insert
 0.51% pack pack [.] Simplex::reduce
 0.37% pack pack [.] Simplex::closest

52

CPU Features for Performance Analysis

53

● Performance Monitoring Unit (PMU)
○ Performance monitoring counters (PMC)

■ Hardware: cycles, instructions, branches, stalled cycles in frontend/backend, etc
■ PMUs have several slots (usually 4–6) for counting hardware events together
■ Core PMU (CPU related events) and Uncore PMUs (I/O, caches, memory, interconnect)
■ If more events need to be measured than fit in a PMU, this needs to be done via multiplexing

● Varies depending on hardware vendor/model
○ Basic events have equivalents in most hardware
○ More specific events may only be available on certain hardware models
○ Some events have the same name, but count different things (e.g. cache misses)

● Profilers make use of hardware/software events
○ Software events: page faults, context switches, migrations, etc

● Intel VTune, AMD µprof, macOS Instruments, Linux perf, etc

perf – hardware and software events
bash ~ $ perf list hw cache

List of pre-defined events (to be used in -e):

 branch-instructions OR branches [Hardware event]
 branch-misses [Hardware event]
 cache-misses [Hardware event]
 cache-references [Hardware event]
 cpu-cycles OR cycles [Hardware event]
 instructions [Hardware event]
 stalled-cycles-backend OR idle-cycles-backend [Hardware event]
 stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]

 L1-dcache-load-misses [Hardware cache event]
 L1-dcache-loads [Hardware cache event]
 L1-dcache-prefetches [Hardware cache event]
 L1-icache-load-misses [Hardware cache event]
 L1-icache-loads [Hardware cache event]
 branch-load-misses [Hardware cache event]
 branch-loads [Hardware cache event]
 dTLB-load-misses [Hardware cache event]
 dTLB-loads [Hardware cache event]
 iTLB-load-misses [Hardware cache event]
 iTLB-loads [Hardware cache event]

54

bash ~ $ perf list sw

List of pre-defined events (to be used in -e):

 alignment-faults [Software event]
 bpf-output [Software event]
 context-switches OR cs [Software event]
 cpu-clock [Software event]
 cpu-migrations OR migrations [Software event]
 dummy [Software event]
 emulation-faults [Software event]
 major-faults [Software event]
 minor-faults [Software event]
 page-faults OR faults [Software event]
 task-clock [Software event]

 duration_time [Tool event]

perf – Intel Skylake events
bash ~ $ perf list pipeline

List of pre-defined events (to be used in -e):

pipeline:
 arith.divider_active
 [Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations]
 baclears.any
 [Counts the total number when the front end is resteered, mainly when the BPU cannot provide a correct prediction]
 br_inst_retired.all_branches
 [All (macro) branch instructions retired Spec update: SKL091]
 br_inst_retired.all_branches_pebs
 [All (macro) branch instructions retired Spec update: SKL091 (Must be precise)]
 br_inst_retired.conditional
 [Conditional branch instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.far_branch
 [Counts the number of far branch instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.near_call
 [Direct and indirect near call instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.near_return
 [Return instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.near_taken
 [Taken branch instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.not_taken
 [Counts all not taken macro branch instructions retired Spec update: SKL091 (Precise event)]
 br_misp_retired.all_branches
 [All mispredicted macro branch instructions retired]
 ...

55

perf – AMD Ryzen events
bash ~ $ perf list core

List of pre-defined events (to be used in -e):

core:
 ex_div_busy
 [Div Cycles Busy count]
 ex_div_count
 [Div Op Count]
 ex_ret_brn
 [Retired Branch Instructions]
 ex_ret_brn_far
 [Retired Far Control Transfers]
 ex_ret_brn_ind_misp
 [Retired Indirect Branch Instructions Mispredicted]
 ex_ret_brn_misp
 [Retired Branch Instructions Mispredicted]
 ex_ret_brn_resync
 [Retired Branch Resyncs]
 ex_ret_brn_tkn
 [Retired Taken Branch Instructions]
 ex_ret_brn_tkn_misp
 [Retired Taken Branch Instructions Mispredicted]
 ex_ret_cond
 [Retired Conditional Branch Instructions]
 ex_ret_cond_misp
 [Retired Conditional Branch Instructions Mispredicted]
 ...

56

perf – static tracepoint events
bash ~ $ sudo perf list 'sched:*'

List of pre-defined events (to be used in -e):

 sched:sched_kthread_stop [Tracepoint event]
 sched:sched_kthread_stop_ret [Tracepoint event]
 sched:sched_migrate_task [Tracepoint event]
 sched:sched_move_numa [Tracepoint event]
 sched:sched_pi_setprio [Tracepoint event]
 sched:sched_process_exec [Tracepoint event]
 sched:sched_process_exit [Tracepoint event]
 sched:sched_process_fork [Tracepoint event]
 sched:sched_process_free [Tracepoint event]
 sched:sched_process_wait [Tracepoint event]
 sched:sched_stat_runtime [Tracepoint event]
 sched:sched_stick_numa [Tracepoint event]
 sched:sched_swap_numa [Tracepoint event]
 sched:sched_switch [Tracepoint event]
 sched:sched_wait_task [Tracepoint event]
 sched:sched_wake_idle_without_ipi [Tracepoint event]
 sched:sched_wakeup [Tracepoint event]
 sched:sched_wakeup_new [Tracepoint event]
 sched:sched_waking [Tracepoint event]

57

Map of the
Linux Kernel

58

https://makelinux.github.io/kernel/map/

59

perf – event sources

Source: http://www.brendangregg.com/perf.html

http://www.brendangregg.com/perf.html

Linux Observability Tools

60

Source: http://www.brendangregg.com/perf.html

http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/perf.html

Linux eBPF-based Observability Tools

61

Source: http://www.brendangregg.com/perf.html

http://brendangregg.com/ebpf.html
http://www.brendangregg.com/perf.html

Flamegraphs

62

● Visualization tool by Brendan Gregg
○ https://www.brendangregg.com/flamegraphs.html

● Call stacks on the vertical axis
● Number of samples as width
● Easy to identify where time is spent
● Not very good for in-depth analysis
● Built-in support now exists in perf
● Creates browseable HTML file

perf script flamegraph -- root.exe -l -q

https://www.brendangregg.com/flamegraphs.html

Avoid broken stack traces and missing symbols

● Compile code with debugging information (-g)
● Add -fno-omit-frame-pointer to compile options to keep frame pointer
● Install system packages with debugging info for the kernel and system libs

When recording data:

● Use --call-graph=fp/dwarf + DWARF debugging information
● Use precise events to avoid skidding (cycles:pp instead of just cycles)
● Adjust sampling rate to avoid large amounts of data and high overhead
● Sample events in a group if computing derived metrics (e.g. instr. per cycle)
● See man perf-list for more information on events and their modifiers

63

Frame Pointer

64

0000000000000000 <square>:
 0: c5 fa 59 c0 vmulss %xmm0,%xmm0,%xmm0
 4: c3 ret
 5: 66 66 2e 0f 1f 84 00 data16 cs nopw 0x0(%rax,%rax,1)
 c: 00 00 00 00

0000000000000010 <cube>:
 10: c5 f8 28 c8 vmovaps %xmm0,%xmm1
 14: e8 00 00 00 00 call 19 <cube+0x9>
 19: c5 fa 59 c1 vmulss %xmm1,%xmm0,%xmm0
 1d: c3 ret

● Saved/restored on each function call
● Lightweight and accurate backtraces
● DWARF backtraces not as accurate
● High overhead for very short functions

0000000000000000 <square>:
 0: c5 fa 59 c0 vmulss %xmm0,%xmm0,%xmm0
 4: c3 ret
 5: 66 66 2e 0f 1f 84 00 data16 cs nopw 0x0(%rax,%rax,1)

0000000000000010 <cube>:
 10: 55 push %rbp
 11: c5 f8 28 c8 vmovaps %xmm0,%xmm1
 15: 48 89 e5 mov %rsp,%rbp
 18: e8 00 00 00 00 call 1d <cube+0xd>
 1d: 5d pop %rbp
 1e: c5 fa 59 c1 vmulss %xmm1,%xmm0,%xmm0
 22: c3 ret

Without frame pointer

With frame pointer

float square(float x)
{
 return x * x;
}

float cube(float x)
{
 return x * square(x);
}

Simple square and cube functions

65

ROOT startup flamegraph for various configurations

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)

66

ROOT startup flamegraph for various configurations

Missing symbols

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)

67

ROOT startup flamegraph for various configurations

Broken stack unwinding

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)

68

ROOT startup flamegraph for various configurations

Correctly merged stacks

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)

perf stat – counting cycles vs instructions vs wall time
 # measure ROOT startup 20 times and print stats with averages and deviations

 $ perf stat -d -r 20 -- root.exe -l -q >/dev/null

 Performance counter stats for 'root.exe -l -q' (20 runs):

 119.72 msec task-clock # 0.442 CPUs utilized (+- 0.76%)
 579 context-switches # 0.005 M/sec (+- 4.34%)
 13 cpu-migrations # 0.109 K/sec (+- 6.94%)
 11260 page-faults # 0.094 M/sec (+- 0.49%)
 493768274 cycles # 4.125 GHz (+- 0.75%) (66.72%)
 33420383 stalled-cycles-frontend # 6.77% frontend cycles idle (+- 1.56%) (75.75%)
 177325752 stalled-cycles-backend # 35.91% backend cycles idle (+- 1.87%) (79.76%)
 532310517 instructions # 1.08 insn per cycle
 # 0.33 stalled cycles per insn (+- 0.35%) (82.16%)
 107905661 branches # 901.351 M/sec (+- 0.26%) (82.38%)
 2282743 branch-misses # 2.12% of all branches (+- 0.77%) (78.52%)
 246528817 L1-dcache-loads # 2059.290 M/sec (+- 1.12%) (71.14%)
 5628008 L1-dcache-load-misses # 2.28% of all L1-dcache hits (+- 1.30%) (63.57%)
 <not supported> LLC-loads
 <not supported> LLC-load-misses

 0.2709 +- 0.0205 seconds time elapsed (+- 7.58%)

69

 # same measurements again, to show difference in noise for wall time, cycles, instructions

 $ perf stat -d -r 20 -- root.exe -l -q >/dev/null

 Performance counter stats for 'root.exe -l -q' (20 runs):

 118.38 msec task-clock # 0.565 CPUs utilized (+- 0.73%)
 433 context-switches # 0.004 M/sec (+- 12.62%)
 12 cpu-migrations # 0.103 K/sec (+- 5.57%)
 11267 page-faults # 0.095 M/sec (+- 0.50%)
 488189557 cycles # 4.124 GHz (+- 0.73%) (60.32%)
 32509432 stalled-cycles-frontend # 6.66% frontend cycles idle (+- 1.70%) (78.43%)
 175081210 stalled-cycles-backend # 35.86% backend cycles idle (+- 1.45%) (83.54%)
 533538019 instructions # 1.09 insn per cycle
 # 0.33 stalled cycles per insn (+- 0.35%) (84.97%)
 108436560 branches # 915.999 M/sec (+- 0.29%) (84.34%)
 2279445 branch-misses # 2.10% of all branches (+- 1.05%) (81.41%)
 244414949 L1-dcache-loads # 2064.653 M/sec (+- 0.94%) (71.80%)
 5720566 L1-dcache-load-misses # 2.34% of all L1-dcache hits (+- 1.35%) (55.19%)
 <not supported> LLC-loads
 <not supported> LLC-load-misses

 0.2093 +- 0.0220 seconds time elapsed (+- 10.53%)

 # (ratio of wall clock durations)
 $ bc -l <<< "0.2709 / 0.2093"
 1.29431438127090301003

 # (ratio of cycles measurements)
 $ bc -l <<< "493768274 / 488189557"
 1.01142735832835522944

 # (ratio of instructions measurements)
 $ bc -l <<< "532310517 / 533538019"
 0.99769931671917086006

Intel’s Last Branch Record

70

● Useful when frame pointers are not available
● Use with perf record -b or perf record --call-graph=lbr
● Hardware registers on Intel CPUs that allow sampling branches
● Registers hold a ring buffer of the most recent branch decisions
● Useful to analyze branching behavior (branching probabilities, mispredictions)
● Available on AMD Zen4 or later CPUs

○ On older CPUs, some events provide similar functionality

● Articles describing LBR on LWN.net
○ An introduction to last branch records [LWN.net]
○ Advanced usage of last branch records [LWN.net]

https://lwn.net/Articles/680985/
https://lwn.net/Articles/680996/

Precise CPU Events for Sampling

71

● PMU counts events on a per-core basis
○ Sample is taken when counter reaches threshold
○ Fixed frequency sampling achieved by predicting/adjusting the threshold
○ Instruction-level parallelism and speculative execution introduce noise and skidding

■ Only one base pointer per thread
■ Many instructions in flight on the core at the same time
■ Shared resources mean mixed counting when using hyperthreading

● Intel Processor Event-Based Sampling (PEBS)
○ Instruction pointer (and auxiliary information) stored in a designated area
○ No interrupts during sampling, reduced or no skidding

● AMD Instruction-Based Sampling (IBS)
○ Tracks instructions rather than events, marks every Nth instruction to be tracked
○ Two forms: IBS Fetch sampling (front-end) and IBS Op sampling (back-end)

“Precise Event Sampling on AMD Versus Intel: Quantitative and Qualitative Comparison” doi: 10.1109/TPDS.2023.3257105

https://easyperf.net/blog/2018/06/08/Advanced-profiling-topics-PEBS-and-LBR#processor-event-based-sampling-pebs
https://github.com/jlgreathouse/AMD_IBS_Toolkit?tab=readme-ov-file#background-on-instruction-based-sampling
https://dl.acm.org/doi/10.1109/TPDS.2023.3257105

Instructions vs Micro-operations (µops)

Instructions from a CISC instruction set are usually broken into one or more RISC-like
operations in hardware. For example, an addition of two values from memory may be broken
into memory loads into registers, the addition itself, then memory stores.
These operations are usually called micro-ops and abbreviated as µops. Some PMUs have
hardware events that allow counting separately µops issued, executed, and retired.

While instructions are usually split into simpler µops, the µops can instead be fused together
when instructions are decoded in the front-end of the processor. Microfusion is when µops
from the same machine instruction are fused together, and macrofusion is when µops from
distinct instructions are fused.

72

Instructions Retired vs Executed

Instructions executed refers to any instructions that have been processed by the CPU. For
example, a multiplication of two numbers that has loaded the inputs, calculated the results
and stored it somewhere. This metric includes speculatively executed instructions on
branches that may have been discarded later on.

Instructions retired refers to executed instructions that have actually contributed to the main
line of execution of a program, that is, that has not been discarded as speculatively executed.

Instructions per cycle (IPC) is a measure of the instruction-level parallelism, or how many
instructions were retired on average in each CPU cycle. CPI (cycles per instruction) is also
common. Typically up to 4 instructions per cycle can be executed on AMD/Intel CPUs.

73

Top-Down Microarchitecture Analysis

74

Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture," 2014 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), Monterey, CA,

2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459.

µops
Retired?

µops
Allocated?

Backend
Stalled?

Retiring Bad
Speculation

Backend
Bound

Front End
Bound

Yes

Yes

Yes No

No

No

The Top-Down Characterization is a
hierarchical organization of event-based
metrics that identifies the dominant
performance bottlenecks in an application.

Its aim is to show, on
average, how well the CPU’s
pipelines are being utilized
while running an application.

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

https://doi.org/10.1109/ISPASS.2014.6844459
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

75

Top-Down
Microarchitecture
Analysis

● Retiring
○ Useful Work

● Bad Speculation
○ Branching Issues

● Front End Bound
○ Instruction Fetch Issues

● Back End Bound
○ Core Bound
■ Port Utilization
■ Execution Latency

○ Memory Bound
■ Cache misses
■ Memory Bandwidth

Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture,"
2014 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459

CPU Pipeline Slots

Front End
Bound

Bad
SpeculationRetiring Backend Bound

Fe
tc

h
La

te
nc

y

Fe
tc

h
Ba

nd
w

id
th

iT
LB

 M
is

s

iC
ac

he
 M

is
s

Br
an

ch
 R

es
te

er
s

Fe
tc

h
So

ur
ce

 1

Fe
tc

h
So

ur
ce

 2

Base

M
ic

ro
co

de
Se

qu
en

ce
r

Br
an

ch

M
is

pr
ed

ic
tio

n

M
ac

hi
ne

Cl

ea
rs

Sc
al

ar

O
th

er

Fl
oa

tin
g

Po
in

t
A

rit
hm

et
ic

s
Ve

ct
or

Ex
ec

ut
io

n
Po

rt
s

Ut
ili

za
tio

n

Di
vi

de
r

3+
 P

or
ts

0
Po

rt
s

1
or

 2
 P

or
ts

Core
Bound

Memory
Bound

L1
 B

ou
nd

L2
 B

ou
nd

L3
 B

ou
nd

St
or

e
Bo

un
d

DR
A

M
 B

ou
nd

La
te

nc
y

Ba
nd

w
id

th

Not Stalled Stalled

https://doi.org/10.1109/ISPASS.2014.6844459
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_CLEARS-RESTEERS
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/machine-clears.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/machine-clears.html

Expected Ranges of Pipeline Slots for Each Category

76

Category
Client/Desktop

Application
Server/Database

Distributed Application
High Performance Computing

(HPC) Application

Retiring 20 – 50% 10 – 30% 30 – 70%

Back-End
Bound

20 – 40% 20 – 60% 20 – 40%

Front-End
Bound

5 – 10% 10 – 25% 5 – 10%

Bad
Speculation

5 – 10% 5 – 10% 1 – 5%

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

Roofline Performance Model

77

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

Arithmetic Intensity [FLOPs/Byte]

Pe
rf

or
m

an
ce

 [G
FL

O
Ps

]

CPU Cap: Scalar Add / Multiply

Memory Cap: L1

Memory Cap: L2

Memory Cap: L3

CPU Cap: Vector Add / Multiply

CPU Cap: Fused Multiply/Add (FMA)

Memory Bound Compute Bound

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

perf – recording and reporting data

78

bash ~ $ perf record -g -F max -- root.exe -l -q
info: Using a maximum frequency rate of 32500 Hz

[perf record: Woken up 6 times to write data]
[perf record: Captured and wrote 2.003 MB perf.data (7035 samples)]
bash ~ $ perf report -q --stdio -c root.exe | head -n 20
comm: root.exe
 82.13% 0.00% root.exe [.] _start
 |
 ---_start
 __libc_start_main@@GLIBC_2.34
 __libc_start_call_main
 main
 |
 |--79.94%--TRint::TRint
 | |
 | |--76.22%--TApplication::TApplication
 | | |
 | | --76.14%--ROOT::Internal::GetROOT2
 | | TROOT::InitInterpreter
 | | |
 | | |--69.43%--CreateInterpreter
 | | | |
 | | | --69.41%--TCling::TCling
 | | | |
 | | | |--32.52%--RegisterCxxModules

perf – flat profile report

79

bash ~ $ perf report -q --stdio --call-graph=none -c root.exe | head -n 25
comm: root.exe
 82.13% 0.01% root.exe [.] main
 82.13% 0.00% libc.so.6 [.] __libc_start_call_main
 82.13% 0.00% libc.so.6 [.] __libc_start_main@@GLIBC_2.34
 82.13% 0.00% root.exe [.] _start
 79.94% 0.00% libRint.so.6.30.06 [.] TRint::TRint
 76.22% 0.00% libCore.so.6.30.06 [.] TApplication::TApplication
 76.14% 0.00% libCore.so.6.30.06 [.] ROOT::Internal::GetROOT2
 76.14% 0.00% libCore.so.6.30.06 [.] TROOT::InitInterpreter
 69.43% 0.00% libCling.so.6.30.06 [.] CreateInterpreter
 69.41% 0.00% libCling.so.6.30.06 [.] TCling::TCling
 38.76% 0.00% libCling.so.6.30.06 [.] clang::CompilerInstance::loadModule
 38.52% 0.00% libCling.so.6.30.06 [.] clang::CompilerInstance::findOrCompileModuleAndReadAST
 38.32% 0.21% libCling.so.6.30.06 [.] clang::ASTReader::ReadAST
 32.52% 0.00% libCling.so.6.30.06 [.] RegisterCxxModules
 32.26% 0.00% libCling.so.6.30.06 [.] LoadModule
 31.87% 0.00% libCling.so.6.30.06 [.] cling::Interpreter::loadModule
 31.75% 0.01% libCling.so.6.30.06 [.] clang::Sema::ActOnModuleImport
 26.63% 0.00% libCling.so.6.30.06 [.] cling::Interpreter::Interpreter
 22.80% 0.28% [kernel.kallsyms] [k] entry_SYSCALL_64
 22.51% 0.29% [kernel.kallsyms] [k] asm_exc_page_fault
 22.14% 0.36% [kernel.kallsyms] [k] do_syscall_64
 21.68% 0.31% [kernel.kallsyms] [k] exc_page_fault
 19.17% 0.38% [kernel.kallsyms] [k] do_user_addr_fault
 19.08% 0.00% libCling.so.6.30.06 [.] cling::IncrementalParser::ParseInternal

perf – flat profile report by self-time

80

bash ~ $ perf report -q --stdio --call-graph=none --no-children --percent-limit 0.75 -c root.exe
comm: root.exe
 5.85% libz.so.1.3.1 [.] inflate_fast
 4.11% libCling.so.6.30.06 [.] llvm::SimpleBitstreamCursor::Read
 2.63% [kernel.kallsyms] [k] unmap_page_range
 2.27% libCling.so.6.30.06 [.] llvm::BitstreamCursor::readRecord
 1.89% [kernel.kallsyms] [k] __mod_lruvec_state
 1.78% [kernel.kallsyms] [k] srso_untrain_ret
 1.77% [kernel.kallsyms] [k] srso_return_thunk
 1.53% [kernel.kallsyms] [k] trace_hardirqs_off
 1.43% libz.so.1.3.1 [.] adler32_z
 1.32% [kernel.kallsyms] [k] __lruvec_stat_mod_folio
 1.31% [kernel.kallsyms] [k] clear_page_rep
 1.31% ld-linux-x86-64.so.2 [.] _dl_lookup_symbol_x
 1.26% libCling.so.6.30.06 [.] llvm::StringMapImpl::LookupBucketFor
 1.10% [kernel.kallsyms] [k] preempt_count_add
 1.04% [kernel.kallsyms] [k] __mod_memcg_lruvec_state
 0.97% [kernel.kallsyms] [k] link_path_walk
 0.94% [kernel.kallsyms] [k] preempt_count_sub
 0.92% libz.so.1.3.1 [.] inflate_table
 0.85% [kernel.kallsyms] [k] percpu_counter_add_batch
 0.81% libc.so.6 [.] _int_malloc
 0.79% libz.so.1.3.1 [.] inflate
 0.76% ld-linux-x86-64.so.2 [.] do_lookup_x

perf – hierarchical profile report

81

bash ~ $ perf report -q --stdio --call-graph=none --hierarchy --percent-limit 1 --comm root.exe
comm: root.exe
 92.93% root.exe
 47.60% [kernel.kallsyms]
 2.63% [k] unmap_page_range
 1.89% [k] __mod_lruvec_state
 1.78% [k] srso_untrain_ret
 1.77% [k] srso_return_thunk
 1.53% [k] trace_hardirqs_off
 1.32% [k] __lruvec_stat_mod_folio
 1.31% [k] clear_page_rep
 1.10% [k] preempt_count_add
 1.04% [k] __mod_memcg_lruvec_state
 26.75% libCling.so.6.30.06
 4.11% [.] llvm::SimpleBitstreamCursor::Read
 2.27% [.] llvm::BitstreamCursor::readRecord
 1.26% [.] llvm::StringMapImpl::LookupBucketFor
 9.10% libz.so.1.3.1
 5.85% [.] inflate_fast
 1.43% [.] adler32_z
 4.56% libc.so.6
 no entry >= 1.00%
 2.96% ld-linux-x86-64.so.2
 1.31% [.] _dl_lookup_symbol_x
 1.12% libCore.so.6.30.06
 no entry >= 1.00%

perf – pre-packaged metrics (Intel CPU)
bash ~ $ perf list metrics

Metrics:

 Backend_Bound
 [This category represents fraction of slots where no uops are delivered due to a lack of required resources for accepting new uops in the Backend]
 Bad_Speculation
 [This category represents fraction of slots wasted due to incorrect speculations]
 BpTB
 [Branch instructions per taken branch]
 CLKS
 [Per-Logical Processor actual clocks when the Logical Processor is active]
 CPI
 [Cycles Per Instruction (per Logical Processor)]
 CPU_Utilization
 [Average CPU Utilization]
 CoreIPC
 [Instructions Per Cycle (per physical core)]
 Frontend_Bound
 [This category represents fraction of slots where the processor's Frontend undersupplies its Backend]
 ILP
 [Instruction-Level-Parallelism (average number of uops executed when there is at least 1 uop executed)]
 IPC
 [Instructions Per Cycle (per Logical Processor)]
 Instructions
 [Total number of retired Instructions]
 IpB
 [Instructions per Branch (lower number means higher occurance rate)]
 IpCall
 [Instruction per (near) call (lower number means higher occurance rate)]
 IpL
 [Instructions per Load (lower number means higher occurance rate)]

82

perf – pre-packaged metrics (Intel CPU)
bash ~ $ perf stat -M Frontend_Bound,Backend_Bound,Bad_Speculation,Retiring -- root -l -q

 Performance counter stats for 'root -l -q':

 535853293 cycles
 # 0.32 Frontend_Bound (50.07%)
 676507752 idq_uops_not_delivered.core (50.07%)
 803157447 uops_issued.any # 0.10 Bad_Speculation
 # 0.28 Backend_Bound (49.93%)
 540449552 cycles
 # 0.31 Retiring (49.93%)
 676523326 idq_uops_not_delivered.core (49.93%)
 19393734 int_misc.recovery_cycles (49.93%)
 667220596 uops_retired.retire_slots (49.93%)

 0.243072802 seconds time elapsed

 0.158384000 seconds user
 0.088028000 seconds sys

bash ~ $

83

Example – using perf + awk to get percent retiring

84

Example – using perf + awk to get percent retiring

85

Matrix Multiplication
#include <stdio.h>
#include <stdlib.h>

// This version has minor modifications applied, the
// original version is linked at the bottom of the slide

#define SIZE 1024
#define LENGTH 32

int **mkmatrix(int rows, int cols);
void zeromatrix(int rows, int cols, int **m);
void freematrix(int rows, int **m);

int **mmult(int rows, int cols,
 int **m1, int **m2, int **m3) {
 int i, j, k;

 for (i=0; i<rows; i++) {
 for (j=0; j<cols; j++) {
 m3[i][j] = 0;
 for (k=0; k<cols; k++)
 m3[i][j] += m1[i][k] * m2[k][j];
 }
 }
 return(m3);
}

86

int main(int argc, char *argv[]) {

 int i, n = ((argc == 2) ? atoi(argv[1]) : LENGTH);

 int **m1 = mkmatrix(SIZE, SIZE);
 int **m2 = mkmatrix(SIZE, SIZE);
 int **mm = mkmatrix(SIZE, SIZE);

 zeromatrix(SIZE, SIZE, mm);

 for (i=0; i<n; i++)
mm = mmult(SIZE, SIZE, m1, m2, mm);

 printf("%d %d %d %d\n",
 mm[0][0], mm[2][3], mm[3][2], mm[4][4]);

 freematrix(SIZE, m1);
 freematrix(SIZE, m2);
 freematrix(SIZE, mm);
 return(0);
}

https://github.com/llvm-mirror/test-suite/blob/master/SingleSource/Benchmarks/Shootout/matrix.c

https://github.com/llvm-mirror/test-suite/blob/master/SingleSource/Benchmarks/Shootout/matrix.c

Simple Top-Down Analysis with perf

87

Annotated Source

88

Load m1[i][k] and m2[k][j] into memory and multiply

Add result into m3[i][j]

Loading m2 matrix elements in column major order is causing backend stalls.

Top-Down Analysis with Intel VTune Profiler

89

As shown by the red arrows, the
loop is being performed in column
major order, which in C/C++ is not
optimal, because the memory
layout is row major. Therefore, we
need to perform a loop inversion
for the indices j and k to improve
performance.

Loop inversion solves the problem

90

Now we are no longer bound by the backend. The speedup obtained
was ≈2x with this change. Can we improve this result?
We can parallelize the code with OpenMP, for example.

Parallel code with OpenMP gains more performance

91

The percentage of time spent retiring is too high. This is also
indicative of a problem. Letʼs look again at the annotated source.

Annotated Source with perf annotate

92

The loop is still using scalar instructions.
We can further improve performance with vectorization.

Vectorization significantly improves performance

93

Weʼve improved performance from ~30s down to 0.54s, not bad!
Thatʼs a speedup of about 56.3x.

Comparison between initial and final versions

94

Final performance summary in VTune (10x runtime)

95

Matrix Multiplication Roofline Performance

96

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

Arithmetic Intensity [FLOPs/Byte]

Pe
rf

or
m

an
ce

 [G
FL

O
Ps

]

CPU Cap: Scalar Add / Multiply

Memory Cap: L1

Memory Cap: L2

Memory Cap: L3

CPU Cap: Vector Add / Multiply

CPU Cap: Fused Multiply/Add (FMA)

Fix bad memory access pattern.
Performance improved, but many cores are still idle.

Parallelize the code, now limited
only by scalar CPU performance.

Vectorize with SIMD instructions,
now weʼre close to the roofline.
Job done.

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

