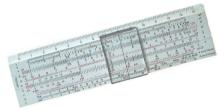


CPU Hardware Architecture and Performance Optimization

G. Amadio (CERN)


Our Main Goals

- Understand the architecture of modern CPU hardware
 - Hardware evolution
 - Main features of modern hardware
- Understand how to analyze the performance of our code
 - How to identify performance bottlenecks
 - What to measure and how to measure it
- Combine architectural knowledge and performance analysis
 - How to interpret performance measurements
 - What changes to make to the software

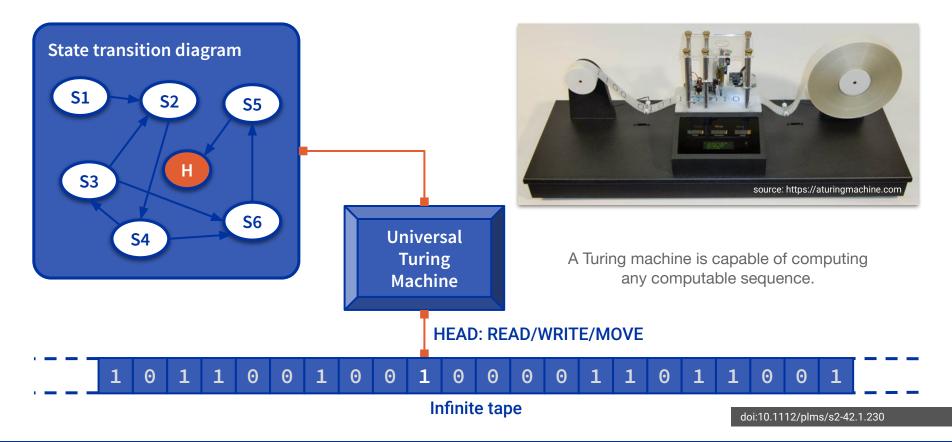
CPU Hardware Architecture and Evolution

Early Computing Devices

2700 – 2300 BC	1620- 1630	1642	1820s
Abacus	Slide Rule	Pascaline	Difference Engine
Used since ancient times, until Arabic numerals became the norm. Still in use as an educational tool.	Uses logarithm scales to help with multiplications and also computing other functions. Extensively used by engineers in the last century, before computers became powerful.	Mechanical calculator invented by Blaise Pascal to help his father with tax calculations. Could add and subtract.	Automatic mechanical calculator designed to tabulate polynomial functions. Designed and first created by Charles Babbage.

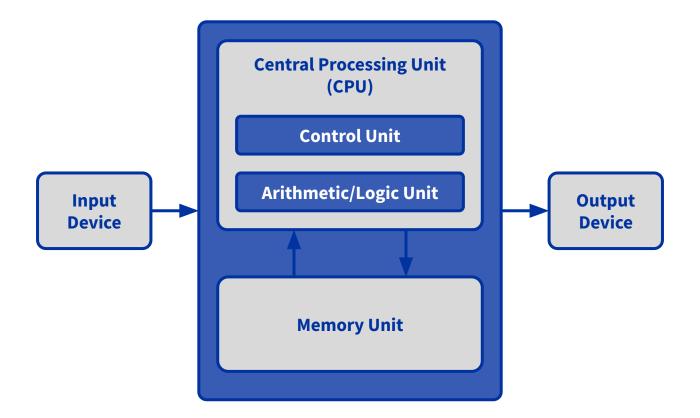
Images: Wikipedia

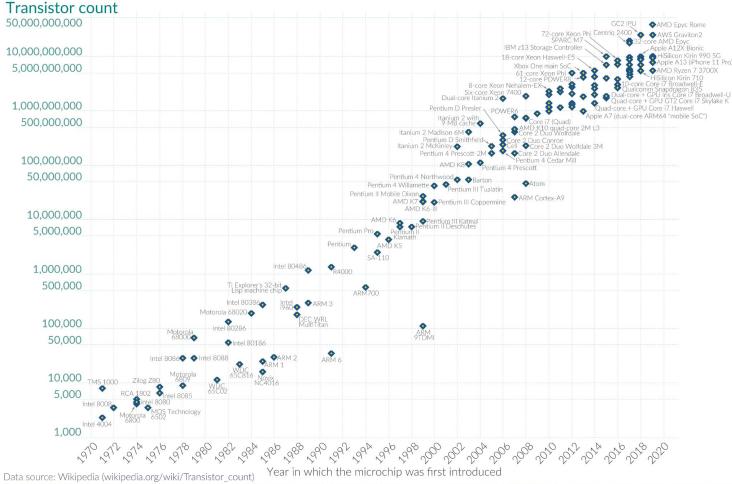
4


Ada Lovelace, the first computer programmer

Augusta Ada King, Countess of Lovelace (10 December 1815 – 27 November 1852) was an English mathematician and writer, known for her work on Charles Babbage's proposed mechanical general-purpose computer, the Analytical Engine. She was the first to recognize that the new machine had applications beyond simple calculations. She arguably wrote the first "computer program". In her article entitled "note G" on the Analytical Engine, she described in detail an algorithm to compute a sequence of Bernoulli numbers using it.

Source: Wikipedia


The Turing Machine: concept of first generic computer



From Turing Machine to Stored-Program Computer

	Turing Machine		ABC, Colossus, ENIAC		Assembly Language	
	Conceptually the first gener computing machine.	ral	First truly digital computers, based on boolean logic and vacuum tubes.		Beginning of standardization to program computer with a instruction sets.	
	• 1	937	• 19	947	• 1	950
1	936	• 1942	2-1945	• 19	949	•
		Harvard IBM Mark I		Solid-State Transistor		EDVAC
		Inspired on the Analytical Er One of the earliest general-p electromechanical compute First computer bug discover it by Grace Hopper.	purpose rs.	The first solid-state transisto was a based on a point-cont connection to a crystal by clo spaced thin gold foils.	act	First stored-program computer, based on John von Neumann's architecture concept from 1945.

John von Neumann Architecture

OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Integrated Circuit-Based Microprocessors

Fi	ntel 4004 rst Intel nicroprocessor. 300 Transistors.],	MOS 6502 Powered many popular devic such as the Apple II, Atari 26 Commodore 64, and the NES 3,510 Transistors.	es, 00,	Intel 8086 First 16-bit microprocessor. Its successor, the Intel 8088 version, powered first IBM P	29,000 Transistors. 8, a slightly modified bc.
•	19	72	• 19	76	• 1	985
197	70	19	975	19	978	•
	I	ntel 8008	:	Zilog Z80		Intel 80386
		First 8 bit microprocessor. 3,500 Transistors.		8-bit microprocessor. Powered devices such as Sega Master System and Me and Sinclair's ZX Spectrum.	ga Drive,	32-bit microprocessor. 275,000 Transistors, 33MHz. Cemented Intel's PC market dominance.

Intel's 8086 Registers and Assembly

Instruction Pointer

${}^{1}_{9} {}^{1}_{8} {}^{1}_{7} {}^{1}_{6} {}^{1}_{5} {}^{1}_{4} {}^{1}_{3} {}^{1}_{2} {}^{1}_{1} {}^{1}_{0} {}^{0}_{9} {}^{0}_{8} {}^{0}_{7} {}^{0}_{6} {}^{0}_{5} {}^{0}_{4} {}^{0}_{3} {}^{0}_{2} {}^{0}_{1} {}^{0}_{0} (\textit{bit position})$ Main registers AH AL AX (primary accumulator) 0000 BH BL BX (base, accumulator) CH CL CX (counter, accumulator) DH DL DX (accumulator, extended acc) Index registers 0000 SI Source Index 0000 DI **D**estination Index **B**ase **P**ointer 0000 BP 0000 SP Stack Pointer

Program counter

C	0000	IP

Segment registers

CS	0000	Code Segment
DS	0000	Data Segment
ES	0000	Extra Segment
SS	0000	Stack Segment

- - O D I T S Z - A - P - C Flags

Status register

- -

; all alpha ; ES=DS ; Entry sta ; [SP+4] ; [SP+2]	ll-termin betic cha ck parama = src, Au	ddress of source ddress of target	r case. string
_strtolower		h	
	push mov	bp bp,sp	;Set up the call frame
	push	si	
	push mov	di si,[bp+6]	;Set SI = src (+2 due to push bp)
	mov	di,[bp+4]	;Set DI = dst
	cld		string direction ascending;
loop:	lodsb		;Load AL from [si], inc si
	cmp	al,'A'	;If AL < 'A',
	jl cmp	copy al,'Z'	; Skip conversion ;If AL > 'Z',
		copy	; Skip conversion
	add	al,'a'-'A'	;Convert AL to lowercase
copy:	stosb		;Store AL to [di], inc di
	or jne	al,al loop	;If AL <> 0, ; Repeat the loop
	Jile	100b	, Repear the 100p
done :	рор	di	; restore di and si
	рор рор	si bp	;Restore the prev call frame
	ret	54	;Return to caller
	end	proc	

Source: Wikipedia

Intel x86 Assembly

```
__attribute__((noinline))
 1
    int is_odd(unsigned long long n)
 2
 3
    {
 4
        return n & 1;
 5
 6
    unsigned int collatz_count(unsigned long long n)
 7
 8
        unsigned int count = 0;
 9
10
11
        while (n != 1)
12
13
            if (is_odd(n))
                n = 3 * n + 1;
14
15
            else
16
                n = n / 2;
17
18
            ++count;
19
20
21
        return count;
22
```

1	is_odd:			
2		mov	eax,	edi
3		and	eax,	
4		ret		
5	collatz_	_count:		
6		xor	edx,	edx
7		cmp	rdi,	1
8		jne	<u>.L7</u>	
9		jmp	<u>.L3</u>	
10	.L10:			
11		lea		[rdi+1+rdi*2]
12		add	edx,	
13		cmp	rdi,	1
14		je	<u>.L3</u>	
15	.L7:		1212101	
16		call	<u>is o</u>	
17		test	eax,	
18		jne	<u>.L10</u>	
19		shr	rdi	
20		add	edx,	
21		cmp	rdi,	1
22		jne	<u>.L7</u>	
23	.L3:			
24		mov	eax,	edx
25		ret		

Registers available in the x86-64 instruction set

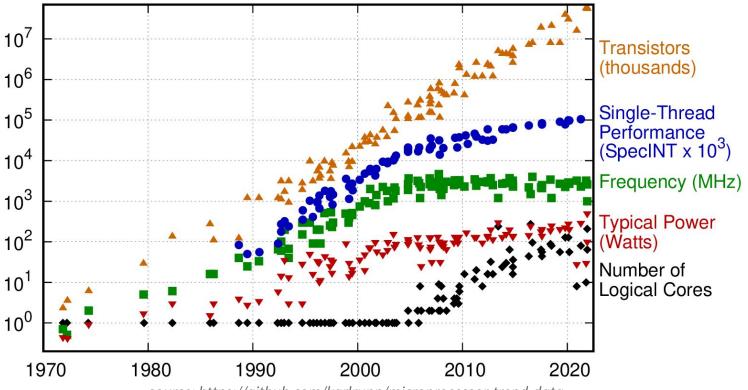
	AVX/A	۹VX2		S	SE4.2												
	J.		>		7												
ZMM0	YMM0	ХММО	ZMM1	YMM1	XMM1	ST(0)	MM0	ST(1)	MM1	ALAH	AXEAX RAX	R88 R8W R8D	R8 R128R12	WR12DR12	MSWC	R0 CR	4
ZMM2	YMM2	XMM2	ZMM3	YMM3	XMM3	ST(2)	MM2	ST(3)	MM3	BLBH	BXEBX RBX	R98 R9W R9D	R9 R138R131	WR13DR13	CR1	. CR	.5
ZMM4	YMM4	XMM4	ZMM5	YMM5	XMM5	ST(4)	MM4	ST(5)	MM5	CLCH	CXECX RCX	R108R10W R10D	R10 R148R141	W R14D R 14	CR2	2 CR	6
ZMM6	YMM6	XMM6	ZMM7	YMM7	XMM7	ST(6)	MM6	ST(7)	MM7	DLDH	DXEDX RDX	R118R11W R11D	R11 R158R151	W R15D R15	CRE	CR	7
ZMM8	YMM8	XMM8	ZMM9	YMM9	XMM9					BPL B	PEBPRBP			EIP RIP	MXCS	R CR	8
ZMM10	YMM10	XMM10	ZMM11	YMM11	XMM11	CW	FP_IP	FP_DF	PFP_CS	SIL S	I ESI RSI	SPLSPESPR	SP			CR	9
ZMM12	YMM12	XMM12	ZMM13	YMM13	XMM13	SW										CRI	10
ZMM14	YMM14	XMM14	ZMM15	YMM15	XMM15	TW			register		2-bit register		register	256-bit	5	CRI	11
ZMM16 ZMM	417 ZMM18	B ZMM19	ZMM20 ZM	1M21 ZMM2	22 ZMM23	FP_DS		10-01	t register	04	1-bit register	120-DI	register	512-bit	register	CRI	12
ZMM24 ZMM	425 ZMM2	ZMM27	ZMM28 ZM	1M29 ZMM3	30 ZMM31	FP_OPC	FP_DP	FP_IP	CS	5 5	S DS	GDTR	IDTR	DRO	DR6	CRI	13
									ES	5 F	S GS	TR	LDTR	DR1	DR7	CRI	14
												FLAGS EFLAGS	RFLAGS	DR2	DR8	CRI	15
		A	VX512											DR3	DR9		_
														DR4	DR10	DR12	DR14
														DR5	DR11	DR13	DR15

By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

Instruction Sets

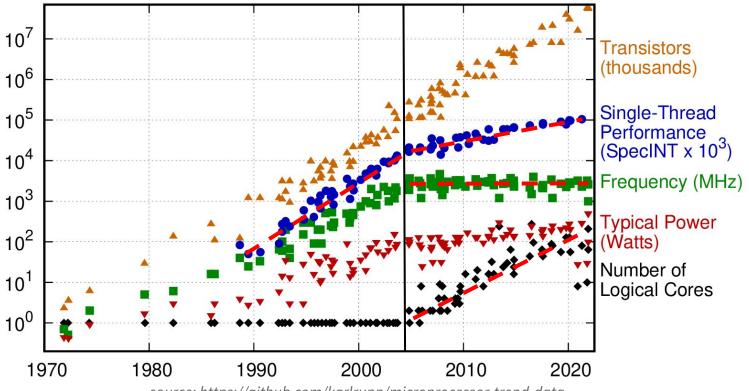
- **CISC** (Complex Instruction Set Computer)
 - Intel x86 and AMD64
 - Most laptop and desktop PCs, Playstation 5, Xbox One
 - IBM System z (mainframe computers)
- **RISC** (Reduced Instruction Set Computer)
 - ARM
 - Amazon Graviton (AWS VMs)
 - Apple M1–M4 (iPhone, iPad, iMacs)
 - Ampere Altra, Fujitsu A64FX, etc
 - Qualcomm (mobile phones, tablets)
 - Nintendo Game Boy Advance, DS, 3DS and Switch, Raspberry Pi, etc
 - IBM's PowerPC
 - Apple Macintosh (1994–2005), Nintendo GameCube and Wii, Playstation 3, Xbox 360
 - DEC Alpha, MIPS, Motorola 68000, RISC-V, SPARC, SuperH
 - Apple II (M68k), Nintendo 64, PlayStation 1 and 2 (MIPS), Sega Saturn and Dreamcast (SuperH)

Programming Language Evolution


programming.

programming.

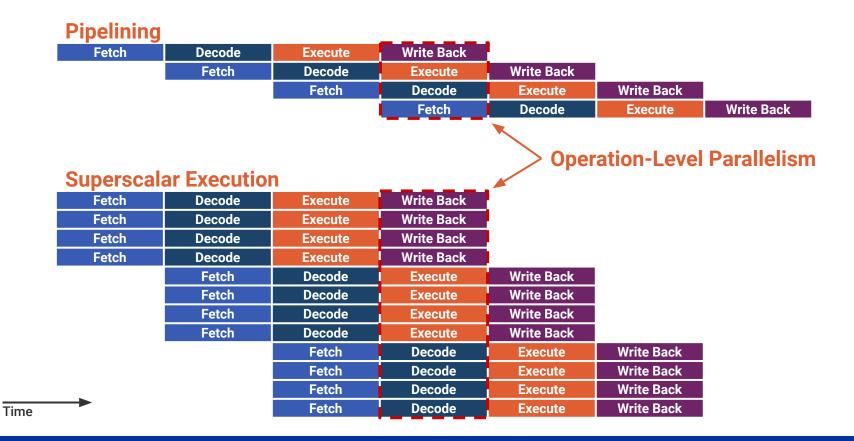
1947 1954 1963 1972 1979 Assembly BASIC C++Fortran С Low-level language. One of the earliest Beginner's All-purpose Originally developed to C++ was designed with High correspondence high-level imperative Symbolic Instruction implement many of the systems programming, between language and **C**ode is a family of utilities for UNIX OSs. embedded software. programming hardware instructions. Still in wide use today. languages. high-level languages. and efficiency in mind. Code written in Introduced procedural BASIC became popular C is a portable, Although many think of assembly is converted programming, double during the 8-bit era, but C++ as a superset of C imperative language to machine code using precision, and complex declined in popularity or C with classes. their with a static type an assembler, which numbers. Still popular in the 90s, when more system and which latest versions are not was a big upgrade over in HPC, including in advanced languages supports structured fully compatible. Used previous forms of **GPU** application like C were the norm. extensively in HEP and programming.


HPC nowadays.

50 Years of Microprocessor Trend Data

source: https://github.com/karlrupp/microprocessor-trend-data

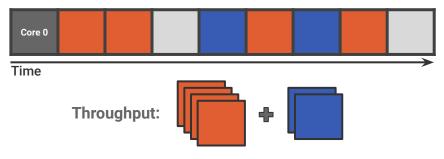
50 Years of Microprocessor Trend Data

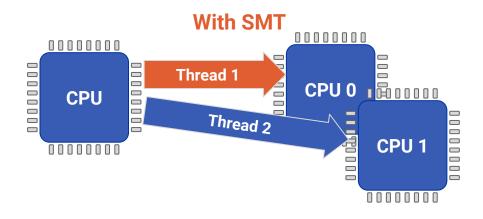


source: https://github.com/karlrupp/microprocessor-trend-data

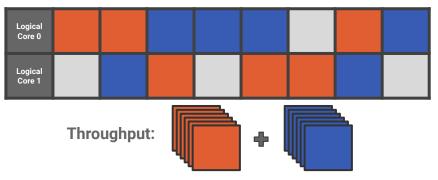
Breakdown of Dennard's Scaling

- Power density per unit area stopped decreasing
- Frequency could no longer keep increasing after each die shrink
 - But the transistor numbers kept growing
- Single-thread performance gains continued, albeit at a slower pace
 - More complexity: pipelining, superscalar, out-of-order execution, SIMD
- AMD and Intel bring 64-bit CPUs to the mainstream market
 - Intel with IA-64, and AMD with amd64 (x86_64), announced in 1999
- From symmetric multiprocessing (SMP) to multithreading (SMT)
 - In the '90s, dual socket high-end servers became popular
 - First SMT capable CPU was the Intel Pentium 4, released in 2002
- First dual core processors began to appear in mid 2000s
- The era of parallelism is born


Instruction-Level Parallelism

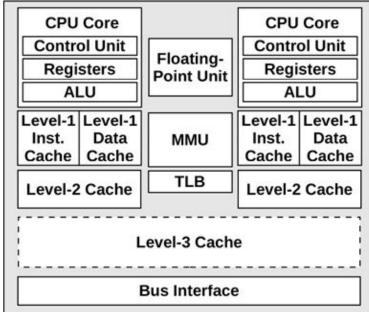


Symmetric multithreading (SMT)



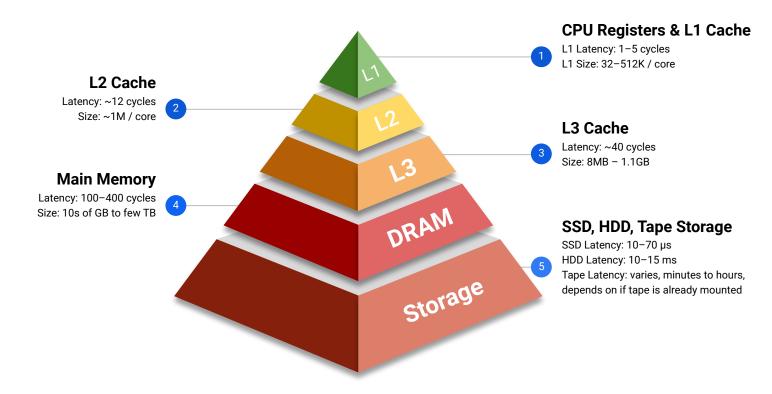
Threads scheduled one at a time on each physical core

Threads run simultaneously on two logical cores



CPU Architecture

Logical Components


- Control Unit
- Arithmetic Logic Units (ALUs)
- Floating Point Unit (FPU)
- Branch Predictor Unit (BPU)
- Memory Management Unit (MMU)
- Translation Lookaside Buffer (TLB)
- Memory Subsystem
 - L1(~32-512KB per core)
 - L1 Instruction Cache
 - L1 Data Cache
 - L2 (~1-8MB per core)
 - Instruction/Data Shared Cache
 - L3 (up to ~8MB-1.1GB per socket)
 - Last level cache (LLC)

Generic Dual Core CPU

Source: Systems Performance 2nd Edition, Brendan Gregg

Memory Hierarchy

Latency Numbers Every Programmer Should Know

•	1ns (~5 CPU cycles)	
•	L1 cache reference: 1ns	
	Branch mispredict: 3ns	
	L2 cache reference: 4ns	
	Mutex lock/unlock: 17ns	
	100ns =	

•	Main memory reference: 100ns	
	1,000ns ≈ 1µs	••
	Compress 1KB wth Zippy: 2,000ns ≈ 2µs	ł.
	10,000ns ≈ 10µs = ■	

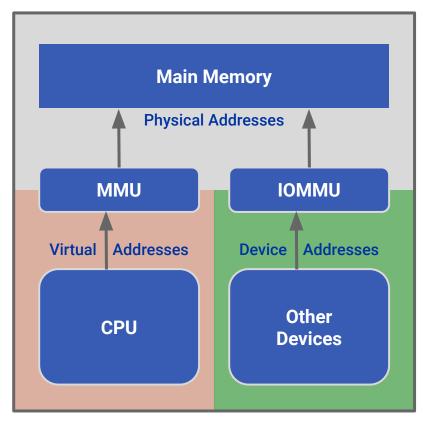
Send 2,000 bytes over

- sequentially from memory: 3,000ns \approx 3µs
- Round trip in same datacenter: 500,000ns ≈ 500µs

1,000,000ns = 1ms =

Read 1,000,000 bytes sequentially from SSD: 49,000ns $\approx 49\mu$ s

Disk seek: 2,000,000ns ≈ 2ms


Read 1,000,000 bytes sequentially from disk: 825,000ns \approx 825µs

Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html

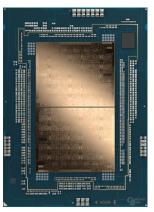
Virtual Memory


- First appeared in the Atlas computer in 1962
- Memory Management Unit (MMU)
- Memory managed in pages
 - Page sizes are usually 4K, 16K, 64K
 - May also support "huge pages" of 2MB, 1GB
- Hides fragmentation of physical memory
- Memory hierarchy managed by the kernel
- Makes application programming easier
 - Memory looks contiguous
 - No need to worry about fragmentation
 - Seems to own whole address space
 - Enabled timesharing features

The Translation Lookaside Buffer

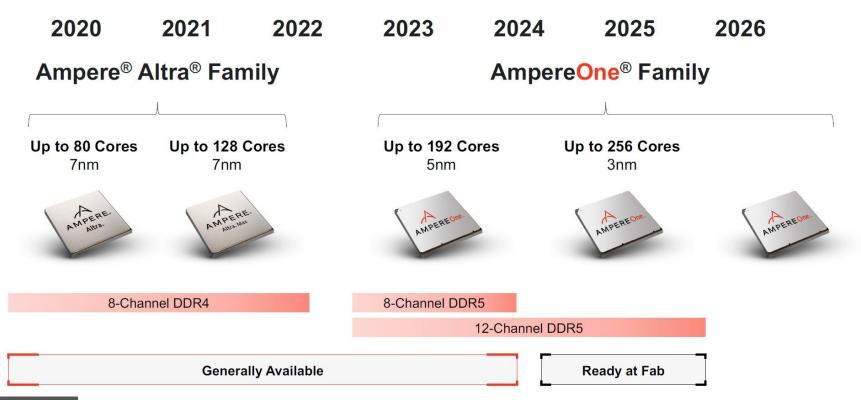
"A translation lookaside buffer (TLB) is a memory cache that is used to reduce the time taken to access a user memory location. It is a part of the chip's memory management unit (MMU). The TLB

- stores the recent translations of virtual memory to physical memory and can be called an
- address-translation cache."



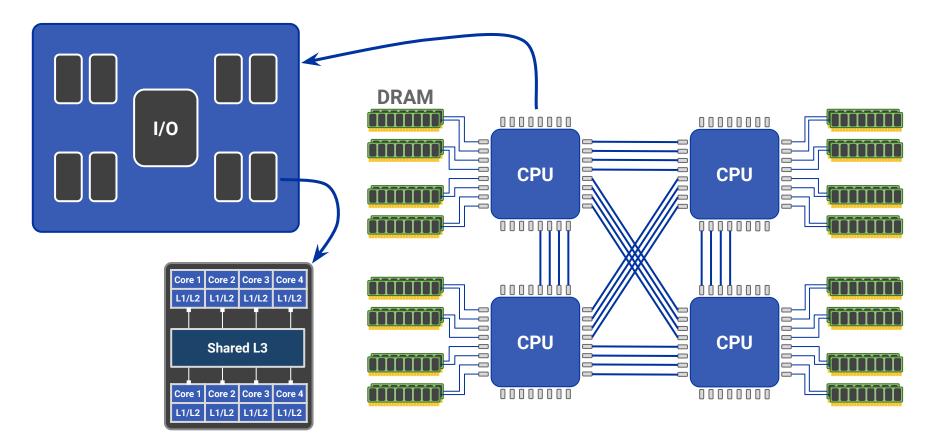
The Parallel Era

- First dual core CPUs debut in 2004
 - Pentium D, based on Pentium 4
 - AMD Athlon X2
- Quickly evolved from 2 to 4 cores
 - Stagnated at 4 cores for several years
- Ryzen brought AMD back in the game
 - Offered more cores, forced Intel to do the same
- ARM finally begins move from phones to servers
 - Amazon Graviton, Fujitsu A64FX, Ampere Altra
- Innovations in packaging led to multi-chip CPUs
 - AMD EPYC, Intel Sapphire and Emerald Rapids


Intel Emerald Rapids

Fujitsu A64FX

TofuD 28 Gbps x 2 lanes x 10 ports


PCIe Gen3 16 Jane

Ampere Roadmap 2020 – 2026

Source: Ampere

Non-Uniform Memory Architecture (NUMA)

	AMD EPYC 7001 'NAPLES'	AMD EPYC 7002 'ROME'	AMD EPYC 7003 'MILAN'	AMD EPYC 9004, 8004 'GENOA', 'SIENA'
Core Architecture	'Zen'	'Zen 2'	'Zen 3'	'Zen 4' and 'Zen 4c'
Cores	8 to 32	8 to 64	8 to 64	8 to 128
IPC Improvement Over Prior Generation	N/A	~24% ^{ROM-236}	~19% MLN-003	~14% ^{EPYC-038}
Max L3 Cache	Up to 64 MB	Up to 256 MB	Up to 256 MB	Up to 384 MB (EPYC 9004) Up to 128 MB (EPYC 8004)
Max L3 Cache with 3D V-Cache [™] te	chnology		768 MB	Up to 1152 MB
PCIe [®] Lanes	Up to 128 Gen 3	Up to 128 Gen 3	Up to 128 Gen 4	Up to 128 Gen 5 8 bonus lanes Gen 3
CPU Process Technology	14nm	7nm	7nm	5nm
I/O Die Process Technology	N/A	14nm	14nm	6nm
Power (Configurable TDP [cTDP])	120-200W	120-280W	155-280W	70-400W
Max Memory Capacity	2 TB DDR3-2400/2666	4 TB DDR4-3200	4 TB DDR4-3200	6 TB DDR5-4800

AMD Zen4 Architecture in detail

COMPUTE

- AMD "Zen4" x86 cores (Up to 12 CCDs / 96 cores / 192 threads)
- 1MB L2/Core, 96MB L3/CCD / Total up to 1,152MB L3
- ISA updates: BFLOAT16, VNNI, AVX-512 (256b data path)
- Memory addressability with 57b/52b Virtual/Physical Address
- Updated IOD and internal AMD Gen3 Infinity Fabric™ architecture with increased die-to-die bandwidth
- Target TDP range: Up to 400W (cTDP)
- Updated RAS

Memory

- 12 channel DDR5 with ECC up to 4800 MHz
- Option for 2, 4, 6, 8, 10, 12 channel memory interleaving1
- RDIMM, 3DS RDIMM
- Up to 2 DIMMs/channel capacity with up to 12TB in a 2 socket system (256GB 3DS RDIMMs)1

Source: AMD

"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"	2	"Zen 4"	"Zen 4"	2	"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"	9	"Zen 4"	"Zen 4"	9	"Zen 4"
"Zen 4"	1 2	"Zen 4"	"Zen 4"	and a second sec	"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zon 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"	23	"Zen 4"	"Zen 4"	9	"Zen 4"
"Zen 4"	87	"Zen 4"	"Zen 4"	1	"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"

"Zen 4"	n se	"Zen 4"	"Zen 4"	C. See	"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"	13 ^{86MB}	"Zen 4"	"Zen 4"	13 ⁸⁶⁴¹⁸	"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"	<u> </u>	"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"	8 2	"Zen 4"	"Zen 4"	EN B	"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"
"Zen 4"		"Zen 4"	"Zen 4"		"Zen 4"

ORANGE indicates difference from General Purpose

SP5 Platform

- · New socket, increased power delivery and VR
- Up to 4 links of Gen3 AMD Infinity Fabric[™] with speeds of up to 32Gbps
- Flexible topology options
- Server Controller Hub (USB, UART, SPI, I2C, etc.)

Integrated I/O – No Chipset

Up to 160 IO lanes (2P) of PCIe® Gen5

- Speeds up to 32Gbps, bifurcations supported down to x1
- Up to 12 bonus PCIe[®] Gen3 lanes in 2P config (8 lanes-1P)
- Up to 32 IO lanes for SATA

 64 IO Lanes support for CXL1.1+ w/bifurcations supported down to x4

Security Features

Dedicated Security Subsystem with enhancements

Secure Boot, Hardware Root-of-Trust

SME (Secure Memory Encryption)

SEV-ES (Secure Encrypted Virtualization & Register Encryption)

SEV-SNP (Secure Nested Paging), AES-256-XTS with more encrypted VMs

30

Intel® Xeon® Die Package Enhancements

5th Gen Intel[®] Xeon[®] Processors

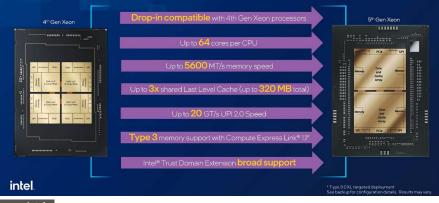
Scalable, Balanced Architecture

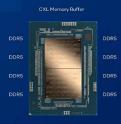
5th Gen Intel® Xeon® Processors Turbo Frequencies

Introducing Improved 5 Turbo Ratio Levels

- Improves Turbo Frequencies for Intel® AVX heavy and Intel® AMX light workloads including HPC and AI
- ~2 bins Turbo Frequency Upside on Intel® AVX-512 Heavy usage
- ~9% performance improvement on low load (4T or 8T) LINPACK AVX512
- ~5% performance improvement on low instance (4 or 32) Resnet50 amx_int8, amx_bfloat16 and avx_fp32
- Lowers the Turbo frequency penalty for using AVX512 or AMX, broadening usability of these instruction sets

4th Gen Intel® Xeon® CPU


Instruction Class	Cdyn Class					
	0	1	2	3		
SSE	128 Light	128 Heavy				
AVX2	256 Light	256 Moderate	256 Heavy			
AVX512	512 Ultra-Light	512 Light	512 Moderate	512 Heavy		
AMX		AMX Light	AMX Moderate	AMX Heavy		
Turbo Frequency	SSE	AVX2	AVX512	AMX		


5th Gen Intel® Xeon® CPU

Instruction Class	Cdyn Class					
	0		2	3	4	
SSE	128 Light	128 Heavy				
AVX2	256 Light	256 Moderate	256 Heavy			
AVX512	512 Ultra-Light	512 Light	512 Moderate	512 Heavy		
	HANCED	AMX Ultra- Light	AMX Light	AMX Moderate	AMX Heavy	
Turbo Frequency	SSE	AVX2	AVX512	AVX51244	AMX	

Compute Express Link® 1.1 Enhancements

Type 3 memory support with 5th Gen Intel® Xeon® processors

CXL Memory Buffer

2 Tier Memory Support Example

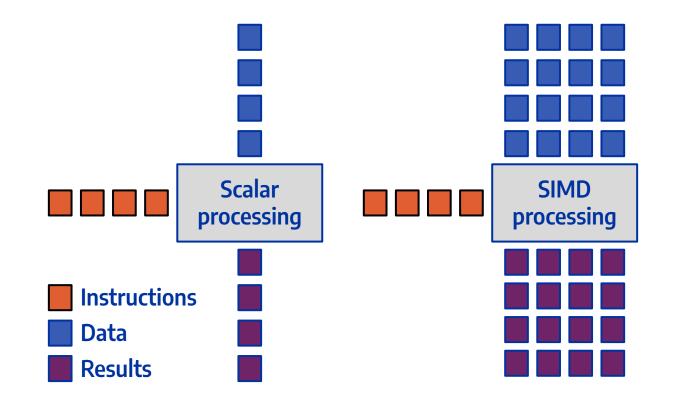
intel

2-Tier Memory Support

Type 3 Memory Expansion Devices:

Capacity Expansion

- Tier 1 memory = native DDR, Tier 2 memory = CXL[®] attached memory
- Supports up to 4 channels of CXL memory across two CXL type 3 devices
- Supports CXL memory latency QoS distress signaling


Increased transactions per second for In-Memory databases (e.g. Redis)

Single Tier Memory Support

- 12 channel DDR+CXL interleaved memory
- Either for capacity or bandwidth expansion

Source: Intel

SIMD Vectorization

History of Intel[®] SIMD ISA Extensions

• Intel[®] Pentium Processor (1993)

🔄 32bit

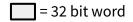
• Multimedia Extensions (MMX in 1997)

64bit integer support only

• Streaming SIMD Extensions (SSE in 1999 to SSE4.2 in 2008)

32bit/64bit integer and floating point, no masking

• Advanced Vector Extensions (AVX in 2011 and AVX2 in 2013)


Fused multiply-add (FMA), HW gather support (AVX2)

• Many Integrated Core Architecture (Xeon Phi[™] Knights Corner in 2013)

HW gather/scatter, exponential

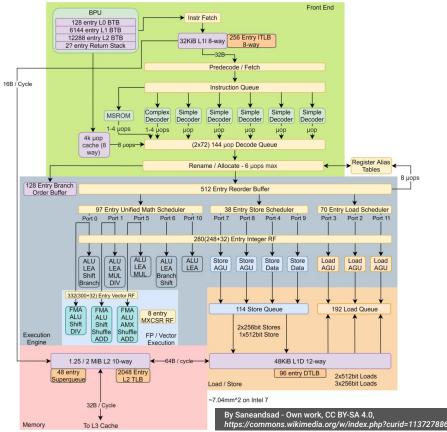
• AVX512 on Knights Landing, Skylake Xeon, and Core X-series (2016/2017)

Conflict detection instructions

Evolution of Intel[®] SIMD ISA Extensions

- AVX 10
 - Supported on both P-cores and E-cores
 - Brings benefits of AVX512 to smaller registers
- Advanced Matrix Extensions (AMX)
 - Targeted at AI applications
 - SIMD for small matrix operations
 - Available on 4th and 5th generation Xeon
- Advanced Performance Extensions (APX)
 - Adds new features that improve general-purpose performance
 - Expands x86 instruction set with more general-purpose registers (from 16 to 32)
 - New REX2 prefix provides uniform access to the new registers
 - Adds conditional forms of load, store, and compare/test instructions
 - New prefix increase average instruction length, but there are less instructions overall

				Intel®AVX10.2	
oro			Intel [®] AVX10.1 (pre-enabling)	New data movement, transforms and type instructions	
ers		Intel [®] AVX-512	Optional 512-bit FP/Int	Optional 512-bit FP/Int	
		128/256/512-bit FP/Int	128/256-bit FP/Int	128/256-bit FP/Int	
		32 vector registers	32 vector registers	32 vector registers	
		8 mask registers	8 mask registers	8 mask registers	
		512-bit embedded rounding	512-bit embedded rounding	256/512-bit embedded rounding	
Intel [®] AVX	Intel [®] AVX2	Embedded broadcast	Embedded broadcast	Embedded broadcast	
Intel [®] AVA	Intel® AVA2	Scalar/SSE/AVX "promotions"	Scalar/SSE/AVX "promotions"	Scalar/SSE/AVX "promotions"	
128/256-bit FP	Float16	Native media additions	Native media additions	Native media additions	
16 registers	128/256-bit FP FMA	HPC additions	HPC additions	HPC additions	
NDS (and AVX128)	256-bit int	Transcendental support	Transcendental support	Transcendental support	
Improved blend	PERMD	Gather/Scatter	Gather/Scatter	Gather/Scatter	
MASKMOV	Gather	Flag-based enumeration	Version-based enumeration	Version-based enumeration	
Implicit unaligned		Intel® Xeon P-core only	Intel® Xeon P-core only	Supported on P-cores, E-cores	

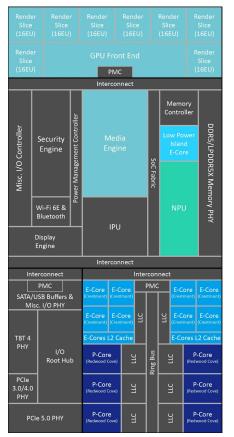

Microarchitecture of a Modern Intel Core

- Front End
 - Instruction Fetch and Decode
 - Branch Predictor Unit (BPU)
 - L1 Instruction Cache
 - Instruction TLB

• Back End

- Execution Engine
 - Scheduler
 - Register File
 - Execution Units (EUs)
- Memory Subsystem
 - Load/Store Units (LSU)
 - L1 / L2 Data Cache
 - Data TLB

Meteor Lake Hybrid Architecture



Meteor Lake Block Diagram

Source: Intel

REDWOOD COVE

New P-core

Targeted for efficient performance

MSROM

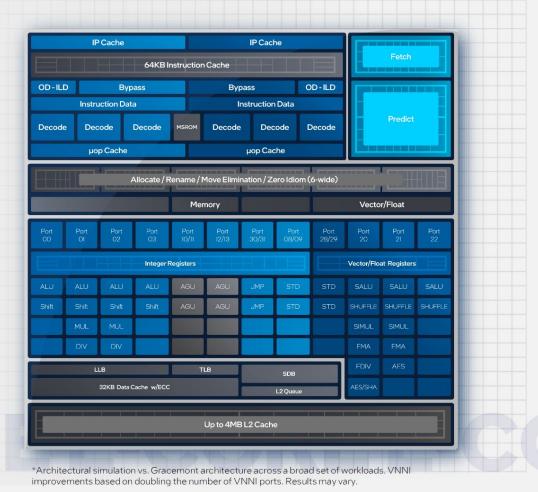
I-TLB + 64KB I-Cache

Decode

µop Queue

Predict

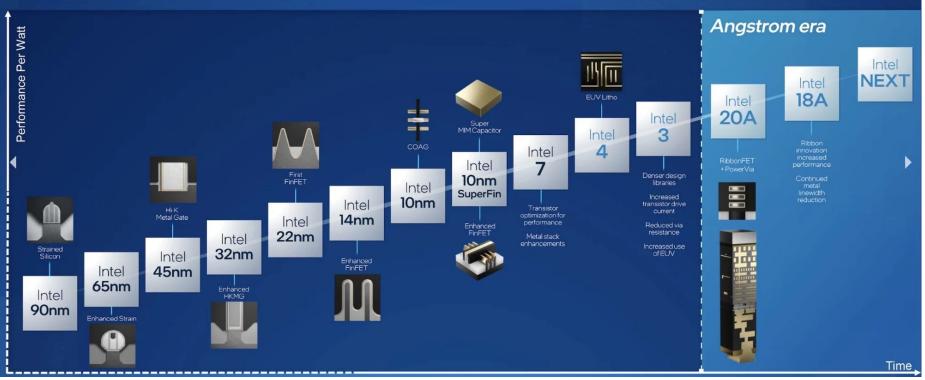
µop Cache


*Architectural simulation vs. Golden Cove architecture. Results may vary across workloads.

CRESTMONT

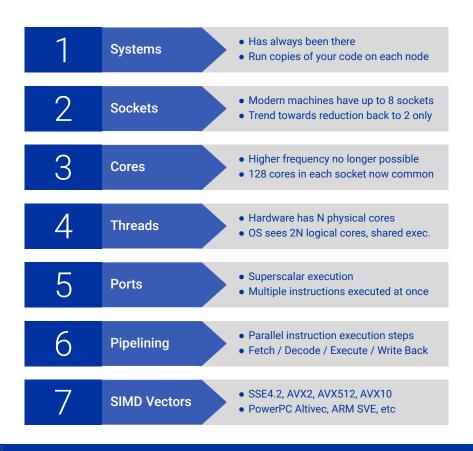
New E-core

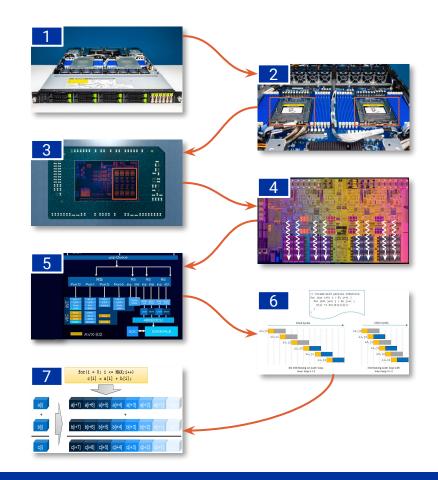
Significant improvements over prior E-core



Source: Intel

DCAI Architecture Evolution




Intel Process Technology

Source: Intel

Modern Hardware

Summary

- We've come a long way, modern hardware is quite complex
 - NUMA Architecture (multi socket)
 - High parallelism (multicore, superscalar)
 - Advanced Packaging (chiplets)
 - Hybrid Architectures (performance/efficiency)
 - Variable CPU frequency scaling (turbo boost, thermal throttling)
 - Accelerators and Heterogeneity (GPUs, NPUs, FPGAs, ASICs)
- Performance does not come for free, we needed to adapt our software
 - Concurrency and Parallelism (processes, threads, SIMD)
 - Memory alignment, access patterns, fragmentation
 - Code layout, compiler optimizations, data structures, software design
 - Need the right tools to guide us: profilers, static analysis, etc
 - Need the right methodology: identify causes of bottlenecks, address the right issue

Performance Analysis on Modern CPUs

Performance is challenging

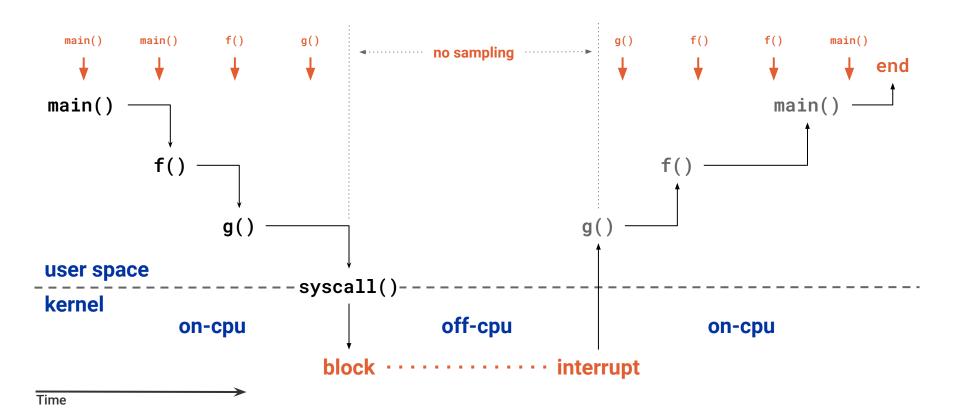
- Measuring Performance
 - Instrumentation and measurement has some overhead
 - Sophisticated hardware architecture (out of order, superscalar)
 - Variable CPU frequency scaling (turbo boost, thermal throttling)
 - Often missing symbols (JIT, interpreted languages, stripped binaries)
 - Unreliable stack unwinding (deep call stacks, inlining, missing frame pointers)
- Optimization and Tuning
 - Floating-point arithmetics is complicated (denormals)
 - Memory access patterns, fragmentation, (mis-)alignment
 - Concurrency issues (shared resources with hyperthreading, contention)
 - Reliance on compiler optimizations (exceptions vs vectorization, dead code)

Instrumentation-Based Profiling

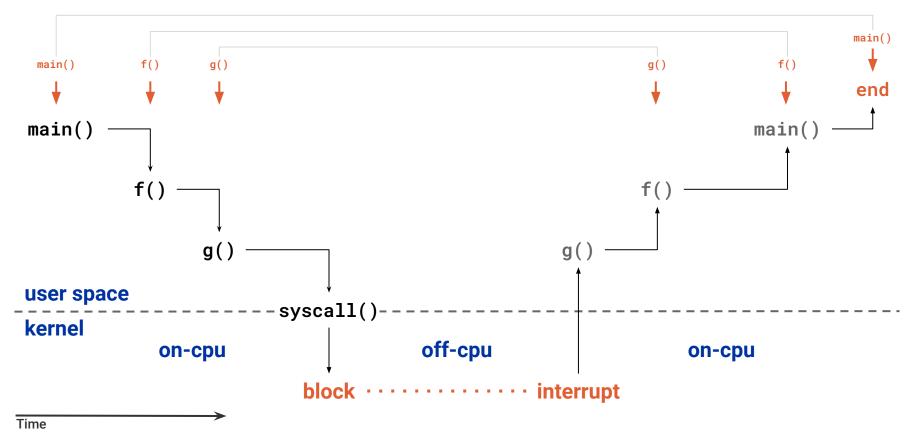
- Use a timer and print out how long a section of code takes to run
 - Simplest form of instrumentation
 - Make changes and measure again
- Use an instrumentation-based profiler
 - May need to compile application with profiling information (-g -pg)
 - Run the application and analyze the output file
 - Examples: gprof, valgrind, uftrace
 - Yields number of calls for each function, unlike sampling
 - Usually suffers from high overhead
 - Cannot use in production systems

Flat profile example using gprof

\$ pack -f 0.5 examples/ellipsoids # compiled with -O2 -g -pg, simulates a packing of ellipsoids, as shown below 100.00% 0.5000 0.0000/min 2.1e-01 ev/s 4.9 s **\$** file gmon.out gmon.out: GNU prof performance data - version 1 \$ gprof --no-graph pack | head -n 20 Flat profile: Each sample counts as 0.01 seconds. % cumulative self self total time seconds seconds calls s/call s/call name 34.05 0.95 0.95 7677145 0.00 0.00 HGrid::find_neighbors(Particle const*, std::vector<Particle*>&) 24.73 1.64 0.69 66007037 0.00 0.00 intersect(Particle const&, Particle const&, float) 7.89 1.86 0.22 31828514 0.00 0.00 Ellipsoid::support(Vector const&) const 5.38 2.01 0.15 6685781 0.00 0.00 Particle::world_transform(float) const 4.30 2.13 0.12 140620355 0.00 0.00 Ellipsoid::bounding_radius() const 3.94 2.24 0.11 10459271 0.00 0.00 closest_point_triangle(Point&, Point&, Point&, result&) 3.23 2.33 0.09 13858812 0.00 0.00 Simplex::add_vertex(Vector const&, Point const&) 2.15 2.39 0.06 13858812 0.00 0.00 Simplex::update() 2.15 2.45 0.06 4288132 0.00 0.00 closest_point_tetrahedron(Point&, Point&, Point& result&) 1.79 2.50 0.05 13732871 0.00 0.00 Simplex::reduce() 1.79 2.55 0.05 481841 0.00 0.00 check_overlap(Particle&) 1.79 2.60 0.05 1000 0.00 0.00 Ellipsoid::name() const 1.43 2.64 0.04 6784500 0.00 0.00 time_of_impact(Particle const&, Particle const&, float, float) 1.43 2.68 0.04 3342851 0.00 0.00 Simplex::reset() 1.43 2.72 0.04 _init


Flat profile example using valgrind

```
$ valgrind --tool=callgrind -- pack -f 0.5 examples/ellipsoids # no need for -pg
==2140677== Callgrind, a call-graph generating cache profiler
==2140677== Copyright (C) 2002-2017, and GNU GPL'd, by Josef Weidendorfer et al.
==2140677== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2140677== Command: pack -f 0.5 examples/ellipsoids
==2140677==
==2140677== For interactive control, run 'callgrind_control -h'.
100.00% 0.5000 0.0000/min 6.7e-03 ev/s 150.0 s
==2140677==
==2140677== Events
                                 : Ir
==2140677== Collected : 29183525425
==2140677==
==2140677== I refs: 29,183,525,425
$ kcachegrind callgrind.out.2140677
                                                            Incl.
                                                                     Self
                                                                           Distance Calling
                                                                                            Callee
                                                            42.94 42.85 4-6 (6) 8 695 851 Herid: find_neighbors(Particle const*, std::vector<Particle*, std::allocator<Particle*>>&) (pack: harid.cc, ...)
                                                               48.98 23.14 5-8 (6) 82 179 113 intersect(Particle const&, Particle const&, float) (pack: gjk.cc, ...)
                                                                                   556 101 deck overlap(Particle&) (pack: collision.cc....)
                                                            69.30
                                                                       4.11
                                                                                 5
                                                                       4.10 6-7 (7) 35 193 894 Ellipsoid::support(Vector const&) const (pack: ellipsoid.h, ...)
                                                                 4.10
                                                                       3.94 7-10 (8) 15 268 580 Simplex::update() (pack: simplex.cc, ...)
                                                               11.55
                                                                 5.02
                                                                       3.81 6-7 (7) 7 513 640 Particle::world transform(float) const (pack: particle.h. ...)
                                                                       2.56 8-10 (10) 11 495 780 = closest_point_triangle(Point const&, Point const&, Point const&, closest_result&) (pack: simplex.cc, ...)
                                                                 2.56
                                                                       2.54 8-9 (9) 15 129 509 Simplex::reduce() (pack: simplex.cc)
                                                                 2.54
                                                                       2.49 8-9 (9) 4 717 916 discussion classest_point_tetrahedron(Point const&, Point const&, Point const&, Point const&, closest_result&) (pack: simplex.cc, ...)
                                                                 3.84
                                                                      1.77 6-7 (7) 174 081 520 Ellipsoid::bounding_radius() const (pack: ellipsoid.h)
                                                                 1.77
                                                                       1.63 6-7 (7) 15 268 580 Simplex::contains(Vector const&) (pack; simplex.cc, ...)
                                                                 1.63
                                                                      1.17 6-9 (9) 7 542 131 sincos (libm.so.6: s_sincos.c, ...)
                                                                 1.17
                                                                       0.94 6-7 (7) 15 268 580 Simplex::add_vertex(Vector const&, Point const&, Point const&) (pack: simplex.cc)
                                                                 0.94
                                                                23.91
                                                                       0.88 4-7 (5) 7 313 206 time_of_impact(Particle const&, Particle const&, float, float) (pack: collision.cc)
                                                                12.33
                                                                       0.79 6-9 (7) 15 268 580 Simplex::closest(Vector&) (pack: simplex.cc)
                                                              Parts Callees Call Graph All Callees Caller Map Machine Code
```


perf – Performance analysis tools for Linux

- Official Linux profiler (source code is part of the kernel itself)
- Both hardware and software based performance monitoring
- Much lower overhead compared with instrumentation-based profiling
- Kernel and user space
- Counting and Sampling
 - Counting count occurrences of a given event (e.g. cache misses)
 - Event-based Sampling a sample is recorded when a threshold of events has occurred
 - Time-based Sampling samples are recorded at a given fixed frequency
 - Instruction-based Sampling processor follows instructions and samples events they create
- Static and Dynamic Tracing
 - Static pre-defined tracepoints in software
 - Dynamic tracepoints created using uprobes (user) or kprobes (kernel)

Sampling

perf – subcommands

bash ~ \$ perf				
usage: perf [ve	ersion] [help] [OPTIONS] COMMAND [ARGS]			
The most commonly	y used perf commands are:			
annotate	Read perf.data (created by perf record) and display annotated code			
archive	Create archive with object files with build-ids found in perf.data file			
c2c	Shared Data C2C/HITM Analyzer.			
config	Get and set variables in a configuration file.			
data	Data file related processing			
diff Read perf.data files and display the differential profile				
evlist	List the event names in a perf.data file			
list	List all symbolic event types			
mem	Profile memory accesses			
record	Run a command and record its profile into perf.data			
report	Read perf.data (created by perf record) and display the profile			
sched	Tool to trace/measure scheduler properties (latencies)			
script	Read perf.data (created by perf record) and display trace output			
stat	Run a command and gather performance counter statistics			
timechart	Tool to visualize total system behavior during a workload			
top	System profiling tool.			
version	display the version of perf binary			
probe	Define new dynamic tracepoints			
trace	strace inspired tool			

See 'perf help COMMAND' for more information on a specific command.

Flat profile example using perf

```
$ pack -f 0.5 examples/ellipsoids # compiled with -02 -g
100.00% 0.5000 0.0001/min 3.2e-01 ev/s 3.1 s
$ perf record -F 1000 -e cycles -- pack -f 0.5 examples/ellipsoids
perf record -F 1000 -e cycles -- pack -f 0.5 examples/ellipsoids
100.00% 0.5000 0.0002/min 2.9e-01 ev/s 3.5 s
[ perf record: Woken up 1 times to write data ]
  perf record: Captured and wrote 0.138 MB perf.data (3431 samples)
$ perf report --stdio | sed -ne /Overhead/,25p
# Overhead Command Shared Object Symbol
  34.07% pack
                   pack
                                      [.] HGrid::find_neighbors
   29.13%
           pack
                    pack
                                       [.] intersect
    8.23%
           pack
                    pack
                                       [.] Ellipsoid::support
     5.74%
           pack
                    pack
                                       [.] Particle::world_transform
    3.72%
           pack
                    pack
                                       [.] closest_point_tetrahedron
                                       [.] closest_point_triangle
    3.65%
           pack
                    pack
    2.42%
           pack
                    pack
                                       [.] Simplex::update
    2.27%
                                       [.] Ellipsoid::bounding_radius
           pack
                    pack
    2.25%
                                       [.] Simplex::contains
           pack
                    pack
    2.19%
           pack
                    pack
                                       [.] check_overlap
    0.95%
           pack
                    libm.so.6
                                       [.] __sincos
    0.61%
                    pack
                                      [.] HGrid::insert
           pack
    0.51%
           pack
                    pack
                                       [.] Simplex::reduce
    0.37%
           pack
                    pack
                                       [.] Simplex::closest
```

CPU Features for Performance Analysis

- Performance Monitoring Unit (PMU)
 - Performance monitoring counters (PMC)
 - Hardware: cycles, instructions, branches, stalled cycles in frontend/backend, etc
 - PMUs have several slots (usually 4–6) for counting hardware events together
 - Core PMU (CPU related events) and Uncore PMUs (I/O, caches, memory, interconnect)
 - If more events need to be measured than fit in a PMU, this needs to be done via multiplexing
- Varies depending on hardware vendor/model
 - Basic events have equivalents in most hardware
 - More specific events may only be available on certain hardware models
 - Some events have the same name, but count different things (e.g. cache misses)
- Profilers make use of hardware/software events
 - Software events: page faults, context switches, migrations, etc
- Intel VTune, AMD µprof, macOS Instruments, Linux perf, etc

perf – hardware and software events

<pre>bash ~ \$ perf list hw cache</pre>		bash ~ \$ per
List of pre-defined events (to be used in -e):		List of pre-
branch-instructions OR branches branch-misses cache-misses cache-references cpu-cycles OR cycles instructions	[Hardware event] [Hardware event] [Hardware event] [Hardware event] [Hardware event] [Hardware event]	alignment- bpf-output context-sw cpu-clock cpu-migrat dummy
stalled-cycles-backend OR idle-cycles-backend	[Hardware event]	emulation-
stalled-cycles-frontend OR idle-cycles-frontend	[Hardware event]	major-faul
		minor-faul
L1-dcache-load-misses	[Hardware cache event]	page-fault
L1-dcache-loads	[Hardware cache event]	task-clock
L1-dcache-prefetches	[Hardware cache event]	
L1-icache-load-misses	[Hardware cache event]	duration_t
L1-icache-loads	[Hardware cache event]	
branch-load-misses	[Hardware cache event]	
branch-loads	[Hardware cache event]	
dTLB-load-misses	[Hardware cache event]	
dTLB-loads	[Hardware cache event]	
iTLB-load-misses	[Hardware cache event]	
iTLB-loads	[Hardware cache event]	

erf list sw

-defined events (to be used in -e):

-faults witches OR cs ations OR migrations -faults ults lts lts OR faults

time

[Software event] [Software event]

[Tool event]

perf – Intel Skylake events

bash ~ \$ perf list pipeline

List of pre-defined events (to be used in -e): pipeline: arith.divider active [Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations] baclears.anv [Counts the total number when the front end is resteered, mainly when the BPU cannot provide a correct prediction] br inst retired.all branches [All (macro) branch instructions retired Spec update: SKL091] br_inst_retired.all_branches_pebs [All (macro) branch instructions retired Spec update: SKL091 (Must be precise)] br inst retired.conditional [Conditional branch instructions retired Spec update: SKL091 (Precise event)] br inst retired.far branch [Counts the number of far branch instructions retired Spec update: SKL091 (Precise event)] br inst retired.near call [Direct and indirect near call instructions retired Spec update: SKL091 (Precise event)] br inst retired.near return [Return instructions retired Spec update: SKL091 (Precise event)] br inst retired.near taken [Taken branch instructions retired Spec update: SKL091 (Precise event)] br inst retired.not taken [Counts all not taken macro branch instructions retired Spec update: SKL091 (Precise event)] br_misp_retired.all_branches [All mispredicted macro branch instructions retired]

• • •

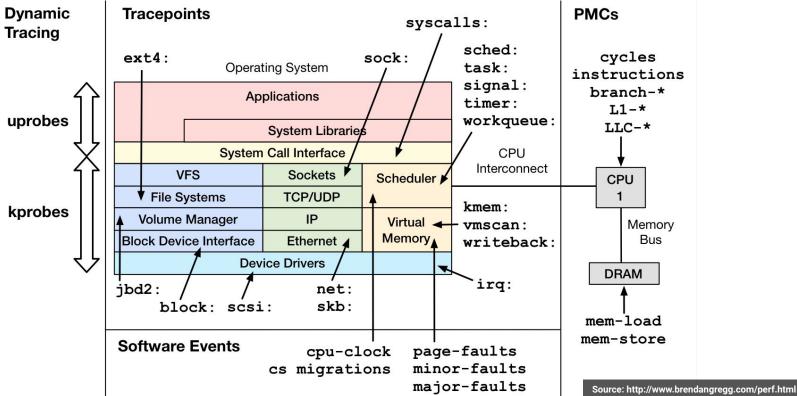
perf – AMD Ryzen events

```
bash ~ $ perf list core
List of pre-defined events (to be used in -e):
core:
  ex_div_busy
       [Div Cycles Busy count]
  ex div count
       [Div Op Count]
  ex ret brn
       [Retired Branch Instructions]
  ex ret brn far
       [Retired Far Control Transfers]
  ex_ret_brn_ind_misp
       [Retired Indirect Branch Instructions Mispredicted]
  ex_ret_brn_misp
       [Retired Branch Instructions Mispredicted]
  ex_ret_brn_resync
       [Retired Branch Resyncs]
  ex ret brn tkn
       [Retired Taken Branch Instructions]
  ex_ret_brn_tkn_misp
       [Retired Taken Branch Instructions Mispredicted]
  ex_ret_cond
       [Retired Conditional Branch Instructions]
  ex_ret_cond_misp
       [Retired Conditional Branch Instructions Mispredicted]
  . . .
```

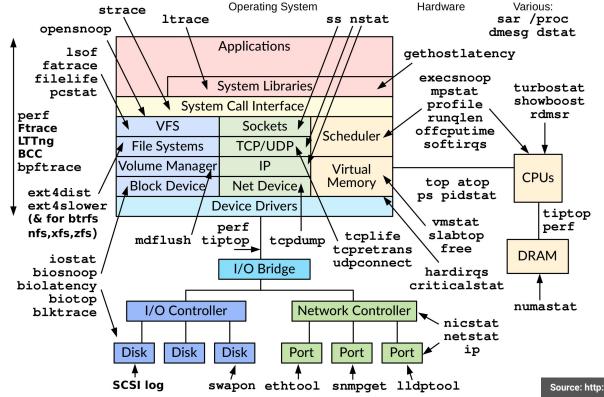
perf – static tracepoint events

bash ~ \$ sudo perf list 'sched:*'

List of pre-defined events (to be used in -e):

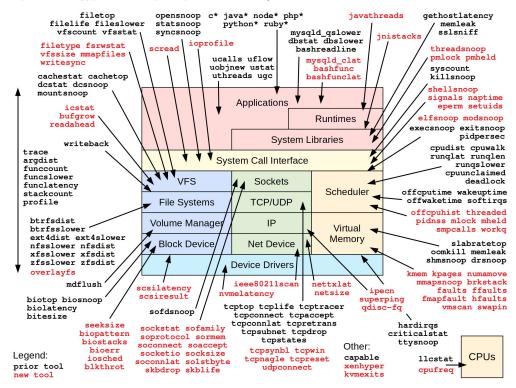

```
sched:sched_kthread_stop
sched:sched_kthread_stop_ret
sched:sched_migrate_task
sched:sched_move_numa
sched:sched_pi_setprio
sched:sched_process_exec
sched:sched_process_exit
sched:sched_process_fork
sched:sched_process_free
sched:sched_process_wait
sched:sched_stat_runtime
sched:sched_stick_numa
sched:sched_swap_numa
sched:sched_switch
sched:sched_wait_task
sched:sched_wake_idle_without_ipi
sched:sched_wakeup
sched:sched_wakeup_new
sched:sched_waking
```

[Tracepoint	event]
[Tracepoint	event]


Map of the Linux Kernel

functionalities layers	human interface	system	processing	memory	storage	networking
-	HI char devices	interfaces core	kernel/ fs/exec.c kernel/signal.c sys_fork	memory access	files & directories	sockets access
USER space interfaces system calls and system files	cdev add	System Call Interface system files linux/syscals.h /proc isyste dev innux/secsh system ops copy_trom_user system ops_ops register_crites code_add eys_loct!	sys_extended sy	sys_brk sys_mmap annum, vm_ops sys_shnctl sys_shnctl sys_shnct sys_shnct sys_shnct sys_mino sys_mino downen py_mino downen sys_mino downen sys_mino downen sys_mino downen sys_map sys_mino downen sys sys sys	аралия ассезя укорон калая укорон укорон укорон укорон калая укорон укорон укорон укорон укорон падата укорон уко	sys_socketcall sys_ormest sys_socket ys_socket ys_stand sys_socket ys_stand sys_socket s
virtual	security Incuteourity h socy oper may open inode, permission security, rode, craste security, cos setimur, ops	Device Model drivers/hase/ kobject bus.regiser bas.bype device_create device_type device_device_type	threads schollow skit are without NIT, KORK quote work work shout withhe size kitread create kernel pread current do ork	virtual memory viralic, init find, virg, prepare virial vi virial virial virial virial	Virtual File System vis_fyre vision vis_grain indeg indeg vis_grain indeg vis	protocol families vet_nt
bridges cross-functional modules	debugging sys_brace log_but register_torote privite handle_syrrq oprofile_start tigdb_breatpost oprofile_init	diver, register divici, diver pobe boad, module modul param kernel, param	synchronization Mock Kerner Mark Strand Mark Strand M	minimup d memory mapping do.mmip.got knew.dohe.aloc vma_link m_staut vm_area_shuct	mark type Page cache base sense de unterseter autoritation page cache base sense de unterseter sense sense sense de unterseter de unterseter de unterseter sense sense de unterseter de	sock_serdpage scok_serdpage k_type e_gos
logical	HI subsystems	init/ system run boot, shutdown power management init/main.c	Scheduler kernel/sched.c task_struct	Iogical memory physically mapped memory	logical file systems	proto protocols udp_prot tcp_prot udp_enormal_tcp_prot udp_enormal_tcp_prot udp_enormal_tcp_prot
functions implementations	video_device musele_tande	start kernel do initicalis mount rest run_init_process kernel power_off hibernate machine_ops	schedule timeout schedule	prd_t prd_t prd_t pte_t	ext4_get_sb ext4_get_sb	ubp_prov top_prov ubp_works target tap works target tap works tap works
device control	abstract devices and HID class drivers driversited at an and ktod b, gas mousedev an stor	generic HW access request region pol driver request mem region pol driver unb	interruption	Page Allocator metaics metai	block devices block gendick block device, dentions in the fair may a source scal, device scal,	Incertidation of the second se
hardware interfaces drivers, registers and interrupts	HI peripherals device drivers we dver yation auff.diver asbd_dv periode eventidavder	device access and bus drivers weakw readw comp readw readw web_hod_ing decise reagance poi, read poi, read	PLOP atome J as	physical memory operations archvidenm of upp for head context too areatreat are too areatreat are out of memory of num physicas	disk controller drivers soil_tot_aloc soil_tot alci,po_dher ac94x_int	network device drivers ustret_prote mation_pei int_one e100_mit_tume e100_mit_tume
electronics	User peripherals keyboard camera mouse graphics card audio	LO mem I/O PCI LO ports ACPI USB controller controller	CPU registers APIC controller 2010 Constantine Shulyupin www.M	memory RAM DMA MMU akeLinux.net/kernet/map	disk controllers scsi sata	network controllers

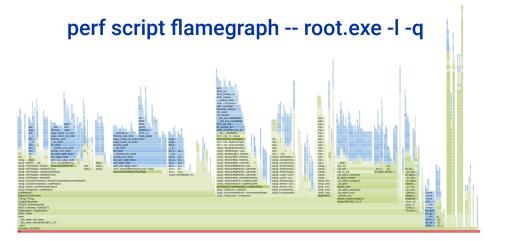
perf – event sources


Linux Observability Tools

Source: http://www.brendangregg.com/perf.html

Linux eBPF-based Observability Tools

New tools developed for the book BPF Performance Tools: Linux System and Application Observability by Brendan Gregg (Addison Wesley, 2019), which also covers **prior BPF tools**



Source: http://www.brendangregg.com/perf.html

61

Flamegraphs

- Visualization tool by Brendan Gregg
 - https://www.brendangregg.com/flamegraphs.html
- Call stacks on the vertical axis
- Number of samples as width
- Easy to identify where time is spent
- Not very good for in-depth analysis
- Built-in support now exists in perf
- Creates browseable HTML file

Avoid broken stack traces and missing symbols

- Compile code with debugging information (-g)
- Add -fno-omit-frame-pointer to compile options to keep frame pointer
- Install system packages with debugging info for the kernel and system libs

When recording data:

- Use --call-graph=fp/dwarf + DWARF debugging information
- Use precise events to avoid skidding (cycles:pp instead of just cycles)
- Adjust sampling rate to avoid large amounts of data and high overhead
- Sample events in a group if computing derived metrics (e.g. instr. per cycle)
- See man perf-list for more information on events and their modifiers

Frame Pointer

Without frame pointer

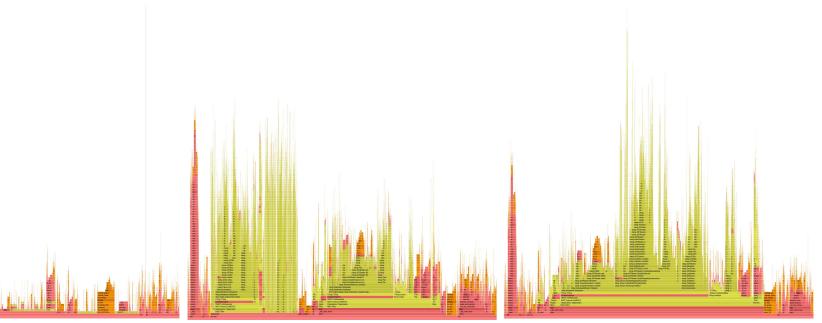
- Saved/restored on each function call
- Lightweight and accurate backtraces
- DWARF backtraces not as accurate
- High overhead for very short functions

Simple square and cube functions

float square(float x)
{
return x * x;
}
float cube(float x)
{
return x * square(x);
}

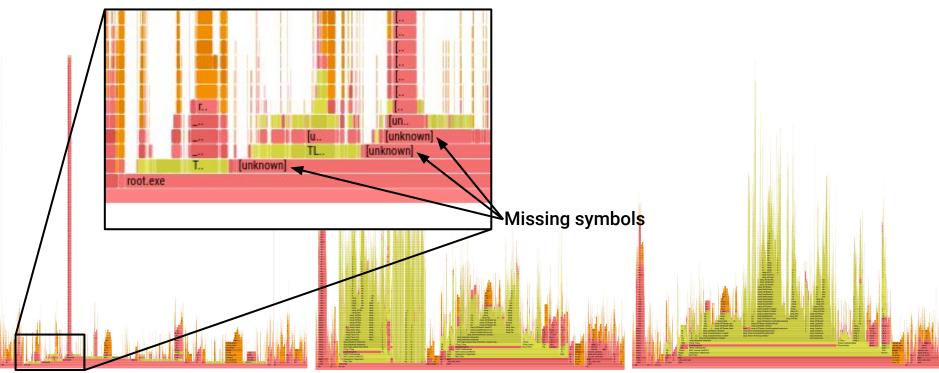
000000	0000000000 <square>:</square>	
0:	c5 fa 59 c0	vmulss %xmm0,%xmm0,%xmm0
4:	c3	ret
5:	66 66 2e 0f 1f 84 00	data16 cs nopw 0x0(%rax,%rax,1)
c:	00 00 00 00	
000000	000000010 <cube>:</cube>	
10:	c5 f8 28 c8	vmovaps %xmm0,%xmm1
14:	e8 00 00 00 00	call 19 <cube+0x9></cube+0x9>

19:

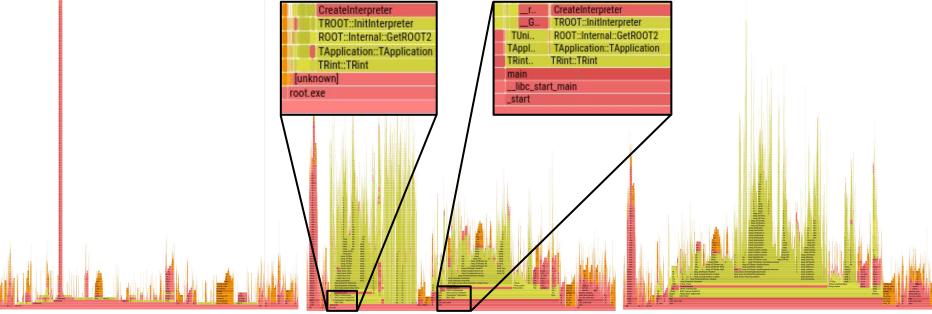

1d:

c3

c5 fa 59 c1 vmulss %xmm1,%xmm0,%xmm0 ret


With frame pointer

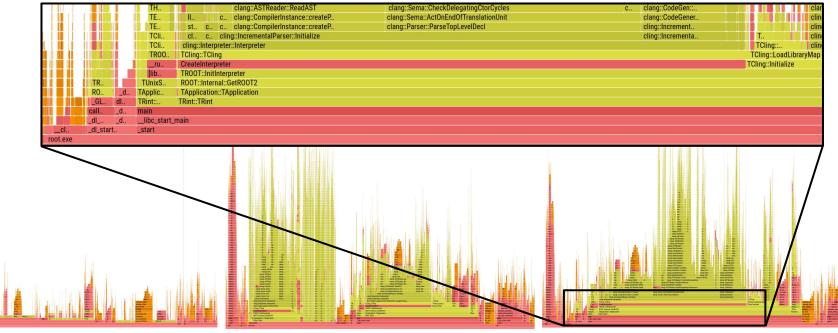
00000000	00000000 <square>:</square>	
0:	c5 fa 59 c0	vmulss %xmm0,%xmm0,%xmm0
4:	c3	ret
5:	66 66 2e 0f 1f 84 00	data16 cs nopw 0x0(%rax,%rax,1)
00000000	0000010 <cube>:</cube>	
10:	55	push %rbp
11:	c5 f8 28 c8	vmovaps %xmm0,%xmm1
15:	48 89 e5	mov %rsp,%rbp
18:	e8 00 00 00 00	call 1d <cube+0xd></cube+0xd>
1d:	5d	pop %rbp
1e:	c5 fa 59 c1	vmulss %xmm1,%xmm0,%xmm0
22:	c3	ret


perf record --call-graph=fp (frame pointer and debugging info)

perf record --call-graph=dwarf (frame pointer not available)

perf record --call-graph=fp (frame pointer and debugging info)

perf record --call-graph=dwarf (frame pointer not available)



Broken stack unwinding

perf record --call-graph=fp (frame pointer and debugging info)

perf record --call-graph=dwarf (frame pointer not available)

Correctly merged stacks

perf record --call-graph=fp (frame pointer and debugging info)

perf record --call-graph=dwarf (frame pointer not available)

perf stat - counting cycles vs instructions vs wall time

measure ROOT startup 20 times and print stats with averages and deviations

\$ perf stat -d -r 20 -- root.exe -l -q >/dev/null

Performance counter stats for 'root.exe -l -q' (20 runs):

119.72 579 13 11260	msec	task-clock context-switches cpu-migrations page-faults	# # # # #	0.442 0.005 0.109 0.094	K/sec	(+- (+-	0.76%) 4.34%) 6.94%) 0.49%)	
493768274 33420383		cycles stalled-cycles-frontend	# #	4.125 6.77%	GHz frontend cycles idle	(+- (+-	0.75%) 1.56%)	(66.72%) (75.75%)
177325752 532310517		stalled-cycles-backend instructions	# # #	1.08	backend cycles idle insn per cycle stalled cycles per insn	(+-	1.87%) 0.35%)	(79.76%) (82.16%)
107905661 2282743 246528817		branches branch-misses L1-dcache-loads	# # #	901.351 2.12% 2059.290	of all branches	(+-	0.26%) 0.77%) 1.12%)	(82.38%) (78.52%) (71.14%)
<pre>5628008 <not supported=""> <not supported=""></not></not></pre>		L1-dcache-load-misses LLC-loads LLC-load-misses	#		of all L1-dcache hits	(+-	1.30%)	(63.57%)

0.2709 +- 0.0205 seconds time elapsed (+- 7.58%)

same measurements again, to show difference in noise for wall time, cycles, instructions

\$ perf stat -d -r 20 -- root.exe -l -q >/dev/null

Performance counter stats for 'root.exe -l -q' (20 runs):

	118.38	msec	task-clock	#	0.565	CPUs utilized	(+	- 0.73%)	
	433		context-switches	#	0.004	M/sec	(+	- 12.62%)	
	12		cpu-migrations	#	0.103	K/sec	(+	- 5.57%)	
	11267		page-faults	#	0.095	M/sec	(+	- 0.50%)	
	488189557		cycles	#	4.124	GHz	(+	- 0.73%)	(60.32%)
	32509432		stalled-cycles-frontend	#	6.66%	frontend cycles idle	(+	- 1.70%)	(78.43%)
	175081210		stalled-cycles-backend	#		backend cycles idle	(+	- 1.45%)	(83.54%)
	533538019		instructions	#	1.09	insn per cycle			
				#	0.33	stalled cycles per insn	(+	- 0.35%)	(84.97%)
	108436560		branches	#	915.999	M/sec	(+	- 0.29%)	(84.34%)
	2279445		branch-misses	#	2.10%	of all branches	(+	- 1.05%)	(81.41%)
	244414949		L1-dcache-loads	#	2064.653	M/sec	(+	- 0.94%)	(71.80%)
	5720566		L1-dcache-load-misses	#	2.34%	of all L1-dcache hits	(+	- 1.35%)	(55.19%)
<not< td=""><td>supported></td><td></td><td>LLC-loads</td><td></td><td></td><td></td><td></td><td></td><td></td></not<>	supported>		LLC-loads						
<not< td=""><td>supported></td><td></td><td>LLC-load-misses</td><td></td><td></td><td></td><td></td><td></td><td></td></not<>	supported>		LLC-load-misses						

0.2093 +- 0.0220 seconds time elapsed (+- 10.53%)

(ratio of wall clock durations)
\$ bc -1 <<< "0.2709 / 0.2093"
1.29431438127090301003</pre>

(ratio of cycles measurements)
\$ bc -l <<< "493768274 / 488189557"
1.01142735832835522944</pre>

(ratio of instructions measurements)
\$ bc -1 <<< "532310517 / 533538019"
0.99769931671917086006</pre>

Intel's Last Branch Record

- Useful when frame pointers are not available
- Use with perf record -b or perf record --call-graph=lbr
- Hardware registers on Intel CPUs that allow sampling branches
- Registers hold a ring buffer of the most recent branch decisions
- Useful to analyze branching behavior (branching probabilities, mispredictions)
- Available on AMD Zen4 or later CPUs
 - On older CPUs, some events provide similar functionality
- Articles describing LBR on LWN.net
 - An introduction to last branch records [LWN.net]
 - Advanced usage of last branch records [LWN.net]

Precise CPU Events for Sampling

- PMU counts events on a per-core basis
 - Sample is taken when counter reaches threshold
 - Fixed frequency sampling achieved by predicting/adjusting the threshold
 - Instruction-level parallelism and speculative execution introduce noise and skidding
 - Only one base pointer per thread
 - Many instructions in flight on the core at the same time
 - Shared resources mean mixed counting when using hyperthreading
- Intel Processor Event-Based Sampling (PEBS)
 - Instruction pointer (and auxiliary information) stored in a designated area
 - No interrupts during sampling, reduced or no skidding
- AMD Instruction-Based Sampling (IBS)
 - Tracks instructions rather than events, marks every Nth instruction to be tracked
 - Two forms: IBS Fetch sampling (front-end) and IBS Op sampling (back-end)

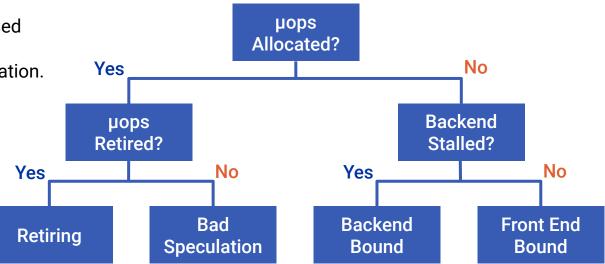
Instructions vs Micro-operations (µops)

Instructions from a CISC instruction set are usually broken into one or more RISC-like operations in hardware. For example, an addition of two values from memory may be broken into memory loads into registers, the addition itself, then memory stores. These operations are usually called **micro-ops** and abbreviated as **µops**. Some PMUs have hardware events that allow counting separately µops issued, executed, and retired.

While instructions are usually split into simpler µops, the µops can instead be fused together when instructions are decoded in the front-end of the processor. **Microfusion** is when µops from the same machine instruction are fused together, and **macrofusion** is when µops from distinct instructions are fused.

Instructions Retired vs Executed

Instructions executed refers to any instructions that have been processed by the CPU. For example, a multiplication of two numbers that has loaded the inputs, calculated the results and stored it somewhere. This metric includes speculatively executed instructions on branches that may have been discarded later on.


Instructions retired refers to executed instructions that have actually contributed to the main line of execution of a program, that is, that has not been discarded as speculatively executed.

Instructions per cycle (IPC) is a measure of the instruction-level parallelism, or how many instructions were retired on average in each CPU cycle. CPI (cycles per instruction) is also common. Typically up to 4 instructions per cycle can be executed on AMD/Intel CPUs.

Top-Down Microarchitecture Analysis

The Top-Down Characterization is a hierarchical organization of event-based metrics that identifies the dominant performance bottlenecks in an application.

Its aim is to show, on average, how well the CPU's pipelines are being utilized while running an application.

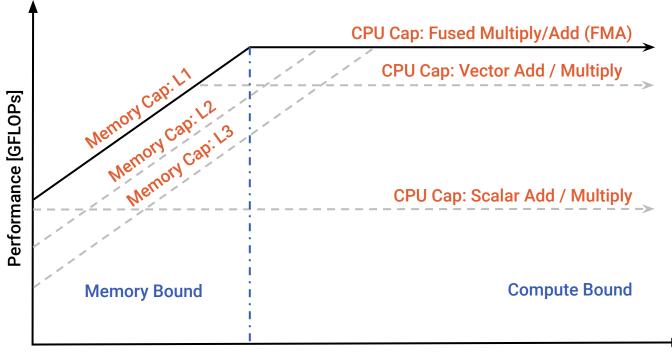
Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture," 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459.

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

Top-Down Microarchitecture Analysis

- Retiring
 - Useful Work
- Bad Speculation
 - Branching Issues
- Front End Bound
 - Instruction Fetch Issues
- Back End Bound
 - Core Bound
 - Port Utilization
 - Execution Latency
 - Memory Bound
 - Cache misses
 - Memory Bandwidth

CPU Pipeline Slots																
		Not	Stalled			Stalled										
Retiring Bad Speculation				Front End Bound			Backend Bound									
Base	9	Microcode Sequencer	Branch Misprediction	Machine Clears	Fetch Latency		Fetch Latency Fetch Bandwidth		Core Bound				Memory Bound			
Floating Point Arithmetics	Other				iCache Miss	Branch Resteers	iTLB Miss	Fetch Source 1	Fetch Source 2	Execution Ports Utilization	Divider	L1 Bound	L2 Bound	L3 Bound	Store Bound	DRAM Bound
Scalar Vector										0 Ports 1 or 2 Ports 3+ Dorts						Latency Bandwidth


Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture," 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459

Expected Ranges of Pipeline Slots for Each Category

Category	Client/Desktop Application	Server/Database Distributed Application	High Performance Computing (HPC) Application
Retiring	20 - 50%	10 - 30%	30 - 70%
Back-End Bound	20 - 40%	20 - 60%	20 - 40%
Front-End Bound	5 - 10%	10 - 25%	5 – 10%
Bad Speculation	5 - 10%	5 - 10%	1 – 5%

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

Roofline Performance Model

Arithmetic Intensity [FLOPs/Byte]

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

perf - recording and reporting data

```
bash ~ $ perf record -q -F max -- root.exe -l -q
info: Using a maximum frequency rate of 32500 Hz
[ perf record: Woken up 6 times to write data ]
[ perf record: Captured and wrote 2.003 MB perf.data (7035 samples) ]
bash ~ $ perf report -q --stdio -c root.exe | head -n 20
# comm: root.exe
    82.13%
            0.00% root.exe
                                              [.] _start
            ---_start
               __libc_start_main@@GLIBC_2.34
               __libc_start_call_main
               main
                |--79.94%--TRint::TRint
                           |--76.22%--TApplication::TApplication
                                      --76.14%--R00T::Internal::GetR00T2
                                                TROOT::InitInterpreter
                                                 |--69.43%--CreateInterpreter
                                                            --69.41%--TCling::TCling
                                                                       |--32.52%--RegisterCxxModules
```

perf – flat profile report

bash ~ \$ perf report -qstdiocall-graph=none -c root.exe head -n 25								
<pre># comm: root.</pre>	exe							
82.13%	0.01%	root.exe	[.] main					
82.13%	0.00%	libc.so.6	[.]libc_start_call_main					
82.13%	0.00%	libc.so.6	[.]libc_start_main@@GLIBC_2.34					
82.13%	0.00%	root.exe	[.] _start					
79.94%	0.00%	libRint.so.6.30.06	[.] TRint::TRint					
76.22%	0.00%	libCore.so.6.30.06	[.] TApplication::TApplication					
76.14%	0.00%	libCore.so.6.30.06	[.] ROOT::Internal::GetROOT2					
76.14%	0.00%	libCore.so.6.30.06	[.] TROOT::InitInterpreter					
69.43%	0.00%	libCling.so.6.30.06	[.] CreateInterpreter					
69.41%	0.00%	libCling.so.6.30.06	[.] TCling::TCling					
38.76%	0.00%	libCling.so.6.30.06	<pre>[.] clang::CompilerInstance::loadModule</pre>					
38.52%	0.00%	libCling.so.6.30.06	[.] clang::CompilerInstance::findOrCompileModuleAndReadAST					
38.32%	0.21%	libCling.so.6.30.06	[.] clang::ASTReader::ReadAST					
32.52%	0.00%	libCling.so.6.30.06	[.] RegisterCxxModules					
32.26%	0.00%	libCling.so.6.30.06	[.] LoadModule					
31.87%	0.00%	libCling.so.6.30.06	<pre>[.] cling::Interpreter::loadModule</pre>					
31.75%	0.01%	libCling.so.6.30.06	[.] clang::Sema::ActOnModuleImport					
26.63%	0.00%	libCling.so.6.30.06	<pre>[.] cling::Interpreter::Interpreter</pre>					
22.80%	0.28%	[kernel.kallsyms]	[k] entry_SYSCALL_64					
22.51%	0.29%	[kernel.kallsyms]	[k] asm_exc_page_fault					
22.14%	0.36%	[kernel.kallsyms]	[k] do_syscall_64					
21.68%	0.31%	[kernel.kallsyms]	[k] exc_page_fault					
19.17%	0.38%	[kernel.kallsyms]	[k] do_user_addr_fault					
19.08%	0.00%	libCling.so.6.30.06	<pre>[.] cling::IncrementalParser::ParseInternal</pre>					

perf – flat profile report by self-time

bash ~ \$ pe	erf report -qstdio -	-call-	graph=noneno-childrenpercent-limit 0.75 -c root.exe
# comm: roo	ot.exe		
5.85%	libz.so.1.3.1	[.]	inflate_fast
4.11%	libCling.so.6.30.06	[.]	llvm::SimpleBitstreamCursor::Read
2.63%	[kernel.kallsyms]	[k]	unmap_page_range
2.27%	libCling.so.6.30.06	[.]	llvm::BitstreamCursor::readRecord
1.89%	[kernel.kallsyms]	[k]	mod_lruvec_state
	[kernel.kallsyms]		srso_untrain_ret
1.77%	[kernel.kallsyms]	[k]	srso_return_thunk
	[kernel.kallsyms]		trace_hardirqs_off
	libz.so.1.3.1		adler32_z
	[kernel.kallsyms]		lruvec_stat_mod_folio
1.31%	[kernel.kallsyms]	[k]	clear_page_rep
1.31%	ld-linux-x86-64.so.2	[.]	_dl_lookup_symbol_x
	libCling.so.6.30.06		llvm::StringMapImpl::LookupBucketFor
	[kernel.kallsyms]		preempt_count_add
	[kernel.kallsyms]		mod_memcg_lruvec_state
	[kernel.kallsyms]		link_path_walk
0.94%	[kernel.kallsyms]		preempt_count_sub
	libz.so.1.3.1		inflate_table
0.85%	[kernel.kallsyms]	[k]	percpu_counter_add_batch
0.81%	libc.so.6		_int_malloc
	libz.so.1.3.1		inflate
0.76%	ld-linux-x86-64.so.2	[.]	do_lookup_x

perf – hierarchical profile report

2.93%	root.exe
47.60%	[kernel.kallsyms]
2.63%	[k] unmap_page_range
1.89%	[k]mod_lruvec_state
1.78%	[k] srso_untrain_ret
1.77%	[k] srso_return_thunk
1.53%	[k] trace_hardirqs_off
1.32%	[k]lruvec_stat_mod_folio
1.31%	[k] clear_page_rep
1.10%	[k] preempt_count_add
1.04%	[k]mod_memcg_lruvec_state
26.75%	libCling.so.6.30.06
4.11%	<pre>[.] llvm::SimpleBitstreamCursor::Read</pre>
2.27%	<pre>[.] llvm::BitstreamCursor::readRecord</pre>
1.26%	<pre>[.] llvm::StringMapImpl::LookupBucketFor</pre>
9.10%	libz.so.1.3.1
5.85%	[.] inflate_fast
1.43%	[.] adler32_z
4.56%	libc.so.6
	no entry >= 1.00%
2.96%	ld-linux-x86-64.so.2
1.31%	[.] _dl_lookup_symbol_x
1.12%	libCore.so.6.30.06
	no entry >= 1.00%

perf – pre-packaged metrics (Intel CPU)

bash ~ \$ perf list metrics Metrics: **Backend Bound** [This category represents fraction of slots where no uops are delivered due to a lack of required resources for accepting new uops in the Backend] Bad_Speculation [This category represents fraction of slots wasted due to incorrect speculations] BpTB [Branch instructions per taken branch] CLKS. [Per-Logical Processor actual clocks when the Logical Processor is active] CPT [Cycles Per Instruction (per Logical Processor)] CPU_Utilization [Average CPU Utilization] CoreTPC [Instructions Per Cycle (per physical core)] Frontend Bound [This category represents fraction of slots where the processor's Frontend undersupplies its Backend] TIP [Instruction-Level-Parallelism (average number of uops executed when there is at least 1 uop executed)] TPC [Instructions Per Cycle (per Logical Processor)] Instructions [Total number of retired Instructions] IpB [Instructions per Branch (lower number means higher occurance rate)] IpCall [Instruction per (near) call (lower number means higher occurance rate)] IpL

```
[Instructions per Load (lower number means higher occurance rate)]
```

perf – pre-packaged metrics (Intel CPU)

bash ~ \$ perf stat -M Frontend_Bound,Backend_Bound,Bad_Speculation,Retiring -- root -l -q

Performance counter stats for 'root -l -q':

535853293	cycles		
	#	0.32 Frontend_Bound	(50.07%)
676507752	idq_uops_not_delivered.core		(50.07%)
803157447	uops_issued.any #	0.10 Bad_Speculation	
	#	0.28 Backend_Bound	(49.93%)
540449552	cycles		
	#	0.31 Retiring	(49.93%)
676523326	idq_uops_not_delivered.core		(49.93%)
19393734	int_misc.recovery_cycles		(49.93%)
667220596	uops_retired.retire_slots		(49.93%)

0.243072802 seconds time elapsed

0.158384000 seconds user 0.088028000 seconds sys

bash ~ \$

Example – using perf + awk to get percent retiring

bash df102_NanoAODDimuonAnalysis \$ perf record -F max -e '{cpu_clk_unhalted.thread,uops_retired.retire_slots}' -- df102_NanoAODD imuonAnalysis 8 Run2012B_DoubleMuParked.root Run2012C_DoubleMuParked.root info: Using a maximum frequency rate of 8,000 Hz Couldn't synthesize cgroup events. [perf record: Woken up 57 times to write data] perf record: Captured and wrote 15.548 MB perf.data (406080 samples) bash df102_NanoAODDimuonAnalysis \$ perf report -q --stdio --group -F period, symbol -w 0,90 | head 104728157092 9748014622 [.] ROOT::Detail::RDF::RFilter<bool (*)(ROOT::VecOps::RVec<int> const&), ROOT::Detail::RDF 94152141228 10108015162 [.] ROOT::Detail::RDF::RFilter<bool (*)(unsigned int), ROOT::Detail::RDF::RLoopManager>::C 79494119241 3454005181 [.] TTree::LoadTree 51302076953 92238138357 [.] inflate_fast 35698053547 14764022146 [.] TBranch::GetEntry 24610036915 2248003372 [.] TLeafI::GetMaximum [.] tbb::internal::custom_scheduler<tbb::internal::IntelSchedulerTraits>::receive_or_steal 14942022413 13312019968 8372012558 2912004368 [k] sysret_check 7632011448 1702002553 [.] ROOT::Detail::RDF::RCustomColumn<float (*)(ROOT::VecOps::RVec<float> const&, ROOT::Vec [.] ROOT::Internal::RDF::RColumnValue<ROOT::VecOps::RVec<float> >::Get<ROOT::VecOps::RVec< 7476011214 6442009663

bash df102_NanoAODDimuonAnalysis \$

Example – using perf + awk to get percent retiring

bash df102_NanoAODDimuonAnalysis \$ echo "Retiring Symbol"; perf report -q -F period, symbol --percent-limit 1 | awk '/^\$/{next} { symbol = gensub(".*\\[.\\] ","","g"); slots = 4*\$1; retiring = 100*\$2/slots; printf("%7.2f%% %s\n", retiring, symbol) | "sort -nr"; }' | cut -b -128 Retiring Symbol 70.18% adler32 z 44.95% inflate fast 37.48% ROOT::Internal::TTreeReaderValueBase::ProxyReadTemplate<&ROOT::Detail::TBranchProxy::ReadNoParentNoBranchCountNoCollec 27.16% __expm1f 22.27% tbb::internal::custom scheduler<tbb::internal::IntelSchedulerTraits>::receive or steal task 21.54% ROOT::Internal::RDF::RColumnValue<ROOT::VecOps::RVec<float> >::Get<ROOT::VecOps::RVec<float>, 0> 10.36% ROOT::Detail::RDF::RLoopManager::RunAndCheckFilters 10.34% TBranch::GetEntry 8.70% sysret check 5.58% ROOT::Detail::RDF::RCustomColumn<float (*)(ROOT::VecOps::RVec<float> const&, ROOT::VecOps::RVec<float> const&, ROOT::V 2.68% ROOT::Detail::RDF::RFilter<bool (*)(unsigned int), ROOT::Detail::RDF::RLoopManager>::CheckFilters 2.33% ROOT::Detail::RDF::RFilter<bool (*)(ROOT::VecOps::RVec<int> const&). ROOT::Detail::RDF::RFilter<bool (*)(unsigned int) 2.28% TLeafI::GetMaximum 1.09% TTree::LoadTree bash df102_NanoAODDimuonAnalysis \$

Matrix Multiplication

```
#include <stdio.h>
#include <stdlib.h>
// This version has minor modifications applied, the
// original version is linked at the bottom of the slide
#define SIZE 1024
#define LENGTH 32
int **mkmatrix(int rows, int cols);
void zeromatrix(int rows, int cols, int **m);
void freematrix(int rows, int **m);
int **mmult(int rows, int cols,
             int **m1, int **m2, int **m3) {
    int i, j, k;
    for (i=0; i<rows; i++) {</pre>
         for (j=0; j<cols; j++) {</pre>
             m3[i][j] = 0;
             for (k=0; k<cols; k++)</pre>
                  m3[i][j] += m1[i][k] * m2[k][j];
     return(m3);
    https://aithub.com/llvm-mirror/test-suite/blob/master/SinaleSource/Benchmarks/Shootout/matrix.c
```

```
int main(int argc, char *argv[]) {
    int i, n = ((argc == 2) ? atoi(argv[1]) : LENGTH);
    int **m1 = mkmatrix(SIZE, SIZE);
    int **m2 = mkmatrix(SIZE, SIZE);
    int **mm = mkmatrix(SIZE, SIZE);
    zeromatrix(SIZE, SIZE, mm);
    for (i=0; i<n; i++)</pre>
      mm = mmult(SIZE, SIZE, m1, m2, mm);
    printf("%d %d %d %d\n",
           mm[0][0], mm[2][3], mm[3][2], mm[4][4]);
    freematrix(SIZE, m1);
    freematrix(SIZE, m2);
    freematrix(SIZE, mm);
    return(0);
```

Simple Top-Down Analysis with perf

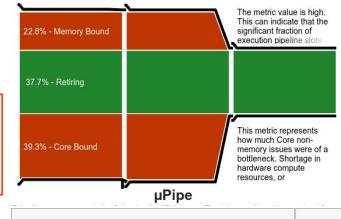
bash ~ \$ perf stat -M Retiring,Bad_Speculation,Frontend_Bound,Backend_Bound a.out
1431831040 368052224 -168294912 -692581888

Performance counter stats for 'a.out':

2686289661	IDQ_UOPS_NOT_DELIVERED.CO	RE #	0.00 Frontend_Bound	
		#	0.55 Backend_Bound	(50.01%)
200034632	INT_MISC.RECOVERY_CYCLES			(50.01%)
135846388590	CPU_CLK_UNHALTED.THREAD			(50.01%)
241410802284	UOPS_ISSUED.ANY			(50.01%)
30384549081 ns	duration_time			
199807164	INT_MISC.RECOVERY_CYCLES	#	0.00 Bad_Speculation	(49.99%)
135871753474	CPU_CLK_UNHALTED.THREAD	#	0.44 Retiring	(49.99%)
240760535477	UOPS_RETIRED.RETIRE_SLOTS			(49.99%)
241407738202	UOPS_ISSUED.ANY			(49.99%)
30384549081 ns	duration_time			

30.384549081 seconds time elapsed

30.356367000 seconds user 0.009971000 seconds sys


bash ~ \$

Annotated Source

	: 30K of event 'cycles', 1000 Hz, Event count (approx.): 135123213483 nome/amadio/a.out [Percent: local period]
0.00	58: mov (%r12,%r9,1),%rdi
	m3[i][j] += m1[i][k] * m2[k][j];
0.00	mov 0x0(%r13,%r9,1),%r8
	xor %edx,%edx
	nop
	m3[i][j] = 0;
0.02	68: movl \$0x0,(%rdi,%rdx,1)
0.00	xor %eax,%eax
0.01	xor %esi,%esi
and the second	m3[i][j] += m1[i][k] * m2[k][j];
5.37	73: mov 0x0(%rbp,%rax,8),%rcx
35.56	mov (%rcx, %rdx, 1), %ecx Load m1[i][k] and m2[k][j] into memory and multiply
20.16	imul (%r8,%rax,4),%ecx
and the second	for $(k = 0; k < cols; k++)$ Add result into m3[i][j]
5.62	add Ş0XI, %rax
	m3[i][j] += m1[i][k] * m2[k][j];
9.61	add %ecx,%esi 🔶
17.01	mov %esi,(%rdi,%rdx,1)
	for (k = 0; k < cols; k++) Comp \$9x490 %rox Loading m2 matrix elements in column major order is causing backend stalls.
0.01	
6.63	t jne 73
Press 'h	n' for help on key bindings

Top-Down Analysis with Intel VTune Profiler

Elapsed Time [©] : 30.547s	
Clockticks:	134,784,000,000
Instructions Retired:	275,184,000,000
CPI Rate :	0.490
③ Retiring ^③ :	37.7%
Front-End Bound :	0.3%
③ Bad Speculation [®] :	0.0%
	62.1% 🖻
	22.8%
③ L1 Bound ^③ :	0.0%
L2 Bound :	2.6%
O L3 Bound [®] :	12.2%
Contested Accesses :	0.0%
Data Sharing :	0.0%
L3 Latency :	100.0% 🎮
SQ Full :	0.0%
O DRAM Bound [®] :	0.0%
Store Bound [®] :	0.0%
Ore Bound [®] :	39.3% 🏼
Divider :	0.0%
O Port Utilization [®] :	24.8% 🛤
O Cycles of 0 Ports Utilized O:	6.2%
Cycles of 1 Port Utilized :	6.9%
Cycles of 2 Ports Utilized :	10.0% 🏲
O Cycles of 3+ Ports Utilized [®] :	20.0%
Vector Capacity Usage (FPU) @	0.0%
Average CPU Frequency :	4.4 GHz
Total Thread Count:	2
Paused Time :	0s

As shown by the red arrows, the loop is being performed in column major order, which in C/C++ is not optimal, because the memory layout is row major. Therefore, we need to perform a loop inversion for the indices j and k to improve performance.

				Locators						
				>	30	30	Back-End Bound			40
Source	👍 Clockticks	Instructions Retired	CPI Rate		Front- End Bound	Bad	Memory Bound «			[
				Retiring		Speculation	L1 Bound	L2 Bound	L3 Bound 《 L3 Latency	Core Bound
<pre>int **mmult(int rows, int cols, int **m1, int **m2, int **m3) {</pre>										
int i, j, k;										
for $(i = 0; i < rows; i++)$ {										
for $(j = 0; j < cols; j++)$ {	0.0%	0.0%	0.000	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0
m3[i][j] = 0;	0.0%	0.0%	0.000	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0
for $(k = 0; k < cols; k++)$	35.8%	42.9%	0.414	16.1%	0.0%	0.0%	0.0%	0.0%	0.0%	13.5
<pre>m [i][j] += m1[i][k] * m2[k][j];</pre>	64.1%	57.0%	0.558	22.1%	0.0%	0.6%	0.0%	2.5%	100.0%	24.6
E Contraction of the second se										
return(m3);										
1										

Loop inversion solves the problem

bash ~ \$ perf stat -M Retiring,Bad_Speculation,Frontend_Bound,Backend_Bound a.out
1431831040 368052224 -168294912 -692581888

Performance counter stats for 'a.out':

297649292	IDQ_UOPS_NOT_DELIVERED.COF	RE #	0.00 Frontend_Bound	
		#	0.03 Backend_Bound	(50.00%)
212555840	INT_MISC.RECOVERY_CYCLES			(50.00%)
71499685017	CPU_CLK_UNHALTED.THREAD			(50.00%)
276063180566	UOPS_ISSUED.ANY			(50.00%)
16081241308 ns	duration_time			
212615678	INT_MISC.RECOVERY_CYCLES	#	0.01 Bad_Speculation	(50.00%)
71533499469	CPU_CLK_UNHALTED.THREAD	#	0.96 Retiring	(50.00%)
275204536376	UOPS_RETIRED.RETIRE_SLOTS			(50.00%)
276178541892	UOPS_ISSUED.ANY			(50.00%)
16081241308 ns	duration_time			

16.081241308 seconds time elapsed

16.061082000 seconds user 0.009992000 seconds sys Now we are no longer bound by the backend. The speedup obtained was ≈2x with this change. Can we improve this result? We can parallelize the code with OpenMP, for example.

bash ~ \$

Parallel code with OpenMP gains more performance

bash ~ \$ perf stat -M Retiring,Bad_Speculation,Frontend_Bound,Backend_Bound env OMP_NUM_THREADS=8 a.out
1431831040 368052224 -168294912 -692581888

Performance counter stats for 'env OMP_NUM_THREADS=8 a.out':

1164303702	IDQ_UOPS_NOT_DELIVERED.COR	E #	0.00 Frontend_Bound	
		#	0.03 Backend_Bound	(49.99%)
204914876	INT_MISC.RECOVERY_CYCLES			(49.99%)
71650959743	CPU_CLK_UNHALTED.THREAD			(49.99%)
275645117900	UOPS_ISSUED.ANY			(49.99%)
2277867268 ns	duration_time			
205160954	INT_MISC.RECOVERY_CYCLES	#	0.01 Bad_Speculation	(50.07%)
71630170542	CPU_CLK_UNHALTED.THREAD	#	0.96 Retiring	(50.07%)
275250371320	UOPS_RETIRED.RETIRE_SLOTS			(50.07%)
276156990337	UOPS_ISSUED.ANY			(50.07%)
2277867268 ns	duration_time			

2.277867268 seconds time elapsed

18.073005000 seconds user 0.009998000 seconds sys The percentage of time spent retiring is too high. This is also indicative of a problem. Let's look again at the annotated source.

bash ~ \$

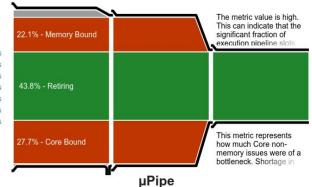
Annotated Source with perf annotate

		'cycles', 1000 Hz, Event count (approx.): 142392966330 e/amadio/a.out [Percent: local period]
Percent		%rax,%rcx 0; k < cols; k++)
	lea nop	(%rsi,%rbp,1),%r11
		0; j < cols; j++) += m1[i][k] * m2[k][j];
0.18	b0: mov	(%r10),%rdi
	xor	%eax,%eax
	nop	
24.57	b8: mov	(%rsi),%edx
11.31	imul	(%rdi, %rax, 4), %edx The loop is still using scalar instructions.
63.80	add	%edx, (%rcx, %rax, 4) We can further improve performance with vectorization.
	for (j =	0; j < cols; j++)
	mov	%rax,%rdx
	add	\$0x1,%rax
	cmp	%rdx,%r14
	† jne	b8
	for (k =	0; k < cols; k++)
0.09	add	\$0x4,%rsi
	add	\$0x8,%r10
	cmp	%rsi,%r11
Press 'h	n' for help on	key bindings

Vectorization significantly improves performance

```
bash ~ $ # Baseline
bash ~ $ gcc -w -02 -g matrix.c && time a.out # Using -w to avoid warning about unused pragma
1431831040 368052224 -168294912 -692581888
16.02
bash ~ $ # Parallel code with OpenMP
bash ~ $ gcc -Wall -fopenmp -O2 -g matrix.c && time a.out
1431831040 368052224 -168294912 -692581888
2.26
bash ~ $ # Parallel code with OpenMP and vectorization using AVX2
bash ~ $ gcc -Wall -fopenmp -02 -ftree-vectorize -mavx2 -g matrix.c && time a.out
1431831040 368052224 -168294912 -692581888
0.54
bash ~ $
                            We've improved performance from ~30s down to 0.54s, not bad!
                             That's a speedup of about 56.3x.
```

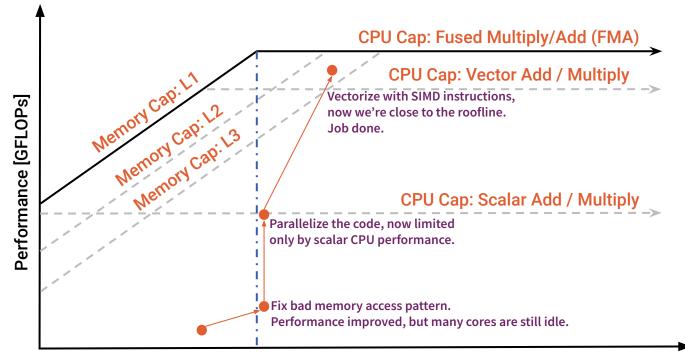
Comparison between initial and final versions


```
bash ~ $ diff -u matrix.orig.c matrix.c
--- matrix.orig.c
                       2022-08-15 15:12:15.457813585 +0200
               2022-08-15 15:50:32.247841744 +0200
+++ matrix.c
@@ -28,14 +28,15 @@
    free(m);
-int **mmult(int rows, int cols, int **m1, int **m2, int **m3) {
+int **mmult(int rows, int cols, int ** restrict m1, int ** restrict m2, int ** restrict m3) {
     int i, j, k;
+#pragma omp parallel for
     for (i = 0; i < rows; i++) {
        for (j = 0; j < cols; j++) {
         for (j = 0; j < cols; j++)
             m3[i][i] = 0:
            for (k = 0; k < cols; k++)
         for (k = 0; k < cols; k++)
             for (j = 0; j < cols; j++)
                 m3[i][j] += m1[i][k] * m2[k][j]:
     return(m3);
bash ~ $
```

Final performance summary in VTune (10x runtime)

Elapsed Time[®]: 5.700s

	apood mino remove	
	Clockticks:	33
	Instructions Retired:	26
	CPI Rate :	
	MUX Reliability :	
9	Retiring :	
	S Light Operations :	
	③ Heavy Operations ②:	
Ð	Front-End Bound :	
Ð	Bad Speculation :	
9	Back-End Bound :	
	S L1 Bound [™] :	
	OTLB Overhead O:	
	Loads Blocked by Store Forwarding :	
	Lock Latency ⁽²⁾ :	
	Split Loads :	
	4K Aliasing ⁽²⁾ :	
	FB Full :	
	L2 Bound ⁽²⁾ :	
	③ L3 Bound ^③ :	
	③ DRAM Bound ^① :	
	Store Bound [®] :	
	⊙ Core Bound ^③ :	
	Divider :	
	O Port Utilization ⁽¹⁾ :	
	Ocycles of 0 Ports Utilized :	
	Serializing Operations :	
	Mixing Vectors :	
	Cycles of 1 Port Utilized :	
	Cycles of 2 Ports Utilized .	
	Occupies of 3+ Ports Utilized [®] :	
	Vector Capacity Usage (FPU) :	
	Average CPU Frequency :	
	Total Thread Count:	
	Paused Time :	


0.449.056.717 57,867,099,936 1.234 0.780 43.8% ► of Pipeline Slots 33.7% of Pipeline Slots 10.0% of Pipeline Slots 4.7% of Pipeline Slots of Pipeline Slots 1.8% 49.8% ► of Pipeline Slots 22.1% of Pipeline Slots 13.0% ► of Clockticks 100.0% Clockticks 0.0% of Clockticks 0.0% of Clockticks 5.3% of Clockticks 0.9% of Clockticks 0.1% ► of Clockticks 5.8% ► of Clockticks 6.6% ₱ of Clockticks 0.1% of Clockticks 0.1% of Clockticks 27.7% ▶ of Pipeline Slots 0.0% of Clockticks 32.0% ► of Clockticks 25.8% of Clockticks 5.2% of Clockticks 100.0% ► of Clockticks 12.6% ► of Clockticks 14.3% of Clockticks 47.7% of Clockticks 6.2% 3.7 GHz N/A* 0s

This diagram represents inefficiencies in CPU usage. Treat it as a pipe with an output flow equal to the "pipe efficiency" ratio: (Actual Instructions Retired)/(Maximum Possible Instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe shape gets more narrow.

Category	Client/Desktop Application	Server/Database Distributed Application	High Performance Computing (HPC) Application
Retiring	20 - 50%	10 - 30%	30 - 70%
Back-End Bound	20 - 40%	20 - 60%	20 - 40%
Front-End Bound	5 - 10%	10 - 25%	5 - 10%
Bad Speculation	5 - 10%	5 - 10%	1 - 5%

Matrix Multiplication Roofline Performance

Arithmetic Intensity [FLOPs/Byte]

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

Low Level Performance Optimization Guidelines

Top-Down Microarchitecture Analysis

- Bad Speculation
 - Unpredictable branches
 - Virtual Inheritance
- Front End Bound
 - $\circ~$ Code Layout and Bloat
 - Loops with large body
- Core Bound
 - Loops with short body
 - Arithmetics/Data Dependencies
 - Divisions and Special Functions
- Memory Bound
 - Cache Misses
 - True and False Sharing
 - Bad Memory Access Patterns

				C	PU	Pi	pel	ine	e Sl	ots						
		Not	Stalled							Stall	ed					
Ret	tiriı	ng	Ba Specu		F		nt our		b	Ва	cken	d E	δοι	JN	d	
Base	e	Microcode Sequencer	Branch Misprediction	Machine Clears		Fetch Latency		Fetch	Bandwidth	Core Boun				/len Βοι		
Floating Point Arithmetics	Other				iCache Miss	Branch Resteers	iTLB Miss	Fetch Source 1	Fetch Source 2	Execution Ports Utilization	Divider	L1 Bound	L2 Bound	L3 Bound	Store Bound	DRAM Bound
Scalar Vector										0 Ports 1 or 2 Ports 3+ Ports						Latency Bandwidth

Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture," 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459

Bad Speculation Performance Tuning

Main Causes of Bad Speculation

- Sources of unpredictable branches
 - Even distribution of choices
 - Loops over virtual objects
 - Stochastic processes
- Conditional code in loops
- Long conditional expressions
 - Latency until branch can be taken
 - Stronger penalty if predictor is wrong
- Function calls are also branches!
 - Worse if they are in another library

Optimization Techniques

- Branchless code
 - Replace branches with arithmetics
 - Replace branches with predication
 - Replace branches with table lookup
- Annotate likely/unlikely branches
 - Improve branch prediction statistics
 - Helps with code layout optimization
- Ordering of branch conditionals
 - Most/Least likely first
 - Shortcircuit to decision early
- Loop splitting, statically linking

Example of Bad Speculation

Be careful with what you assume the compiler can optimize for you.

```
class vector {
 1
         public:
 2
 3
         double operator[](int i) {
             switch(i) {
 4
 5
                 case 0: return x;
 6
                 case 1: return y;
 7
                 case 2: return z;
 8
 9
10
11
         double operator()(int i) { return (&x)[i]; }
12
         private:
13
         double x, y, z;
14
     };
15
```

1	vector::operator[](int):
2	cmp esi, 1
3	je <u>.L2</u>
4	cmp esi, 2
5	jne <u>.L6</u>
6	<pre>vmovsd xmm0, QWORD PTR [rdi+16]</pre>
7	ret
8	.L2:
9	<pre>vmovsd xmm0, QWORD PTR [rdi+8]</pre>
10	ret
11	.L6:
12	<pre>vmovsd xmm0, QWORD PTR [rdi]</pre>
13	ret
14	vector::operator()(int):
15	movsx rsi, esi
16	<pre>vmovsd xmm0, QWORD PTR [rdi+rsi*8]</pre>
17	ret

Example of

					Retiring: Front-End Bou Bad Speculatio	nd: 👖 1	17.1% of Pipeline Slot 18.9% of Pipeline Slot 24.4% ▶ of Pipeline Slot	ts	N
						Loc	cators		
Course	Cleatitaka	Instructions	CPI	39	[<u>></u>]	[》]	Back	k-End Bound) b
Source	ockticks 約	Retired	Rate	Retiring	Front-End Bound	Bad Speculation	Momony Round	Co	re Bound
					Dodina	4	Memory Bound	Divider	Port Utilization
inline double Hep3Vector::operator () (int i) const {									
<pre>inline double Hep3Vector::operator () (int i) const { switch(i) {</pre>	20,232,000,000	18,900,000,000	1.070	16.7%	18.9%	23.3%	18.5%	0.0%	20.0%
	20,232,000,000	18,900,000,000	1.070	16.7%	18.9%	23.3%	18.5%	0.0%	
switch(i) (20,232,000,000	18,900,000,000	1.070	16.7%	18.9%	23.3%	18.5%	0.0%	
switch(i) { case X:	20,232,000,000	18,900,000,000	1.070	16.7%	18.9%	23.3%	18.5%	0.0%	
<pre>switch(i) { case X: return x();</pre>	20,232,000,000	18,900,000,000 36,000,000	2.000	0.4%	0.0%	23.3%	18.5% 0.0%	0.0%	
<pre>switch(i) { case X: return x(); case Y:</pre>					0.0%			0.0%	20.0%
<pre>switch(1) { case X: return x(); case Y: return y();</pre>					18.9% 0.0%			0.0%	20.0%
<pre>switch(1) { case X: return x(); case Y: return y(); case Z:</pre>	72,000,000	36,000,000		0.4%		0.0%	0.0%		0.0%
<pre>switch(1) { case X: return x(); case Y: return y(); case Z:</pre>	72,000,000	36,000,000		0.4%		0.0%	0.0%		0.0%
<pre>switch(1) { case X: return x(); case Y: return y(); case Z: return z();)</pre>	72,000,000	36,000,000		0.4%		0.0%	0.0%		20.0 9 0.09

Source Line A

40 41

43

44

45

46

47

48

49 50 51

Effective Ordering of Conditionals

Reorder condition in G4CrossSectionDataStore::ComputeCrossSection()

diff --git a/source/processes/hadronic/cross_sections/src/G4CrossSectionDataStore.cc b/source/processes/hadronic/cross_sections/src/G4CrossSectionData Store.cc

```
currentMaterial = mat;
matParticle = part->GetDefinition();
matKinEnergy = part->GetKineticEnergy();
```

```
commit 3a2c4714fddc62e6ea31b6c5f074f60461ac05f4
Author: Guilherme Amadio <amadio@cern.ch>
```

```
Update History file for G4CrossSectionDataStore
```

When a branching condition has several terms, order it from the most discriminant term to the least. Here, the energy is different much more frequently than material or particle type, so this order leads to more early decisions and better performance.

Probabilities:

```
mat == currentMaterial ⇒ 98.9%
matParticle == part->GetDefinition ⇒ 71.6%
matKinEnergy == part->GetKineticEnergy() ⇒ 32.1%
```

Note that these are independent. They are equal together only about 6.9% of the time.

diff --git a/source/processes/hadronic/cross_sections/History b/source/processes/hadronic/cross_sections/History lines 3391-3418/3673 93%_

Front-End Performance Tuning

Sources of Front-End Performance Issues

- Front-End Latency
 - Function inlining
 - Code bloat, duplication
 - More libraries ⇒ more pages to load
 - Frequent function calls
 - More instructions, call overhead
- Front-End Bandwidth
 - Loops with large body
 - Scalar-only arithmetics
 - Overloaded microop cache
 - Instructions need to be re-decoded

Optimization Techniques

- Function inlining
- Basic block reordering
- Basic block placement (alignment)
- Reduce code size, duplication
- Enable link-time optimizations
- Use profile-guided optimization
 - Code layout matching control flow
- Optimize iTLB usage (huge pages)
- SIMD Vectorization (less instructions)

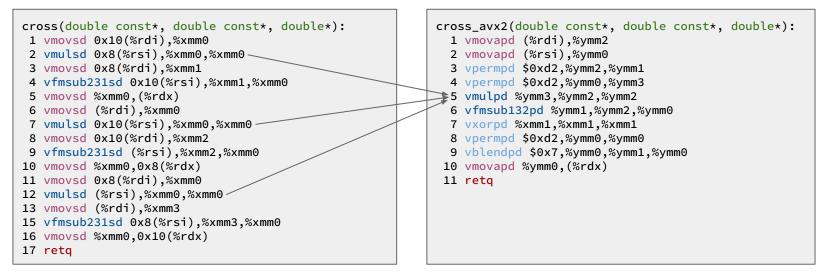
SIMD Programming Models

- Auto-vectorization
- OpenMP 4.1
- Compiler Pragmas
- SIMD Library
- Compiler Intrinsics
- Assembly

```
float a[N], b[N], c[N];
for (int i = 0; i < N; i++)</pre>
  a[i] = b[i] * c[i];
float a[N], b[N], c[N];
#pragma omp simd
#pragma ivdep
for (int i = 0; i < N; i++)</pre>
  a[i] = b[i] * c[i];
#include <Vc/Vc>
Vc::SimdArray<float, N> a, b, c;
a = b * c;
#include <x86intrin.h>
__m256 a, b, c;
a = mm256 mul ps(b, c);
asm volatile("vmulps %ymm1, %ymm0");
```

Vectorization of Linear Algebra

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using these objects can be sped up by using internal and external vectorization. Simple arithmetics $(+ - \times \div)$ can be auto-vectorized by the compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

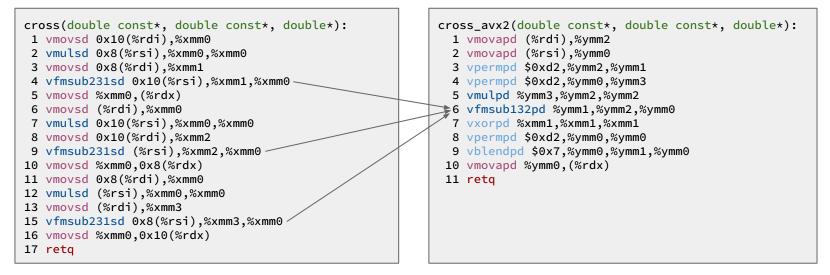

Example: vector cross product (source)

```
void cross(const double * __restrict__ a, const double * __restrict__ b, double *result)
{
    result[0] = a[1]*b[2] - a[2]*b[1];
    result[1] = a[2]*b[0] - a[0]*b[2];
    result[2] = a[0]*b[1] - a[1]*b[0];
    return:
}
void cross_avx2(const double * __restrict__ a, const double * __restrict__ b, double *result)
ſ
    __m256d a012 = _mm256_load_pd(a);
    __m256d b012 = _mm256_load_pd(b);
    __m256d a201 = _mm256_permute4x64_pd(a012, _MM_SHUFFLE(3,1,0,2));
    __m256d b201 = _mm256_permute4x64_pd(b012, _MM_SHUFFLE(3,1,0,2));
    __m256d tmp = _mm256_fmsub_pd(b012, a201, _mm256_mul_pd(a012, b201));
    tmp = _mm256_permute4x64_pd(tmp, _MM_SHUFFLE(3,1,0,2));
    tmp = _mm256_blend_pd(_mm256_setzero_pd(), tmp, 0x7); // put zero on 4th position
    mm256 store pd(result, tmp);
    return:
}
```

Vectorization of Linear Algebra

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using these objects can be sped up by using internal and external vectorization. Simple arithmetics $(+ - \times \div)$ can be auto-vectorized by the compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

Example: vector cross product (assembly)



Advantages with AVX2: less memory moves, smaller number of instructions (therefore smaller cost to inline), 2.5x faster, and in this form it is transparent to the caller (same interface as generic code). However, code is more complex, needs to care about memory alignment.

Vectorization of Linear Algebra

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using these objects can be sped up by using internal and external vectorization. Simple arithmetics $(+ - \times \div)$ can be auto-vectorized by the compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

Example: vector cross product (assembly)

Advantages with AVX2: less memory moves, smaller number of instructions (therefore smaller cost to inline), 2.5x faster, and in this form it is transparent to the caller (same interface as generic code). However, code is more complex, needs to care about memory alignment.

Core Bound Performance Tuning

Sources of Execution Bottlenecks

- Function call overhead
 - Short, frequently called functions
- Virtual inheritance, prevents inlining
- Poor port utilization
 - Chains of load/store instructions
- Arithmetics with data dependencies
 - True dependency (read-after-write)
 - Anti-dependency (write-after-read)
 - Output dependency (write-after-write)
- Divisions and square roots

Optimization Techniques

- Function inlining
- Loop unrolling
- Replace recursion with iteration
- Avoid data access indirections
- Regular data members vs pointers
- Split long loops with dependencies
- Use the parenthesis in arithmetics
- Factor out common expressions
- Hide latency from divisions

IEEE 754 Floating-Point Representation

- Floating point numbers are represented with a base β and a precision p
- For $\beta = 2$ and p = 4, the number $\frac{1}{4} = 0.25$ can be written exactly as 1.000×2^{-2}
- Not all numbers can be represented
- For example, 0.04 is approximated

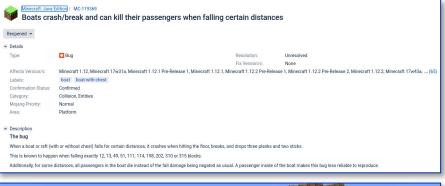
```
$ root -l
root [0] float x = 0.04;
root [1] printf("%.28f\n", x);
0.0399999991059303283691406250
root [2] *reinterpret_cast<int*>(&x)
(int) 1025758986
root [3] .q
```

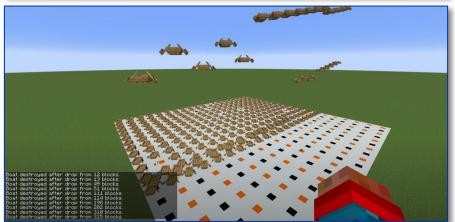
- With base β = 2 and precision p = 24:
 0.04 ≅ 1.01000111101011100001010₂ × 2⁻⁵ ≅ 0.039999999105930328369140625

- Note: mantissa is stored as 1.NNNNN...N₂ such that effectively we have 24 and 53 bit mantissas

IEEE 754 Floating-Point Representation

- Floating point numbers are represented with a base β and a precision p
- For $\beta = 2$ and p = 4, the number $\frac{1}{4} = 0.25$ can be written exactly as 1.000×2^{-2}
- Not all numbers can be represented
- For example, 0.04 is approximated

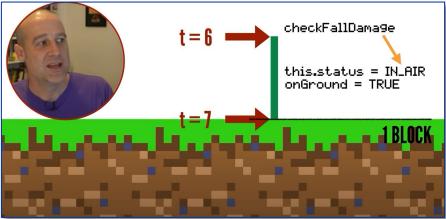

```
$ python
Python 3.12.3 (main, Apr 10 2024, 10:27:02) on linux
>>> bin(1025758986)
'0b111101001000111101011100001010'
>>> 2 * 0b101000111101011100001010 / 2**24 * 2**-5
0.03999999910593033
```


- With base β = 2 and precision p = 24:
 0.04 ≅ 1.01000111101011100001010₂ × 2⁻⁵ ≅ 0.039999999105930328369140625

- Note: mantissa is stored as 1.NNNNN...N₂ such that effectively we have 24 and 53 bit mantissas

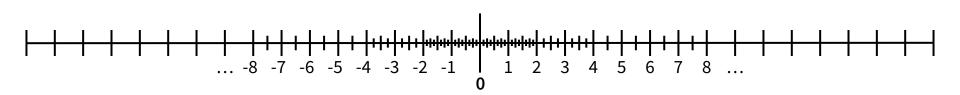
Often Source of Amusing Bugs

- In Minecraft boats normally protect passengers from fall damage
 - But not when falling from some heights
- In Minecraft, g = 0.04 blocks / tick²
 - Well, almost!
- $H_n = (1 + 2 + 3 + ...) \times 0.04 = 0.04 n(n+1)/2$
- So when k(k+1) is a multiple of 1/0.04=25, something interesting happens
 - status = IN_AIR \rightarrow status = ON_LAND
 - Code that checks fall damage is tricked, fails to update status to onGround = true
- Deciphered by Matt Parker (linked video)



Often Source of Amusing Bugs

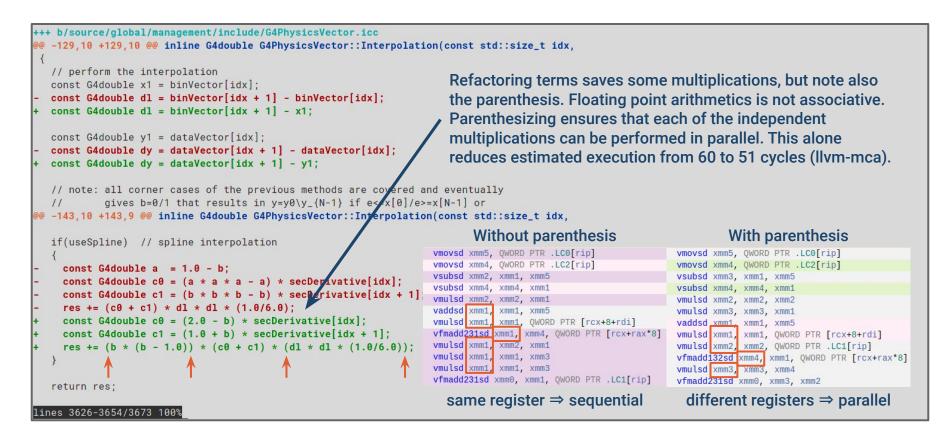
- In Minecraft boats normally protect passengers from fall damage
 - But not when falling from some heights
- In Minecraft, g = 0.04 blocks / tick²
 - Well, almost!
- $H_n = (1 + 2 + 3 + ...) \times 0.04 = 0.04 n(n+1)/2$
- So when k(k+1) is a multiple of 1/0.04=25, something interesting happens
 - status = IN_AIR \rightarrow status = ON_LAND
 - Code that checks fall damage is tricked, fails to update status to onGround = true
- Deciphered by Matt Parker (linked video)



Floating-Point Numbers are Denser Towards Zero

One important aspect of floating-point numbers is that they are denser near the origin. Therefore, one needs to be careful when choosing units for physical quantities such that numerical calculations do not stray too far from 1.0. When numbers become too big, the rounding errors can become quite significant. On the right, we demonstrate that rounding when crossing a density boundary at a power of 2.

```
$ root -l
root [0] printf("%.16f\n", 0.1f);
0.1000000014901161
root [1] printf("%.16f\n", 0.1); /* double, not float */
0.10000000000000000
root [2] FLT_EPSILON
(float) 1.19209e-07f
root [3] printf("%.16f\n", 1.0f + 0.75f * FLT_EPSILON);
1.0000001192092896
root [4] printf("%,16f\n", 1.0f + 1.00f * FLT_EPSILON);
1.0000001192092896
root [5] printf("%,16f\n", 1.0f + 1.25f * FLT_EPSILON);
1.0000001192092896
root [6] printf("%.16f\n", 1.0f + 1.50f * FLT_EPSILON);
1.0000002384185791
root [7] printf("% 16f\n", 1.0f + 1.75f * FLT_EPSILON);
1.0000002384185791
root [8] printf("%,16f\n", 1.0f + 2.00f * FLT_EPSILON);
1.0000002384185791
root [9] printf("%,16f\n", 1.0f + 2.50f * FLT_EPSILON);
1.0000002384185791
```



Examples

Try it in https://www.h-schmidt.net/FloatConverter/IEEE754.html

G4PhysicsVector::Interpolation()

							Loca	tors	
Source Line A	Source	성 Clockticks	Instructions Retired	CPI Rate	Retiring	Front-End [®] Bound	Bad » Speculation	Back-End B	
						Dound	opeouldation	Memory Bound	Core Bound
184	//								
185									
186	inline G4double G4PhysicsVector::Interpolation(const std::size_t idx,								
187	const G4double e) const								
188	[
189	// perform the interpolation								
190	<pre>const G4double x1 = binVector[idx];</pre>	0.2%	0.1%	1.011	3.8%	6.0%	3.4%	3.9%	3.8%
191	<pre>const G4double dl = binVector[idx + 1] - x1;</pre>								
192	// note: all corner cases of the previous methods are covered and eventually								
193	// gives b=0/1 that results in y=y0\y_{N-1} if e<=x[0]/e>=x[N-1] or								
194	<pre>// y=y_i/y_{i+1} if e<x[i] e="">=x[i+1] due to small numerical errors</x[i]></pre>								
195	<pre>const G4double b = std::max(0., std::min(1., (e - x1) / d1));</pre>	0.0%	0.0%	0.199	0.3%	0.0%	0.0%	0.0%	0.0%
196	G4double res;								
197	if(useSpline) // spline interpolation	0.0%	0.0%	1.000	0.4%	0.0%		0.4%	
198									
199	const G4double os = 0.1666666666667; // 1./6.								
200	const G4double a = 1.0 - b;	0.1%	0.0%	3.851	1.4%	0.0%	0.7%	2.3%	2.3%
201	<pre>const G4double c0 = (a * a * a - a) * secDerivative[idx];</pre>	0.1%	0.0%	4.105	0.5%	0.0%	0.9%	1.9%	1.19
202	<pre>const G4double cl = (b * b * b - b) * secDerivative[idx + 1];</pre>	0.1%	0.0%	5.371	1.3%	0.0%	2.0%	3.6%	3.8%
203	res =								
204	a * dataVector[idx] + b * dataVector[idx + 1] + (c0 + c1) * dl * dl * os;	0.6%	0.3%	1.240	9.7%	0.0%	3.7%	17.4%	23.9%
205									
206	else // linear interpolation								
207	1								
208	<pre>const G4double y1 = dataVector[idx];</pre>								
209	<pre>const G4double y2 = dataVector[idx + 1];</pre>								
210	res = $y1 + b * (y2 - y1);$	0.0%	0.0%	7.667	0.0%	1.5%	0.0%	0.1%	0.0%
211									
212	return res;								
213	1								

Arithmetics: Instruction Level Parallelism

Arithmetics: Instruction Level Parallelism

	01234567	89	012345	6789		0123	4567	89	
Index	0123456789	012345678	9	0123	3456789	9			Legend
[0,0]	DeER								movslg %edi, %rax
[0,1]	D=eER								<pre>leag (,%rax,8), %rdi e : Instruction executing.</pre>
[0,2]	D=eeeeeER								vmovsd (%rsi,%rax.8). %xmm1
[0,3]	D==eeeeeER.								vmovsd 8(%rsi,%rdi), %xmm3 E : Instruction executed.
[0,4]	D=eeeeeE-R								vmovsd (%rdx,%rax,8), %xmm2 R : Instruction retired.
[0,5]	D=====eeeeER .								vsubsd %xmm1, %xmm3, %xmm3
[0,6]	.D====eeeeE-R .								vsubsd %xmm1, %xmm0, %xmm1 = : Instruction already dispatched, waiting to be executed.
[0,7]	.D=eeeeeER .								vmovsd 8(%rdx,%rdi), %xmm0 - : Instruction executed, waiting to be retired.
[0,8]	.D=======eeeeee	eeeeeeeER							vdivsd %xmm3, %xmm1, %xmm1
[0,9]	.D=====eeeeE	R							vsubsd %xmm2, %xmm0, %xmm0
[0,10]	. D====================================	======eee	eER .						vfmadd132sd %xmm1, %xmm2, %xmm0
[0,11]	.De <mark>E</mark>		R .						testb %r8b, %r8b
[0,12]	. DeE		R .						je .L1
[0,13]	. D=eeeeeE								vmovsd .LCO(%rip), %xmm5
[0,14]	. D=eeeeeE		R .						vmovsd .LC1(%rip), %xmm4
[0,15]	. D==============	=====eee	eER .						vsubsd %xmm5, %xmm1, %xmm2
[0,16]	. D=============	=====ee	eeER .						vsubsd %xmm1, %xmm4, %xmm4
[0,17]	. D===============		=eeeeER						vmulsd %xmm1, %xmm2, %xmm2
[0,18]	. D===========	=====ee	eeER						vaddsd %xmm5, %xmm1, %xmm1
[0,19]	. D============	=====ee	eeeeeee	eER .					vmulsd 8(%rcx,%rdi), %xmm1, %xmm1
[0,20]	. D==============	===========	===eeee	eeeeeER					vfmadd231sd (%rcx,%rax,8), %xmm4, %xmm1
[0,21]	. D============		=======	====eee	eeER				vmulsd %xmm1, %xmm2, %xmm1
[0,22]	. D==========		=======		==eeee	ER			vmulsd %xmm3, %xmm1, %xmm1
[0,23]	. D===========	=================	=======	=======	======	eeee	R.		vmulsd %xmm3, %xmm1, %xmm1
[0,24]	. D===========	==========	=======	=======	======	eeee	eeee	ER	vfmadd231sd .LC2(%rip), %xmm1, %xmm0
[0,25]	. DeeeeeeE							-R	retq
titanx ~	\$ g++-11.2.0 -march	=native -03	-S tes	t.cc -D	/2=1 -0) - I	llv	m-m	ca -iterations=1 -timeline 2>/dev/null sed -n 97,125p

Arithmetics: Instruction Level Parallelism

	01234567	789	0123	345678	9		0		
Index	0123456789	0123450	6789		0123	456789			Legend
[0,0]	DeER							movsla	%edi, %rax D : Instruction dispatched.
[0,1]	D=eER.					÷		leag	(,%rax,8), %rdi e : Instruction executing.
[0,2]	D=eeeeeER							vmovsd	(%rsi.%rax.8). %xmm1
[0,3]	D==eeeeER.						÷	vmovsd	8(%rsi,%rdi), %xmm2 E : Instruction executed.
[0,4]	D=eeeeeE-R							vmovsd	(%rdx,%rax,8), %xmm3 R : Instruction retired.
[0,5]	D=====eeeeER .							vsubsd	%xmm1, %xmm2, %xmm2
[0,6]	.D====eeeeE-R .							vsubsd	%xmm1, %xmm0, %xmm1 = : Instruction already dispatched, waiting to be executed.
[0,7]	.D=eeeeeER .							vmovsd	8(%rdx,%rdi), %xmm0 - : Instruction executed, waiting to be retired.
[0,8]	.D=======eeeeee	eeeeeeeel	ER.					vdivsd	%xmm2, %xmm1, %xmm1
[0,9]	.D=====eeeeE		-R.					vsubsd	%xmm3, %xmm0, %xmm0
[0,10]	. D================		eeeeER					vfmadd1	32sd %xmm1, %xmm3, %xmm0
[0,11]	.DeE		R					testb	%r8b, %r8b
[0,12]	. DeE		R					je	.L1
[0,13]	. D=eeeeeE		R					vmovsd	.LC0(%rip), %xmm5
[0,14]	. D=eeeeeE		R					vmovsd	.LC1(%rip), %xmm4
[0,15]	. D===============	===========	eeeeER					vsubsd	%xmm5, %xmm1, %xmm3
[0,16]	. D============		=eeeeER					vsubsd	%xmm1, %xmm4, %xmm4
[0,17]	. D=====eeeeE-		R					vmulsd	%xmm2, %xmm2, %xmm2
[0,18]	. D===========		====eeee	eER				vmulsd	%xmm1, %xmm3, %xmm3
[0,19]	. D=============		=eeeeE-·	R				vaddsd	%xmm5, %xmm1, %xmm1
[0,20]	. D==============		==eeeeee	eeeeER				vmulsd	8(%rcx,%rdi), %xmm1, %xmm1
[0,21]	. D======eeeee	eeeeE		R				vmulsd	.LC2(%rip), %xmm2, %xmm2
[0,22]	. D==========		====ee	eeeeee	eeER			vfmadd1	32sd (%rcx,%rax,8), %xmm1, %xmm4
[0,23]	. D==========				==eee	eER		vmulsd	%xmm4, %xmm3, %xmm3
[0,24]	. D==========		=======		=====	=eeee	R	vfmadd2	31sd %xmm2, %xmm3, %xmm0
[0,25]	. DeeeeeeE						R	retq	
titanx ~	\$ g++-11.2.0 -march	n=native ·	-03 -S 1	test.c	c -DV	3=1 -0		llvm-m	ca -iterations=1 -timeline 2>/dev/null sed -n 97,125p_

Top 20 classes in Geant4 Before Optimizations

Olace / Course Expeties / Coll Steels	ODU Time W	»	Microarchitecture Usage			
Class / Source Function / Call Stack	CPU Time 🔻	Instructions Retired	Microarchitecture Usage	CPI Rate		
CLHEP::Hep3Vector	9.7%	10.7%	37.3%	0.589		
LArWheelCalculator_Impl::DistanceCalculatorSaggingOff	8.2%	11.3%	55.8%	0.473		
G4PhysicsVector	5.4%	2.9%	21.3%	1.219		
[Not part of any known object class]	5.2%	4.4%	33.5%	0.777		
G4PolyconeSide	4.6%	7.1%	57.8%	0.431		
G4VoxelNavigation	4.0%	1.6% 🛑	14.2%	1.661		
MagField::AtlasFieldSvc	3.6%	3.7%	40.6%	0.633		
G4SteppingManager	2.8%	3.0%	39.7%	0.611		
LArWheelSolid	2.2%	1.7%	31.2%	0.860		
LArWheelCalculator	2.2%	3.6%	51.4%	0.394		
G4ProductionCutsTable	1.6% 🛑	0.7% 📒	14.8%	1.555		
CLHEP::MixMaxRng	1.6% 🛑	2.1%	50.0%	0.493		
▶ BFieldCache	1.5% 🛑	2.5%	60.3%	0.385		
G4CrossSectionDataStore	1.4% 🛑	1.6% 🔲	39.7%	0.548		
▶ G4LogicalVolume	1.4% 🛑	1.1% 📒	28.3%	0.893		
G4Navigator	1.4% 🛑	1.4% 🛑	32.7%	0.649		
G4Tubs	1.4% 🛑	1.2% 🛑	34.3%	0.751		
▶ G4UrbanMscModel	1.3% 🛑	0.8%	24.1%	1.023		
G4VProcess	1.3% 🛑	0.7%	26.2%	1.159		
▶ G4VCSGfaceted	1.3% 🛑	1.4% 🛑	49.4%	0.607		

Top 20 classes in Geant4 After Optimizations

Class / Source Function / Call Stack	CPU Time V	Instructions Retired	Microarchitecture Usage		
Class / Source Function / Call Stack	CPO time V	Instructions Retired	Microarchitecture Usage	CPI Rate	
▶ CLHEP::Hep3Vector	9.6%	10.9%	40.4%	0.565	
LArWheelCalculator_Impl::DistanceCalculatorSaggingOff	8.9%	11.8%	55.7%	0.485	
G4PolyconeSide	5.2%	7.5%	55.0%	0.439	
G4VoxelNavigation	4.6%	1.7% 🛑	14.7%	1.706	
[Not part of any known object class]	4.3%	3.5%	31.0%	0.796	
MagField::AtlasFieldSvc	3.9%	3.9%	40.7%	0.649	
G4PhysicsVector	2.9%	2.0%	27.3%	0.944	
G4SteppingManager	2.7%	3.1%	41.4%	0.554	
▶ LArWheelSolid	2.6%	1.8%	28.3%	0.892	
LArWheelCalculator	2.4%	3.9%	51.1%	0.399	
G4Navigator	1.8%	1.8% 🛑	35.3%	0.647	
G4ProductionCutsTable	1.7%	0.7%	14.6%	1.596	
▶ BFieldCache	1.7%	2.7%	61.4%	0.398	
G4UrbanMscModel	1.6%	0.9%	20.5%	1.115	
G4VEmProcess	1.6%	1.1% 🛑	27.9%	0.883	
▶ G4LogicalVolume	1.5% 🛑	1.1% 🛑	29.5%	0.902	
▶ G4Tubs	1.5% 🛑	1.2% 📒	33.9%	0.785	
G4VCSGfaceted	1.5% 🛑	1.4% 🛑	46.7%	0.650	
CLHEP::MixMaxRng	1.3% 🛑	1.6% 🛑	47.6%	0.527	
▶ G4AffineTransform	1.3%	1.3% 🛑	37.2%	0.645	
G4CrossSectionDataStore	1.3% 🔲	1.4% 🔲	41.7%	0.580	

Floating-Point Performance Tips

- Keep numbers small for better accuracy
- Be careful with direct comparisons
- If you can, use integer arithmetics instead
- Divisons are very slow, use them only when necessary
- Beware of unwanted conversions between single and double precision
- You can optimize for speed or accuracy, but rarely both at the same time
- Forget –**Ofast**, it will often break your code by assuming associativity
- Avoid long double at all costs, it uses the FP87 unit and is very slow
- Watch out for denormals and NaNs, they can significantly affect performance

Memory Bound Performance Tuning

Sources of Memory Issues

- Bad cache locality
 - Spatial locality
 - Temporal locality
- Bad cache coherence
 - Cache invalidation
 - True and false sharing
- Bad data structures
 - Padding
 - Low information density
- Low information density

Optimization Techniques

- Avoid data access indirections
 - Chains of loads rarely satisfy locality
- Group reads/writes to same struct
- Regular data members vs pointers
- Avoid contiguous per-thread data
- Try to pack holes in data structures
- Replace bools with bit flags
- Use smaller data types (int, float)
- Optimize dTLB usage (huge pages)
- Minimize number of heap allocations

Data Access Patterns: Avoid Indirections

Author: Guilherme Amadio <amadio@cern.ch>

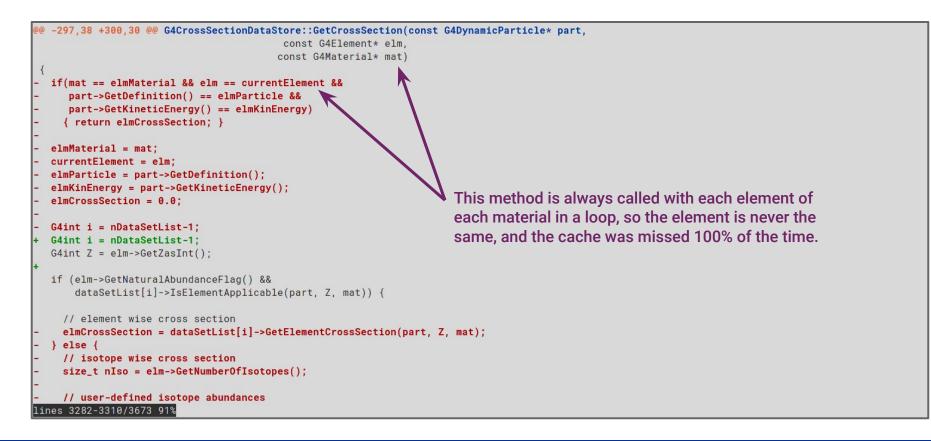
```
G4SteppingManager: reuse value of fCurrentVolume to find current region
diff --git a/source/tracking/src/G4SteppingManager.cc b/source/tracking/src/G4SteppingManager.cc
index 0e00aca0d3..1108ef957d 100644
    a/source/tracking/src/G4SteppingManager.cc
+++ b/source/tracking/src/G4SteppingManager.cc
@@ -257,9 +257,10 @@ G4StepStatus G4SteppingManager::Stepping()
     fUserSteppingAction->UserSteppingAction(fStep);
   G4UserSteppingAction* regionalAction = fStep->GetPreStepPoint()
         ->GetPhysicalVolume()->GetLogicalVolume()
         ->GetRegion()->GetRegionalSteppingAction();
   G4UserSteppingAction* regionalAction =
     fCurrentVolume->GetLogicalVolume()->GetRegion()->GetRegionalSteppingAction();
   if(regionalAction)
                                                                Chained accessors via pointers require several memory
     regionalAction->UserSteppingAction(fStep);
                                                                accesses to retrieve a single piece of data, with similar cost
                                                                to traversing a linked list. Here we can avoid 3 access
commit 3c70a7e614d885364905bb5208f6cefbff94c2d9
                                                                indirections by reusing the value of fCurrentVolume.
Author: Guilherme Amadio <amadio@cern.ch>
```

Data Access Patterns: Avoid Indirections

Data Access Patterns: Avoid Indirections

Source Line 🛦	Source	Address 🛦	Source Line	Assembly	🔥 Clockticks	Instructions Retired	CPI Rate	Retiring 🔊
166	// Initialize G4StepPoint attributes.	0x2bd92	176	callg_0xf580	1,674,000,000	1,872,000,000	0.894	12.6%
167	// To avoid the circular dependency between G4Track, G4Step	0x2bd97		Block 8:				
168	// and G4StepPoint, G4Step has to manage the copy actions.	0x2bd97	176	movq %rax, 0x60(%r15)				
169	<pre>fpPreStepPoint->SetPosition(fpTrack->GetPosition());</pre>	0x2bd9b	178	movq 0x28(%rbx), %rax				
170	<pre>fpPreStepPoint->SetGlobalTime(fpTrack->GetGlobalTime());</pre>	0x2bd9f	178	movq 0x10(%rbx), %r12				
171	<pre>fpPreStepPoint->SetLocalTime(fpTrack->GetLocalTime());</pre>	0x2bda3	178	movq 0x38(%rax), %rax				
172	<pre>fpPreStepPoint->SetProperTime(fpTrack->GetProperTime());</pre>	0x2bda7	178	test %rax, %rax				
173	<pre>fpPreStepPoint->SetMomentumDirection(fpTrack->GetMomentumDirection());</pre>	0x2bdaa	178	jz 0x2bfb3 <block 40=""></block>				
174	<pre>fpPreStepPoint->SetKineticEnergy(fpTrack->GetKineticEnergy());</pre>	0x2bdb0		Block 9:				
175	fpPreStepPoint->SetTouchableHandle(fpTrack->GetTouchableHandle());	0x2bdb0	178	movq 0x8(%rax), %rdi				
176	fpPreStepPoint->SetMaterial(0x2bdb4	178	xor %esi, %esi	0	18,000,000	0.000	0.0%
177	<pre>fpTrack->GetTouchable()->GetVolume()->GetLogicalVolume()->GetMaterial());</pre>	0x2bdb6	179	movq (%rdi), %rax				
178	fpPreStepPoint->SetMaterialCutsCouple(fpTrack->GetTouchable()	0x2bdb9	178	callq 0x20(%rax)	0	54,000,000	0.000	0.0%
179	->GetVolume()	0x2bdbc		Block 10:				
180	->GetLogicalVolume()	0x2bdbc	178	movq 0x10(%rax), %rdi	36,000,000	0		0.0%
181	->GetMaterialCutsCouple());	0x2bdc0	178	<u>callq 0xf690</u>	684,000,000	504,000,000	1.357	3.1%
182	fpPreStepPoint->SetSensitiveDetector(fpTrack->GetTouchable()	0x2bdc5		Block 11:				
183	->GetVolume()	0x2bdc5	178	movq %rax, 0x68(%r12)				
184	->GetLogicalVolume()	0x2bdca	182	movq 0x28(%rbx), %rax				
185	->GetSensitiveDetector());	0x2bdce	182	movq 0x10(%rbx), %r12				
186	<pre>fpPreStepPoint->SetPolarization(fpTrack->GetPolarization());</pre>	0x2bdd2	182	movq 0x38(%rax), %rax				
187	<pre>fpPreStepPoint->SetSafety(0.);</pre>	0x2bdd6	182	test %rax, %rax				
188	fpPreStepPoint->SetStepStatus(fUndefined);	0x2bdd9	182	<u>jz 0x2bfb3 <block 40=""></block></u>				
189	fpPreStepPoint->SetProcessDefinedStep(0);	0x2bddf		Block 12:				
190	<pre>fpPreStepPoint->SetMass(fpTrack->GetDynamicParticle()->GetMass());</pre>	0x2bddf	182	movq 0x8(%rax), %rdi				
191	<pre>fpPreStepPoint->SetCharge(fpTrack->GetDynamicParticle()->GetCharge());</pre>	0x2bde3	182	xor %esi, %esi				
192	fpPreStepPoint->SetWeight(fpTrack->GetWeight());	0x2bde5	183	movq (%rdi), %rax				
193		0x2bde8	182	callq 0x20(%rax)	54,000,000	36,000,000	1.500	0.0%
194	// Set Velocity	0x2bdeb		Block 13:				
195	// should be placed after SetMaterial for preStep point	0x2bdeb	182	movq 0x10(%rax), %rdi	0	0	0.000	0.0%
196	fpPreStepPoint->SetVelocity(fpTrack->CalculateVelocity());	0x2bdef	182	<u>callq 0xf9e0</u>	720,000,000	540,000,000	1.333	0.0%
197		0x2bdf4		Block 14:				
198	(*fpPostStepPoint) = (*fpPreStepPoint);	0x2bdf4	182	movq 0x28(%rbx), %rdi	0	0	0.000	0.0%
199	}	0x2bdf8	182	movq %rax, 0x70(%r12)				
200		0x2bdfd	186	movq 0x50(%rdi), %r12				

Avoid Distant Data Accesses


```
// Check if the particle has a force, EM or gravitational, exerted on it
   11
  G4FieldManager* fieldMgr = 0;
  G4bool fieldExertsForce = false:
  fieldMgr = fFieldPropagator->FindAndSetFieldManager(track.GetVolume());
  G4bool eligibleEM =
    (particleCharge != 0.0) || (fUseMagneticMoment && (magneticMoment != 0.0));
  G4bool eligibleGrav = fUseGravity && (restMass != 0.0);
    (particleCharge != 0.0) || ((magneticMoment != 0.0) && fUseMagneticMoment);
  G4bool eligibleGrav = (restMass != 0.0) && fUseGravity;
  if((fieldMgr != nullptr) && (eligibleEM || eligibleGrav)
  fFieldExertedForce = false:
  if(eligibleEM || eligibleGrav)
    // User can configure the field Manager for this track
    fieldMgr->ConfigureForTrack(&track);
    // Called here to allow a transition from no-field pointer
    // to finite field (non-zero pointer).
    // If the field manager has no field ptr, the field is zero
         by definition ( = there is no field ! )
    11
    const G4Field* ptrField = fieldMgr->GetDetectorField();
    if(ptrField)
    if(G4FieldManager* fieldMgr =
         fFieldPropagator->FindAndSetFieldManager(track.GetVolume()))
lines 2502-2530/3673 69%
```

Finding the field manager is expensive. It requires accessing distant pieces of data like the fFieldPropagator class member to call its method, and the track's current volume. However, we can avoid checking the field for neutral and/or massless particles, as the field has no effect on them.

Data Access Patterns: Group Nearby Reads & Writes

```
G4Transportation: Move changes to fParticleChange closer together
diff --git a/source/processes/transportation/src/G4Transportation.cc b/source/processes/transportation/src/G4Transportation.cc
index 1fc97e1595..ba7a621299 100644
--- a/source/processes/transportation/src/G4Transportation.cc
+++ b/source/processes/transportation/src/G4Transportation.cc
@@ -195,12 +195,6 @@ G4double G4Transportation::AlongStepGetPhysicalInteractionLength(
   11
   *selection = CandidateForSelection;
  fFirstStepInVolume = fNewTrack || fLastStepInVolume;
   fLastStepInVolume = false:
   fNewTrack
                     = false:
   fParticleChange.ProposeFirstStepInVolume(fFirstStepInVolume);
   // Get initial Energy/Momentum of the track
   11
   const G4DynamicParticle* pParticle
                                          = track.GetDynamicParticle();
🥺 -510.6 +504.11 @@ G4double G4Transportation::AlongStepGetPhysicalInteractionLength(
                                                                      If a class member needs to be accessed multiple times
  fFirstStepInVolume = fNewTrack || fLastStepInVolume;
   fLastStepInVolume = false;
                                                                      inside a function or method, prefer keeping these accesses
   fNewTrack
                     = false:
                                                                      close together to avoid unnecessary cache misses.
  fParticleChange.ProposeFirstStepInVolume(fFirstStepInVolume);
   fParticleChange.ProposeTrueStepLength(geometryStepLength);
lines 2361-2389/3673 65%
```

Unnecessary Work: Caching Data

Loop Optimizations: Invariant Expressions

Expressions that do not change with the loop iteration are called loop invariants.

Loop invariants should be hoisted out of the loop to avoid unnecessary computations.

```
for (int i = 0; i < N; ++i) {
  for (int j = 0; j < N; ++j)
      a[j] = b[j] * c[i];
}</pre>
```

```
for (int i = 0; i < N; ++i) {
  auto ci = c[i];
  for (int j = 0; j < N; ++j)
   a[j] = b[j] * c[i];</pre>
```

Loop Optimizations: Invariant Conditionals

The body of a loop may contain conditional expressions that may cause poor performance due to branch mispredictions.

The solution is to write two versions of the loop body, and move the condition outside.

Loops with if statements inside

...can sometimes be replaced with separate loops

```
for (int i = 0; i < N; i++)
    a[i] += b[i];
if (reset)
  for (int i = 0; i<N; i++)
    b[i] = 0.0;</pre>
```

Loop Optimizations: Loop Unrolling

Loop unrolling can improve performance by reducing the trip count (how many times the body of the loop is run).

Loop unrolling can also help with SIMD vectorization. When it is also vectorized, the unrolled loop puts less pressure in the instruction cache, as there are less instructions overall in the body of the loop.

No loop unrolling

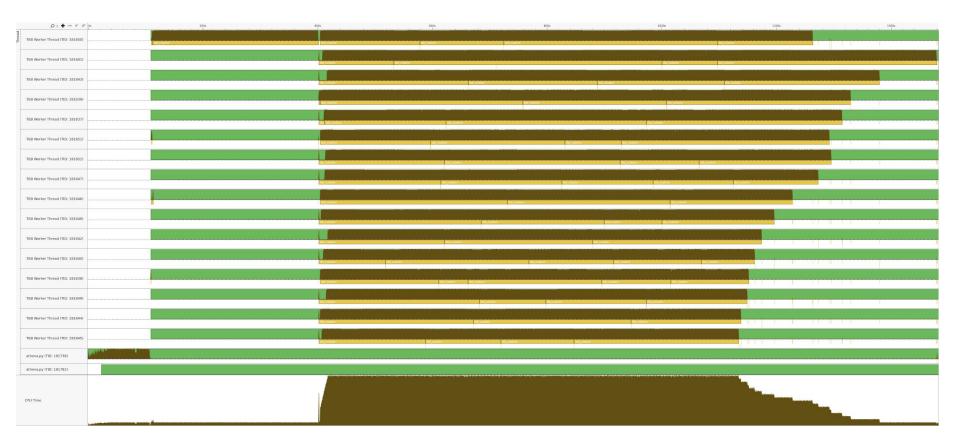
Loop unrolled once

```
auto n = N/2;
for (int i = 0; i < n; i += 2) {
a[ i ] = b[ i ] * c[ i ];
a[i+1] = b[i+1] * c[i+1];
```

Loop Optimizations: Strength Reduction

The body of a loop may contain expensive operations or similar operations that can be replaced with cheaper ones.

Here, we replace a multiplication with additions, and avoid computing it twice.


Modern compilers likely already optimize this specific example, however, by computing 3*i only once and reusing it.

Multiplication in index

... can be replaced with additions

```
int j = 0;
for (int i = 0; i<N; i++,j+=3) {
    a[i] = b[j] * c[i];
    d[i] = f[j] * g[i];
```

Geant4 Simulation Timeline

perf stat -d - overview of Geant4 initialization

bash ~ \$ perf stat -r 3 -d -- taskset -c 0 /srv/geant4/install/gcc-10.2.0/10.6.r9-MT/bin/g4run -g ~/src/g4run/CMS.gdml -p pythia
:ttbar -e 0

Performance counter stats for 'taskset -c 0 /srv/geant4/install/gcc-10.2.0/10.6.r9-MT/bin/g4run -g /home/amadio/src/g4run/CMS.g dml -p pythia:ttbar -e 0' (3 runs):

21454.06	msec	task-clock	#	0.953	CPUs utilized	(+-	0.07%)	
1520		context-switches	#	0.071	K/sec	(+-	48.20%)	
1		cpu-migrations	#	0.000	K/sec				
110280		page-faults	#	0.005	M/sec	(+-	0.06%)	
93708948749		cycles	#	4.368	GHz	(+-	0.02%)	(74.96%)
428488171		stalled-cycles-frontend	#	0.46%	frontend cycles idle	(+-	2.14%)	(74.95%)
62140664026		stalled-cycles-backend	#	66.31%	backend cycles idle	(+-	0.04%)	(74.97%)
129389101781		instructions	#	1.38	insn per cycle				
			#	0.48	stalled cycles per insn	(+-	0.04%)	(75.02%)
16731397508		branches	#	779.871	M/sec	(+-	0.06%)	(75.06%)
156166747		branch-misses	#	0.93%	of all branches	(+-	0.17%)	(75.09%)
58140887925		L1-dcache-loads	#	2710.018	M/sec	(+-	0.10%)	(75.02%)
685016614		L1-dcache-load-misses	#	1.18%	of all L1-dcache accesse	es	(•	+- 1.28%) (74.93%)
<not supported=""></not>		LLC-loads							
<not supported=""></not>		LLC-load-misses							
					Whoa that	's	al	ot of ha	ckend cvcl

22.513 +- 0.637 seconds time elapsed (+- 2.83%)

Whoa, that's a lot of backend cycles idle!

Record Geant4 initialization for further analysis

bash ~ \$ perf record -e cycles --call-graph=dwarf -F max -- taskset -c 0 /srv/geant4/install/gcc-10.2.0/10.6.r9-MT/bin/g4run --s tats -g /srv/geant4/gdml/CMS.gdml -p pythia:ttbar -e 0 # record zero event run (initialization only) 2>/dev/null info: Using a maximum frequency rate of 100000 Hz Throughput [events/min] 0 Initialization Cost [%] 100 Initialization Time [s] 31.0642 Event Loop Run Time [s] 2.404e-06 Init + Ev.Loop Time [s] 31.0642 Max RSS Before Init [M] 38.7227 Max RSS After Init [M] 272.641 Max RSS After Loop [M] 272.641 [perf record: Woken up 76218 times to write data] Warning: Processed 3176007 events and lost 4 chunks! Check IO/CPU overload! [perf record: Captured and wrote 21387.152 MB perf.data (2656290 samples)] bash ~ \$ bash ~ \$ # That's 20GB for ~30s run, dwarf generates a *lot* of data! bash ~ \$

G4{h,Mu}PairProd. account for ~40% of initialization

bash ~ \$ perf report -q --stdio --no-children -g none --percent-limit 1 -F overhead,dso,symbol Warning:

Processed 3176007 events and lost 4 chunks!

Check IO/CPU overload!

29.82%	libG4processes.so	[.]	G4hPairProductionModel::ComputeDMicroscopicCrossSection
10.38%	libG4processes.so	[.]	G4MuPairProductionModel::ComputeDMicroscopicCrossSection
10.30%	libG4processes.so	[.]	G4ElasticHadrNucleusHE::HadrNucDifferCrSec
3.76%	libG4processes.so	[.]	G4eBremsstrahlungRelModel::ComputeLPMfunctions
3.72%	libG4processes.so	[.]	G4hBremsstrahlungModel::ComputeDMicroscopicCrossSection
3.27%	libG4global.so	[.]	G4PhysicsVector::Value
1.92%	libG4geometry.so	[.]	G4Region::BelongsTo
1.87%	libG4processes.so	[.]	G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection
1.45%	libG4processes.so	[.]	G4SeltzerBergerModel::ComputeDXSectionPerAtom
1.45%	libG4processes.so	[.]	G4ProductionCutsTable::ScanAndSetCouple
1.33%	libpythia8.so	[.]	Pythia8::NNPDF::polint
1.10%	libG4processes.so	[.]	G4eBremsstrahlungRelModel::ComputeXSectionPerAtom
1.05%	libG4geometry.so	[.]	G4LogicalVolume::GetMaterial

bash ~ \$ # Looks like ~40% of the time is spent in G4{Mu,h}PairProductionModel::ComputeDMicroscopicCrossSection

bash ~ \$ # G4hPairProductionModel::ComputeDMicroscopicCrossSection actually is the same as in G4MuPairProductionModel

bash ~ \$ # Note that no inlined functions are shown above, as we asked for no callchain information

Top 3 models account for ~60% of backend stalls

bash ~ \$ # Same as previous report, but for stalled-cycles-backend bash ~ \$ perf report -q --stdio --no-children -g none --percent-limit 1 -F overhead,dso,symbol Warning: Dressened 2000687 events and lost 104 shunkel

Processed 3080687 events and lost 104 chunks!

Check IO/CPU overload!

33.59%	libG4processes.so	[.] G4hPairProductionModel::ComputeDMicroscopicCrossSection
14.26%	libG4processes.so	[.] G4ElasticHadrNucleusHE::HadrNucDifferCrSec
11.97%	libG4processes.so	[.] G4MuPairProductionModel::ComputeDMicroscopicCrossSection
4.98%	libG4processes.so	[.] G4eBremsstrahlungRelModel::ComputeLPMfunctions
4.90%	libG4processes.so	[.] G4hBremsstrahlungModel::ComputeDMicroscopicCrossSection
3.80%	libG4global.so	[.] G4PhysicsVector::Value
2.46%	libG4processes.so	[.] G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection
2.09%	libG4geometry.so	[.] G4Region::BelongsTo
1.65%	libG4processes.so	[.] G4SeltzerBergerModel::ComputeDXSectionPerAtom
1.36%	libG4processes.so	[.] G4eBremsstrahlungRelModel::ComputeXSectionPerAtom
1.07%	libG4processes.so	[.] G4LossTableBuilder::BuildRangeTable
1.01%	libpythia8.so	[.] Pythia8::NNPDF::polint

bash ~ \$ # The top 3 models are responsible for ~60% of all stalled cycles
bash ~ \$ # However, L1 cache misses are about ~1.2%, so this is likely *not* a memory access problem

_138

How to improve performance?

Look for pair production model in Geant4 Physics Manual

Formulae

The differential cross section for electron pair production by muons $\sigma(Z,A,E,\epsilon)$ can be written as :

$$\sigma(Z, A, E, \epsilon) = \frac{4}{3\pi} \frac{Z(Z+\zeta)}{A} N_A \left(\alpha r_0\right)^2 \frac{1-v}{\epsilon} \int_0^{\rho_{\max}} G(Z, E, v, \rho) \, d\rho, \tag{15}$$

where

$$\begin{split} G(Z,E,v,\rho) &= \Phi_e + (m/\mu)^2 \Phi_\mu, \\ \Phi_{e,\mu} &= B_{e,\mu} L_{e,\mu}' \end{split}$$

and

 $\Phi_{e,\mu}=0 \quad ext{whenever} \quad \Phi_{e,\mu}<0.$

 B_e and B_μ do not depend on Z, A, and are given by

$$\begin{split} B_e &= [(2+\rho^2)(1+\beta) + \xi(3+\rho^2)] \ln \left(1+\frac{1}{\xi}\right) + \frac{1-\rho^2-\beta}{1+\xi} - (3+\rho^2); \\ &\approx \frac{1}{2\xi} \left[(3-\rho^2) + 2\beta(1+\rho^2)\right] \quad \text{for} \quad \xi \geq 10^3; \\ B_\mu &= \left[(1+\rho^2) \left(1+\frac{3\beta}{2}\right) - \frac{1}{\xi} (1+2\beta)(1-\rho^2) \right] \ln(1+\xi) + \frac{\xi(1-\rho^2-\beta)}{1+\xi} + (1+2\beta)(1-\rho^2); \\ B_\mu &\approx \frac{\xi}{2} \left[(5-\rho^2) + \beta(3+\rho^2)\right] \quad \text{for} \quad \xi \leq 10^{-3}; \end{split}$$

Also,

$$\begin{split} \xi &= \frac{\mu^2 v^2}{4m^2} \frac{(1-\rho^2)}{(1-v)}; \quad \beta = \frac{v^2}{2(1-v)}; \\ L'_e &= \ln \frac{A^* Z^{-1/3} \sqrt{(1+\xi)(1+Y_e)}}{1+\frac{2m\sqrt{e}A^* Z^{-1/3}(1+\xi)(1+Y_e)}{E\epsilon(1-\rho^2)}} - \frac{1}{2} \ln \left[1 + \left(\frac{3mZ^{1/3}}{2\mu}\right)^2 (1+\xi)(1+Y_e)\right]; \\ L'_\mu &= \ln \frac{(\mu/m)A^* Z^{-1/3} \sqrt{(1+1/\xi)(1+Y_\mu)}}{1+\frac{2m\sqrt{e}A^* Z^{-1/3}(1+\xi)(1+Y_\mu)}{E\epsilon(1-\rho^2)}} - \ln \left[\frac{3}{2} Z^{1/3} \sqrt{(1+1/\xi)(1+Y_\mu)}\right]. \end{split}$$

For faster computing, the expressions for $L'_{e,\mu}$ are further algebraically transformed. The functions $L'_{e,\mu}$ include the nuclear size correction [KP71] in comparison with parameterization [KP70]:

$$\begin{split} Y_e &= \frac{5-\rho^2+4\,\beta\,(1+\rho^2)}{2(1+3\beta)\ln(3+1/\xi)-\rho^2-2\beta(2-\rho^2)};\\ Y_\mu &= \frac{4+\rho^2+3\,\beta\,(1+\rho^2)}{(1+\rho^2)(\frac{3}{2}+2\beta)\ln(3+\xi)+1-\frac{3}{2}\,\rho^2};\\ \rho_{\rm max} &= [1-6\mu^2/E^2(1-v)]\sqrt{1-4m/Ev}. \end{split}$$

Comment on the Calculation of the Integral $\int d\rho$ in Eq.(154)

The integral
$$\int\limits_{0}^{\rho_{\max}} G(Z,E,v,\rho) \; d\rho$$
 is computed with the substitutions:

$$\begin{split} t &= \ln(1-\rho), \\ 1-\rho &= \exp(t), \\ 1+\rho &= 2-\exp(t), \\ 1-\rho^2 &= e^t \ (2-e^t). \end{split}$$

$$\int_0^{
ho_{\max}} G(Z,E,v,
ho) \, d
ho = \int_{t_{\min}}^0 G(Z,E,v,
ho) \, e^t \, dt,$$

where

$$t_{\min} = \ln rac{rac{4m}{\epsilon} + rac{12\mu^2}{EE'} \left(1 - rac{4m}{\epsilon}
ight)}{1 + \left(1 - rac{6\mu^2}{EE'}
ight) \sqrt{1 - rac{4m}{\epsilon}}}.$$

To compute the integral of Eq.(155) with an accuracy better than 0.5%, Gaussian quadrature with N=8 points is sufficient.

The function $\zeta(E, Z)$ in Eq.(154) serves to take into account the process on atomic electrons (inelastic atomic form factor contribution). To treat the energy loss balance correctly, the following approximation, which is an algebraic transformation of the expression in Ref. [Kel98], is used:

$$\zeta(E,Z) = rac{0.073 \ln rac{E/\mu}{1+\gamma_1 Z^{2/3} E/\mu} - 0.26}{0.058 \ln rac{E/\mu}{1+\gamma_2 Z^{1/3} E/\mu} - 0.14};$$

= 0 if the numerator is negative.

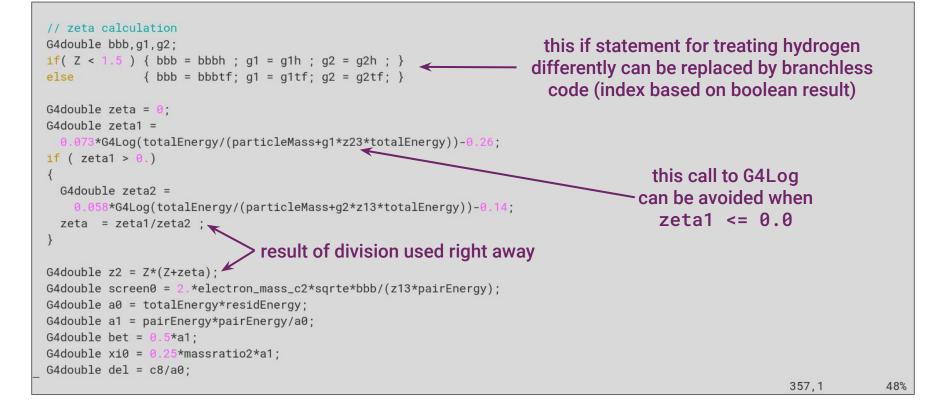
For E $\leq 35\,\mu,\ \zeta(E,Z)=0.$ Also $\gamma_1=1.95\cdot 10^{-5}$ and $\gamma_2=5.30\cdot 10^{-5}.$

The above formulae make use of the Thomas-Fermi model which is not good enough for light elements. For hydrogen (Z=1) the following parameters must be changed:

•
$$A^* = 183 \Rightarrow 202.4;$$

• $\gamma_1 = 1.95 \cdot 10^{-5} \Rightarrow 4.4 \cdot 10^{-5};$
• $\gamma_2 = 5.30 \cdot 10^{-5} \Rightarrow 4.8 \cdot 10^{-5}.$

(155


How to improve performance?

- Look for pair production model in Geant4 Physics Manual
 - Rework expressions for cross sections with pencil/paper to reduce arithmetic operations
- Avoid unnecessary calls to G4Log function when calculating zeta
- Remove data dependencies
 - Break up large for loop into several smaller for loops
 - Compute together things that don't depend on each other
 - Hide latency from divisions
 - When calling G4Log, input is already available
 - Move common expressions out of for loop
- Remove code duplication from the two classes with essentially the same version of this function by inheriting the base version in the derived class

Return early to avoid unnecessary divisions

```
commit 1c0b893bef0fe6f32fd8593989882239628262a9
Author: Guilherme Amadio <amadio@cern.ch>
   G4MuPairProductionModel: make early return condition more explicit
diff --git a/source/processes/electromagnetic/muons/src/G4MuPairProductionModel.cc b/source/processes/electromagnetic/muons/src/G4MuPairProductionMode
1.cc
index f7ba48dc7d..e0b7c550f0 100644
--- a/source/processes/electromagnetic/muons/src/G4MuPairProductionModel.cc
+++ b/source/processes/electromagnetic/muons/src/G4MuPairProductionModel.cc
@@ -321,6 +321,9 @@ G4double G4MuPairProductionModel::ComputeDMicroscopicCrossSection(
   static const G4double a1h = 4.4e-5 :
   static const G4double g2h = 4.8e-5 ;
  if (pairEnergy <= 4.0 * electron_mass_c2)
    return 0.0;
                                                                     Moving the early return up reduces unnecessary divisions.
  G4double totalEnergy = tkin + particleMass;
                                                                      Also a_3 \le 0 is harder to understand than the new form.
  G4double residEnergy = totalEnergy - pairEnergy;
  G4double massratio = particleMass/electron_mass_c2:
🥺 -334,7 +337,6 @@ G4double G4MuPairProductionModel::ComputeDMicroscopicCrossSection(
  G4double c8 = 6.*particleMass*particleMass;
  G4double alf = c7/pairEnergy;
  G4double a3 = 1. - alf;
  if (a3 <= 0.) { return cross; }</pre>
   // zeta calculation
  G4double bbb, g1, g2;
lines 685-712/3673 18%
```

Result of expensive call to G4Log not always used

Avoid calling G4Log by replacing condition

```
@@ -350,14 +350,15 @@ G4double G4MuPairProductionModel::ComputeDMicroscopicCrossSection(
  if(Z < 1.5) { bbb = bbbh : a1 = a1h : a2 = a2h : }
                { bbb = bbbtf; q1 = q1tf; q2 = q2tf; }
  else
  G4double zeta = 0;
  G4double zeta1 =
    0.073*G4Log(totalEnergy/(particleMass+g1*z23*totalEnergy))-0.26;
  if ( zeta1 > 0.)
  G4double zeta = 0.0:
                                                                                We can avoid calling G4Log by replacing
  G4double z1exp = totalEnergy / (particleMass + g1*z23*totalEnergy);
                                                                                the condition with an equivalent one for the
  // 35.221047195922 is the root of zeta1(x) = 0.073 * log(x) - 0.26, so the
                                                                                input argument of G4Log.
  // condition below is the same as zeta1 > 0.0. but without calling log(x)
  if (z1exp > 35.221047195922)
    G4double zeta2 =
      0.058*G4Log(totalEnergy/(particleMass+g2*z13*totalEnergy))-0.14;
    zeta = zeta1/zeta2 ;
    G4double z2exp = totalEnergy / (particleMass + g2*z13*totalEnergy);
    zeta = (0.073 * G4Log(z1exp) - 0.26) / (0.058 * G4Log(z2exp) - 0.14);
  G4double z2 = Z*(Z+zeta);
ines 2339-2361/3238 74%.
```

Big loop with many data dependencies (cont.)

```
G4double tmn = G4Log(tmnexp);
                                              Observations:
G4double sum = 0.:
                                              • Big for loop with fixed iteration count, but no vectorization
// Gaussian integration in ln(1-ro)
for (G4int i=0; i<8; ++i)</pre>

    Loop has common expressions that can be moved out

    Variable names make code hard to understand

  G4double a4 = G4Exp(tmn*xgi[i]);
                                              • Many data dependencies reduce parallelism
  G4double a5 = a4*(2.-a4);
  G4double a6 = 1.-a5 ;
                                                 • Results of divisions and sqrt used immediately
  G4double a7 = 1.+a6 :
                                                  Result of tmn = G4Log(tmnexp) used immediately
  G4double a9 = 3.+a6 :
                                                  Results of divisions and sqrt used inside call to G4Log
  G4double xi = xi0*a5 ;

    G4Log is called (and inlined!) 4 times just here

  G4double xii = 1./xi :
  G4double xi1 = 1.+xi :
                                                  G4Log inlined 10 times just in this function!
  G4double screen = screen0*xi1/a5 ;
  G4double yeu = 5.-a6+4.*bet*a7;
  G4double yed = 2 * (1 + 3 * bet) * G4Loq(3 + xii) - a6 - a1 * (2 - a6);
  G4double ye1 = 1.+yeu/yed ;
                                                                                        hottest source lines
  G4double ale = G4Log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ;
                                                                                     shown by perf annotate
  G4double cre = 0.5*G4Log(1.+2.25*z23*xi1*ye1/massratio2); <
  G4double be:
/srv/geant4/src/geant4-10.6.r9/source/processes/electromagnetic/muons/src/G4MuPairProductionModel.cc" 712 lines --50%--
```

Use perf annotate to find hottest parts of the code

20 C		', 100000 Hz, Event count (approx.): 113912086093
G4hPairF	ProductionModel::Comp	uteDMicroscopicCrossSection /srv/geant4/install/gcc-10.2.0/10.6.r9-MT/lib64/libG4processes.so [Perc
0.46	vdivsd	<mark>%xmm0</mark> , %xmm7, %xmm7
	G4double ale=G	4Log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ;
2.33	vmovsd	-0x88(%rbp),%xmm0
0.00	vdivsd	0x140(%r10), <mark>%xmm0</mark> ,%xmm15
	G4double ye1 =	1.+yeu/yed ;
	vaddsd	%xmm2,%xmm7,%xmm7
	G4double ale=G	4Log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ;
0.15	vmulsd	%xmm7,%xmm11, <mark>%xmm0</mark>
0.78	vucomisd	%xmm0, %xmm3
0.32	→ ja	649179 <g4hpairproductionmodel::computedmicroscopiccrosssection(double, double)+0x13e9="" double,=""></g4hpairproductionmodel::computedmicroscopiccrosssection(double,>
0.31	vsqrtsd	%xmm0, %xmm0
2.48	vmulsd	%xmm0, %xmm15, %xmm0
0.45	vmovsd	-0x50(%rbp),%xmm15
	vfmadd132sd	%xmm7,%xmm2,%xmm15
	vdivsd	%xmm15, <mark>%xmm0</mark> ,%xmm15
	G4LogConsts::d	p2uint64(double):
	tmp.d = x;	
1.99	vmovq	%xmm15,%rax
	G4LogConsts::g	etMantExponent(double, double&):
	uint64_t le =	(n >> 52);
0.15	vmovq	%xmm15,%rdx
Press 'h	n' for help on key bi	ndings

Big loop with many data dependencies

```
for (G4int i=0; i<8; ++i)</pre>
 G4double a4 = G4Exp(tmn*xgi[i]);
                                   // a4 = (1.-asymmetry)
 G4double a5 = a4*(2.-a4);
 G4double a6 = 1.-a5 :
                                                                       Data dependencies between arithmetic operations can
 G4double a7 = 1.+a6;
 G4double a9 = 3.+a6 :
                                                                       create execution latency even without cache misses.
 G4double xi = xi0*a5 ;
 G4double xii = 1./xi
 G4double xi1 = 1.+xi :
 G4double screen = screen0*xi1/a5
 G4double yeu = 5.-a6+4.*bet*a7 :
 G4double yed = 2.*(1.+3.*bet)*G4Log(3.+xii)-a6-a1*(2.-a6) ;
 G4double ye1 = 1.+yeu/yed ;
 G4double ale = G4Log(bbb/z13*sqrt(xi1rye1)/(1.+screen*ye1)) ;
 G4double cre = 0.5*G4Log(1.+2.25*z23*xi1*ye1/massratio2);
 G4double be:
 if (xi <= 1.e3) {
   be = ((2.+a6)*(1.+bet)+xi*a9)*G4Log(1.+xii)+(a5-bet)/xi1-a9:
 } else {
   be = (3.-a6+a1*a7)/(2.*xi);
 G4double fe = (ale-cre)*be;
 if ( fe < 0.) fe = 0. ;
 G4double ymu = 4.+a6 + 3.*bet*a7;
 G4double ymd = a7*(1.5+a1)*G4Log(3.+xi)+1.-1.5*a6 ;
 G4double ym1 = 1.+ymu/ymd :
```

Split it into two loops to hide latency from divisions

```
for (G4int i=0; i<8; ++i)</pre>
  G4double rho[8];
 G4double rho2[8]:
 G4double xi[8]:
 G4double xi1[8]:
 G4double xii[8];
 for (G4int i = 0; i < 8; ++i)
   G4double rho = G4Exp(tmn*xgi[i]) - 1.0; // rho = -asymmetry
   G4double rho2 = rho * rho;
   G4double xi = xi0*(1.0-rho2);
   G4double xii = 1./xi :
   G4double xi1 = 1.+xi :
   G4double screen = screen0*xi1/(1.0-rho2) ;
   G4double yeu = 5.-rho2+4.*bet*(1.0+rho2);
   G4double yed = 2.*(1.+3.*bet)*G4Log(3.+xii)-rho2-a1*(2.-rho2) ;
   rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho = -asymmetry
   rho2[i] = rho[i] * rho[i];
   xi[i] = xi0*(1.0-rho2[i]);
   xi1[i] = 1.0 + xi[i];
   xii[i] = 1.0 / xi[i];
 for (G4int i = 0; i < 8; ++i)
   G4double screen = screen0*xi1[i]/(1.0-rho2[i]) ;
   G4double yeu = 5.-rho2[i]+4.*bet*(1.0+rho2[i]) ;
   G4double yed = 2.*(1.+3.*bet)*G4Log 3.+xii[i] -rho2[i]-a1*(2.-rho2[i]);
ines 1088-1116.
```

Data dependencies between arithmetic operations can create execution latency even without cache misses.

Breaking up long loops into smaller parts makes it possible to hide some of the latency from divisions and math function calls with instruction level parallelism.

146

Reduce Code Duplication

```
-#include "G4PhysicalConstants.hh"
-#include "G4Log.hh"
-#include "G4Exp.hh"
-using namespace std;
G4hPairProductionModel::G4hPairProductionModel(const G4ParticleDefinition* p,
                                         const G4String& nam)
@@ -65,114 +60,3 @@ G4hPairProductionModel::~G4hPairProductionModel()
{}
-G4double G4hPairProductionModel::ComputeDMicroscopicCrossSection(
                                       G4double tkin,
                                       G4double Z,
                                       G4double pairEnergy)
    differential cross section
  static const G4double bbbtf= 183. ;
  static const G4double bbbh = 202.4 :
  static const G4double g1tf = 1.95e-5 ;
  static const G4double g2tf = 5.3e-5 ;
  static const G4double g1h = 4.4e-5 ;
                                                         This was a copy of
  static const G4double g2h = 4.8e-5 ;
                                                         G4MuPairProductionModel::ComputeDMicroscopicCrossSection.
  G4double totalEnergy = tkin + particleMass;
                                                         We can keep only the copy from the base class.
  G4double residEnergy = totalEnergy - pairEnergy;
  G4double massratio
                      = particleMass/electron_mass_c2 ;
Lines 511-539
```

From ~40% of initialization to ~27%, not bad!

bash ~ \$ perf report -q --stdio --no-children -g none --percent-limit 1 -F overhead,dso,symbol Warning:

Processed 2720752 events and lost 7 chunks!

Check IO/CPU overload!

March 1995		
26.88%	libG4processes.so	[.] G4MuPairProductionModel::ComputeDMicroscopicCrossSection
12.60%	libG4processes.so	[.] G4ElasticHadrNucleusHE::HadrNucDifferCrSec
4.60%	libG4processes.so	[.] G4eBremsstrahlungRelModel::ComputeLPMfunctions
4.53%	libG4processes.so	[.] G4hBremsstrahlungModel::ComputeDMicroscopicCrossSection
3.96%	libG4global.so	[.] G4PhysicsVector::Value
2.33%	libG4geometry.so	[.] G4Region::BelongsTo
2.26%	libG4processes.so	[.] G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection
1.78%	libG4processes.so	[.] G4SeltzerBergerModel::ComputeDXSectionPerAtom
1.67%	libG4processes.so	<pre>[.] G4ProductionCutsTable::ScanAndSetCouple</pre>
1.63%	libpythia8.so	[.] Pythia8::NNPDF::polint
1.39%	libG4processes.so	[.] G4eBremsstrahlungRelModel::ComputeXSectionPerAtom
1.30%	libG4geometry.so	[.] G4LogicalVolume::GetMaterial
1.06%	libG4processes.so	[.] G4LossTableBuilder::BuildRangeTable
1.01%	libc-2.32.so	[.] malloc

bash ~ \$

Revisiting overview of Geant4 initialization (before)

bash ~ \$ perf stat -r 3 -d -- taskset -c 0 /srv/geant4/install/gcc-10.2.0/10.6.r9-MT/bin/g4run -g ~/src/g4run/CMS.gdml -p pythia
:ttbar -e 0

Performance counter stats for 'taskset -c 0 /srv/geant4/install/gcc-10.2.0/10.6.r9-MT/bin/g4run -g /home/amadio/src/g4run/CMS.g dml -p pythia:ttbar -e 0' (3 runs):

21454.06	msec	task-clock	#	0.953	CPUs utilized	(+-	0.07%)	
1520		context-switches	#	0.071	K/sec	(+-	48.20%)	
1		cpu-migrations	#	0.000	K/sec				
110280		page-faults	#	0.005	M/sec	(+-	0.06%)	
93708948749		cycles	#	4.368	GHz	(+-	0.02%)	(74.96%)
428488171		stalled-cycles-frontend	#	0.46%	frontend cycles idle	(+-	2.14%)	(74.95%)
62140664026		stalled-cycles-backend	#	66.31%	backend cycles idle	(+-	0.04%)	(74.97%)
129389101781		instructions	#	1.38	insn per cycle				
			#	0.48	stalled cycles per insn	(+-	0.04%)	(75.02%)
16731397508		branches	#	779.871	M/sec	(+-	0.06%)	(75.06%)
156166747		branch-misses	#	0.93%	of all branches	(+-	0.17%)	(75.09%)
58140887925		L1-dcache-loads	#	2710.018	M/sec	(+-	0.10%)	(75.02%)
685016614		L1-dcache-load-misses	#	1.18%	of all L1-dcache accesse	es	(+- 1.28%) (74.93%)
<not supported=""></not>		LLC-loads							
<not supported=""></not>		LLC-load-misses							

22.513 +- 0.637 seconds time elapsed (+- 2.83%)

Revisiting overview of Geant4 initialization (after)

bash ~ \$ perf stat -r 3 -d -- taskset -c 0 /srv/geant4/install/gcc-10.2.0/10.6.r10-MT/bin/g4run -g ~/src/g4run/CMS.gdml -p pythi a:ttbar -e 0

Performance counter stats for 'taskset -c 0 /srv/geant4/install/gcc-10.2.0/10.6.r10-MT/bin/g4run -g /home/amadio/src/g4run/CMS. gdml -p pythia:ttbar -e 0' (3 runs):

17517.74	msec	task-clock	#	0.982	CPUs utilized	(+-	0.20%)	
282		context-switches	#	0.016	K/sec	(+-	1.13%)	
1		cpu-migrations	#	0.000	K/sec				
110368		page-faults	#	0.006	M/sec	(+-	0.01%)	
76145083799		cycles	#	4.347	GHz	(+-	0.11%)	(74.98%)
428362729		stalled-cycles-frontend	#	0.56%	frontend cycles idle	(+-	0.83%)	(74.98%)
45042101836		stalled-cycles-backend	#	59.15%	backend cycles idle	(+-	0.14%)	(74.99%)
125423223087		instructions	#	1.65	insn per cycle				
			#	0.36	stalled cycles per insn	(+-	0.04%)	(74.96%)
16930383319		branches	#	966.471	M/sec	(+-	0.23%)	(74.94%)
157044670		branch-misses	#	0.93%	of all branches	(+-	0.02%)	(75.04%)
57470258214		L1-dcache-loads	#	3280.690	M/sec	(+-	0.09%)	(75.09%)
675844171		L1-dcache-load-misses	#	1.18%	of all L1-dcache accesse	s	(+	- 0.35%) (75.02%)
<not supported=""></not>		LLC-loads							
<not supported=""></not>		LLC-load-misses							

17.8476 +- 0.0237 seconds time elapsed (+- 0.13%)

DWARF can show time spent in inlined functions

Sam	ples: 2M	of event	'cycles', Event coun	t (approx.):	113912086093				
С	hildren	Self	Shared Object	Symb	ol				
-	38.11%	0.01%	libG4processes.so	[.]	G4MuPairProductionModel::ComputeCrossSectionPerAtom				
4	- 38.10%	G4MuPairP	roductionModel::Comp	uteCrossSect	tionPerAtom				
	- 38.1	10% G4MuPa	irProductionModel::C	omputeMicros	scopicCrossSection				
	- 28.15% G4hPairProductionModel::ComputeDMicroscopicCrossSection								
		+ 19.40%	G4Log (inlined)						
		0.60% G	4Exp (inlined)						
	- 9	9.77% G4Mu	PairProductionModel:	:ComputeDMid	croscopicCrossSection				
		+ 6.72% G	4Log (inlined)						
+	38.10%	0.19%	libG4processes.so	[.]	G4MuPairProductionModel::ComputeMicroscopicCrossSection				
+	29.84%	29.82%	libG4processes.so	[.]	G4hPairProductionModel::ComputeDMicroscopicCrossSection				
+	20.55%	0.00%	libG4processes.so	[.]	G4Log (inlined)				
+	13.04%	0.00%	libG4processes.so	[.]	G4HadronicInteractionRegistry::InitialiseModels				
+	10.70%	0.00%	libG4processes.so	[.]	G4ElasticHadrNucleusHE::InitialiseModel				
+	10.70%	0.00%	libG4processes.so	[.]	G4ElasticHadrNucleusHE::FillData				
+	10.69%	0.00%	libG4processes.so	[.]	G4ElasticHadrNucleusHE::FillFq2				
+	10.69%	10.30%	libG4processes.so	[.]	G4ElasticHadrNucleusHE::HadrNucDifferCrSec				
+	10.50%	0.00%	libG4run.so	[.]	G4RunManager::Initialize				
+	10.39%	10.38%	libG4processes.so	[.]	G4MuPairProductionModel::ComputeDMicroscopicCrossSection				
+	9.19%	0.00%	libG4run.so	[.]	G4VUserPhysicsList::PreparePhysicsTable				
+	9.18%	0.00%	libG4processes.so	[.]	G4EmModelManager::Initialise				
+	8.93%	0.00%	g4run	[.]	DetectorConstruction::Construct				
Tip	: See ass	sembly ins	tructions with perce	ntage: perf	annotate <symbol></symbol>				

DWARF also allows to sort by source line

JV	rhead	Source:Line	
	5.50%	G4Log.hh:250	
	4.05%	G4Exp.hh:213	
	3.64%	G4Log.hh:195	
	2.58%	G4Log.hh:258	Physics models call G4Log and G4Exp many times during
	2.55%	G4Log.hh:235	initialization, so the results on the left are expected.
	2.39%	G4Log.hh:254	
	2.14%	G4Log.hh:253	However, this is also an indication that there may be room for
	2.02%	G4Log.hh:244	optimization in G4Log and G4Exp as well, since we see backend stall
	1.93%	G4hPairProductionModel.cc:142	cycles without many L1 cache misses.
	1.90%	G4hPairProductionModel.cc:157	G4Log at least is also called many times in the event loop to fetch
	1.88%	G4Log.hh:251	cross section data with energy interpolated as log(E).
	1.83%	G4Exp.hh:210	
	1.79%	G4Log.hh:256	
	1.45%	G4hPairProductionModel.cc:170	
	1.37%	G4Exp.hh:218	
	1.36%	G4Log.hh:148	
	1.30%	G4Log.hh:248	
	1.29%	G4Log.hh:117	
	1.20%	G4Log.hh:115	
	1.18%	G4hPairProductionModel.cc:140	
	1.18%	G4Log.hh:242	

DWARF also allows to sort by source line (2)

amples: 1M of event 'cycles', Event count (approx.): 4457340036	55
Overhead Source:Line 1.65% ThreeVector.icc:255 OUUSE Sector 2000 (inclined)	
 CLHEP::Hep3Vector::dot (inlined) + 0.64% G4PolyhedraSide::DistanceAway 	Same as before, but sampled in the event loop.
+ 0.50% G4PolyhedraSide::DistanceToOneSide + 0.21% G4PolyhedraSide::Distance	
0.13% G4PolyhedraSide::Intersect	
1.62% stl_algobase.h:235 - 1.61% std::min <double> (inlined)</double>	
+ 1.53% G4PhysicsVector::Interpolation (inlined) 1.59% stl_algobase.h:259	
- 1.59% std::max <double> (inlined)</double>	
+ 1.17% G4PhysicsVector::LogVectorValue + 0.23% G4SteppingManager::CalculateSafety (inlined)	
1.37% ThreeVector.icc:75 1.23% G4CrossSectionDataStore.cc:336	
G4CrossSectionDataStore::GetCrossSection	
 G4CrossSectionDataStore::ComputeCrossSection + 1.23% G4HadronicProcess::GetMeanFreePath 	
1.04% fenv_private.h:416	
0.92% stl_vector.h:1046 0.92% G4PolyhedraSide.cc:1165	
p: Skip collecting build-id when recording: perf record -B	

Data dependencies seem to be the culprit again

```
G4double px = G4LogConsts::get_log_px(x);
```

```
// for the final formula
const G4double x^2 = x * x;
px *= x:
                                                                           Looking at the code for G4Log, we see
px *= x2;
                                                                          that the line with most stalls
const G4double qx = G4LogConsts::get_log_qx(x);
                                                                           (G4Log.hh:250 in previous slide) is a
                                                                           line immediately using the result of a
G4double res = px / qx;
                                                                           division after it is computed.
res -= fe * 2.121944400546905827679e-4:
res -= 0.5 * x2;
res = x + res:
res += fe * 0.693359375:
if(original_x > G4LogConsts::LOG_UPPER_LIMIT)
  res = std::numeric_limits<G4double>::infinity();
if(original_x < G4LogConsts::LOG_LOWER_LIMIT) // THIS IS NAN!</pre>
  res = -std::numeric_limits<G4double>::quiet_NaN();
```

return res;

'/srv/geant4/src/geant4-10.6.r9/source/global/management/include/G4Log.hh" 350 lines --71%--

250,3 72%

G4Log inlined many times, maybe that's a problem?

bash geant4-10.6.r9 \$ git grep 'G4Log(' source/ | head = (G4int)(G4Log(sc) / G4Log(base) + 0.5); source/global/HEPNumerics/src/G4JTPolynomialSolver.cc: 1 source/global/HEPNumerics/src/G4JTPolynomialSolver.cc: x = G4Exp((G4Log(-pt[n]) - G4Log(pt[0])) / (G4double) n);source/global/management/include/G4Log.hh:inline G4double G4Log(G4double x) source/global/management/include/G4PhysicsVector.icc: bin = size_t(std::max(G4Log(theEnergy) * invdBin - baseBin, 0.0)); source/global/management/include/G4Pow.hh: res = G4Log(a); res = G4Loq(a); source/global/management/include/G4Pow.hh: source/global/management/src/G4PhysicsLogVector.cc: invdBin = 1. / (G4Log(theEmax / theEmin) / (G4double) (numberOfNodes - 1)); source/global/management/src/G4PhysicsLogVector.cc: baseBin = G4Log(theEmin) * invdBin; source/global/management/src/G4PhysicsLogVector.cc: invdBin = 1. / G4Log(binVector[1] / edgeMin); source/global/management/src/G4PhysicsLogVector.cc: baseBin = G4Log(edgeMin) * invdBin; bash geant4-10.6.r9 \$ git grep -c 'G4Log(' source/ | head source/global/HEPNumerics/src/G4JTPolynomialSolver.cc:2 source/global/management/include/G4Log.hh:1 source/global/management/include/G4PhysicsVector.icc:1 source/global/management/include/G4Pow.hh:2 G4Log inlined at least 932 times in physics processes. source/global/management/src/G4PhysicsLogVector.cc:6 Makes libG4processes.so 1–2% larger because of this. source/global/management/src/G4Pow.cc:4 (release ~300K larger / debug 10MB larger) source/materials/include/G4IonisParamMat.hh:1 source/materials/src/G4DensityEffectCalculator.cc:4 source/materials/src/G4Element.cc:3 source/materials/src/G4IonisParamMat.cc:11 bash geant4-10.6.r9 \$ git grep -c 'G4Log(' source/processes/ | awk -F : '{sum += \$2} END { print sum }' 932

G4Log inlined many times, but it's not a problem (yet)

G4Log function inlined

bash ~ \$ perf stat -r 5 -- taskset -c 0 /srv/geant4/install/gcc-10.2.0/master-MT/bi n/g4run -g /srv/geant4/gdml/CMS.gdml -p pythia:ttbar -e 0 2>&1 | cut -b -83 Performance counter stats for 'taskset -c 0 /srv/geant4/install/gcc-10.2.0/master-17290.23 msec task-clock 0.961 CPUs utilized 291 context-switches # 0.017 K/sec # 0.000 K/sec 1 cpu-migrations 111152 page-faults # 0.006 M/sec 76427613719 cycles 4.420 GHz # stalled-cvcles-frontend # 0.59% frontend cycles idle 448704342 stalled-cycles-backend 59.44% backend cycles idle 45431920601 # 125558491994 1.64 insn per cycle instructions # 0.36 stalled cycles per ins # # 984.333 M/sec 17019334780 branches 157955893 branch-misses 0.93% of all branches # 17.999 +- 0.392 seconds time elapsed (+- 2.18%) bash ~ \$ bash ~ \$

G4Log function not inlined

bash ~ \$ perf stat -r 5 -- taskset -c 0 /srv/geant4/install/gcc-10.2.0/amadio-MT/bi
n/g4run -g /srv/geant4/gdml/CMS.gdml -p pythia:ttbar -e 0 2>&1 | cut -b -83

Performance counter stats for 'taskset -c 0 /srv/geant4/install/gcc-10.2.0/amadio-

17867.15	msec	task-clock	#	0.982	CPUs utilized
301		context-switches	#	0.017	K/sec
1		cpu-migrations	#	0.000	K/sec
111092		page-faults	#	0.006	M/sec
79215774857		cycles	#	4.434	GHz
440356271		stalled-cycles-frontend	#	0.56%	frontend cycles idle
44536128217		stalled-cycles-backend	#	56.22%	backend cycles idle
134984466012		instructions	#	1.70	insn per cycle
			#	0.33	stalled cycles per ins
19095299031		branches	#	1068.738	M/sec
166932047		branch-misses	#	0.87%	of all branches
18.1884	+- 0	.0134 seconds time elapsed	d l	(+- 0.07	7%)
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

### No big difference, so problem is not due to code bloat

### What happens if we use std::log and std::exp?

**bash ~ \$** perf stat -r 3 -d -- taskset -c 0 /srv/geant4/install/gcc-10.2.0/amadio-MT/bin/g4run -g ~/src/g4run/CMS.gdml -p pythia: ttbar -e 0

Performance counter stats for 'taskset -c 0 /srv/geant4/install/gcc-10.2.0/amadio-MT/bin/g4run -g /home/amadio/src/g4run/CMS.gd ml -p pythia:ttbar -e 0' (3 runs):

15773.13	msec	task-clock	#	0.972	CPUs utilized	(	+-	0.08%	)	
1284		context-switches	#	0.081	K/sec	(	+-	40.16%	)	
1		cpu-migrations	#	0.000	K/sec					
111287		page-faults	#	0.007	M/sec	(	+-	0.05%	)	
68324629875		cycles	#	4.332	GHz	(	+-	0.06%	)	(75.04%)
373986440		stalled-cycles-frontend	#	0.55%	frontend cycles idle	(	+-	1.07%	)	(74.95%)
36522879398		stalled-cycles-backend	#	53.45%	backend cycles idle	(	+-	0.26%	)	(75.00%)
137884394122		instructions	#	2.02	insn per cycle					
			#	0.26	stalled cycles per insn (	(	+-	0.05%	)	(74.99%)
19884639889		branches	#	1260.666	M/sec	(	+-	0.11%	)	(74.98%)
86643525		branch-misses	#	0.44%	of all branches	(	+-	0.68%	)	(74.98%)
58388354221		L1-dcache-loads	#	3701.762	M/sec	(	+-	0.08%	)	(74.98%)
694825388		L1-dcache-load-misses	#	1.19%	of all L1-dcache accesses		( +	- 0.42	%)	(75.09%)
<not supported=""></not>		LLC-loads								
<not supported=""></not>		LLC-load-misses Ext	ra ~	·10% spe	edup! Could make sense	t	o u	se std:	:log	g at initialization only.

16.2350 +- 0.0809 seconds time elapsed ( +- 0.50% )

### A pinch of UNIX wisdom – on handling complexity

**Rule 1** You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places, so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

**Rule 2** *Measure*. Don't tune for speed until you've measured, and even then don't unless one part of the code overwhelms the rest.

**Rule 3** Fancy algorithms are slow when **n** is small, and **n** is usually small. Fancy algorithms have big constants. Until you know that **n** is frequently going to be big, don't get fancy. (Even if **n** does get big, use Rule 2 first.)

**Rule 4** Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms as well as simple data structures.

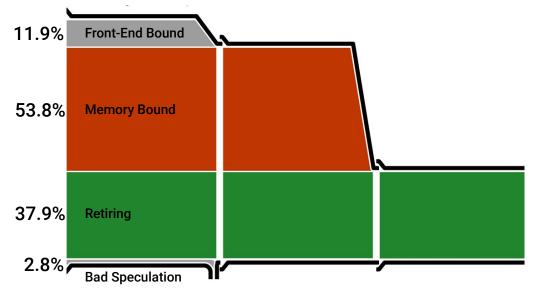
**Rule 5** Data dominates. If you've chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.

### A pinch of UNIX wisdom – on handling complexity

**Rule 1** You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places, so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

# **Rule 2** *Measure*. Don't tune for speed until you've measured, and even then don't unless one part of the code overwhelms the rest.

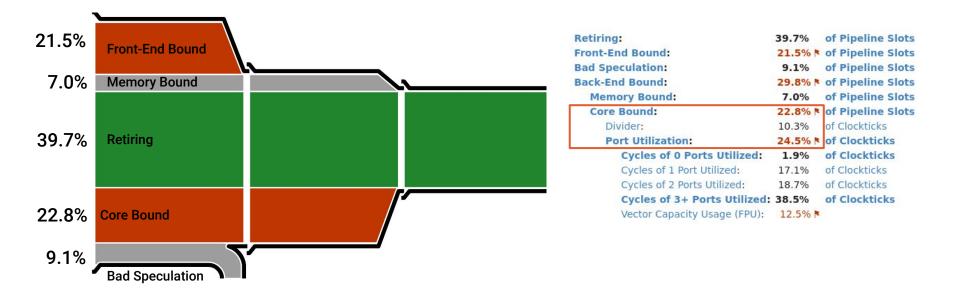
**Rule 3** Fancy algorithms are slow when **n** is small, and **n** is usually small. Fancy algorithms have big constants. Until you know that **n** is frequently going to be big, don't get fancy. (Even if **n** does get big, use Rule 2 first.)


**Rule 4** Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms as well as simple data structures.

**Rule 5** Data dominates. If you've chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.

#### Rule 6 There is no Rule 6.

from "Notes on C Programming", by Rob Pike


### **Geant4 Microarchitecture Usage on Haswell Server**



Mostly memory bound on Haswell

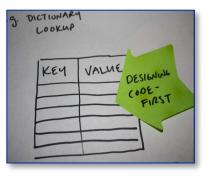
Retiring:	37.9%	of Pipeline Slots
Front-End Bound:	11.9%	of Pipeline Slots
Bad Speculation:	2.8%	of Pipeline Slots
Back-End Bound:	47.3%	of Pipeline Slots
Memory Bound:	53.8%	of Pipeline Slots
L1 Bound:	48.9%	of Clockticks
DTLB Overhead:	13.3%	of Clockticks
Loads Blocked by Store Forwarding:	0.0%	of Clockticks
Lock Latency:	0.0%	of Clockticks
Split Loads:	0.0%	of Clockticks
4K Aliasing:	0.3%	of Clockticks
FB Full:	0.0%	of Clockticks
L2 Bound:	0.0%	of Clockticks
L3 Bound:	5.6%	of Clockticks
Contested Accesses:	0.0%	of Clockticks
Data Sharing:	0.0%	of Clockticks
L3 Latency:	6.9%	of Clockticks
SQ Full:	0.0%	of Clockticks
DRAM Bound:	0.0%	of Clockticks
Store Bound:	0.0%	of Clockticks
Core Bound:	0.0%	of Pipeline Slots

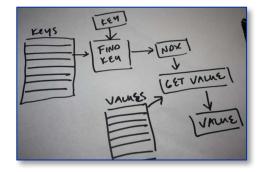
### **Geant4 Microarchitecture Usage on Skylake Desktop**



Mostly frontend and core bound on Skylake, quite different than Haswell

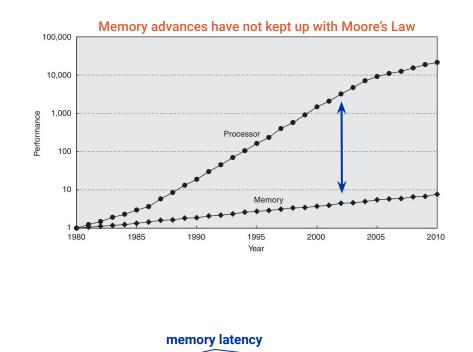
### **Conclusions and lessons learned**


- Problems don't always happen where we expect
  - Always measure to make sure your hypothesis for the cause is correct
- The fastest thing you can do is to not do anything
  - Avoid unnecessary work in your code (e.g. checking field manager for neutral particles)
- Beware of data dependencies
  - Reoder computations to take advantage of instruction level parallelism
  - Strong dependencies can make your code slow even if L1 misses are low
- Beware of indirect accesses via pointers and calls to other shared objects
  - Patterns like obj->GetFoo()->GetBar()->GetBaz() are too common in C++
  - Accessing Baz becomes as expensive as traversing a list every time, bad for locality
  - Frequent calls across shared objects are expensive, it's better to merge into a single library


# **Data-Oriented Design**

### What is Data-Oriented Design?

- CppCon 2014 talk by Mike Acton
- Reminder of first principles on how data structures influence final performance
- A program is something that transforms input data from one form to another
- If you don't understand the data, you don't understand the problem
- Different data  $\Rightarrow$  different problem
- Where there's one, there are many, optimize for the many
- You need to understand the hardware your software is running on








### CPU vs Memory Performance Gap

- CPU performance has grown much faster than memory performance
- Memory access latency is often the main performance issue
- L3 cache has grown significantly, but L1 and L2 remain relatively small
- L2 cache misses are still expensive
- Ultimately, speed of light limits peak performance (c ≈ 30cm / ns)



### Latency Numbers Every Programmer Should Know

•	1ns (~5 CPU cycles)	•
•	L1 cache reference: 1ns	
	Branch mispredict: 3ns	
	L2 cache reference: 4ns	
	Mutex lock/unlock: 17ns	
	100ns = ■	

•	Main memory reference: 100ns	
	1,000ns ≈ 1µs	•
	Compress 1KB wth Zippy: 2,000ns ≈ 2µs	ł
	10,000ns ≈ 10µs = ■	

Send 2,000 bytes over				
commodity network: 44ns				

- SSD random read: 16,000ns ≈ 16µs
- Read 1,000,000 bytes sequentially from memory: 3,000ns  $\approx$  3µs
- Round trip in same datacenter: 500,000ns ≈ 500µs
  - 1,000,000ns = 1ms = **=**

- Read 1,000,000 bytes sequentially from SSD: 49,000ns  $\approx 49\mu$ s
- Disk seek: 2,000,000ns ≈ 2ms
- Read 1,000,000 bytes sequentially from disk: 825,000ns ≈ 825µs
- Packet roundtrip CA to Netherlands: 150,000,000ns ≈ 150ms

Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html

### **Object-Oriented vs Data-Oriented Design**

### **Object-Oriented**

- Polymorphism, abstract interfaces
  - Defer implementation to concrete types
- Classes, Inheritance, Encapsulation
  - Data available only via exposed interface
- Data and operations/behavior together
  - Extend data and behavior
  - Reuse code from parent classes
  - Less chance to optimize data layout
  - Higher demand on instruction cache
    - Many methods per object type

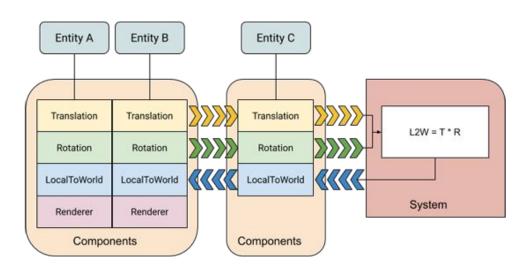
### **Data-Oriented**

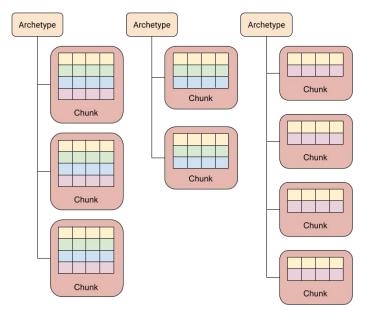
- Optimize memory access pattern
  - Make use of full cachelines
  - Use all available memory bandwidth
  - Spatial and temporal cache locality
- Data structures separate from code
  - Improves also front-end metrics
  - Move all movable objects together
  - Single function rather than methods
  - Commonly implemented as an Entity-Component-System in games

### A pinch of UNIX wisdom – on handling complexity

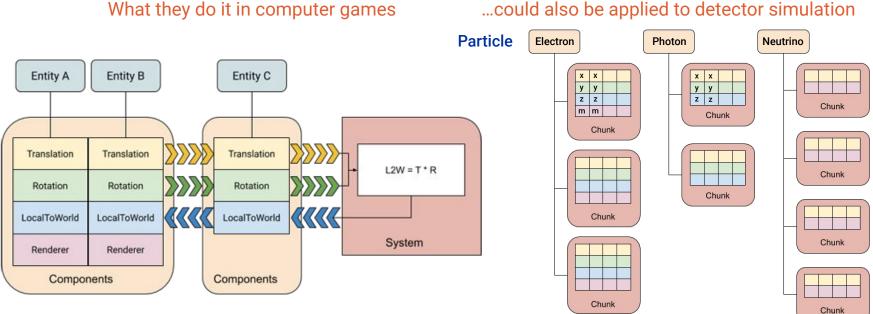
**Rule 1** You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places, so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

**Rule 2** *Measure*. Don't tune for speed until you've measured, and even then don't unless one part of the code overwhelms the rest.


**Rule 3** Fancy algorithms are slow when **n** is small, and **n** is usually small. Fancy algorithms have big constants. Until you know that **n** is frequently going to be big, don't get fancy. (Even if **n** does get big, use Rule 2 first.)


**Rule 4** Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms as well as simple data structures.

**Rule 5** Data dominates. If you've chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.


# **Entity Component System Concepts**

#### What they do it in computer games





# **Entity Component System Concepts**



#### ...could also be applied to detector simulation

### Array of Structure vs Structure of Array Data Layouts

#### **AoS Structure**

```
struct track {
      /* event structure */
      int32_t id;
      int32_t parent;
      /* geometry data */
      float x:
      float y;
      float z:
      int32_t geometry_id;
      /* physics data */
      float vx;
      float vy;
      float vz;
      float E:
       . . .
};
```

#### **SoA Structure**

```
template<unsigned int N>
struct TrackBlock {
   static constexpr unsigned int nElem = N;
```

```
/* event structure */
```

std::array<int32_t, nElem> id; std::array<int32_t, nElem> parent;

```
/* geometry data */
```

std::array<float, nElem> x; std::array<float, nElem> y; std::array<float, nElem> z;

```
static constexpr mass = 0.511f;
```

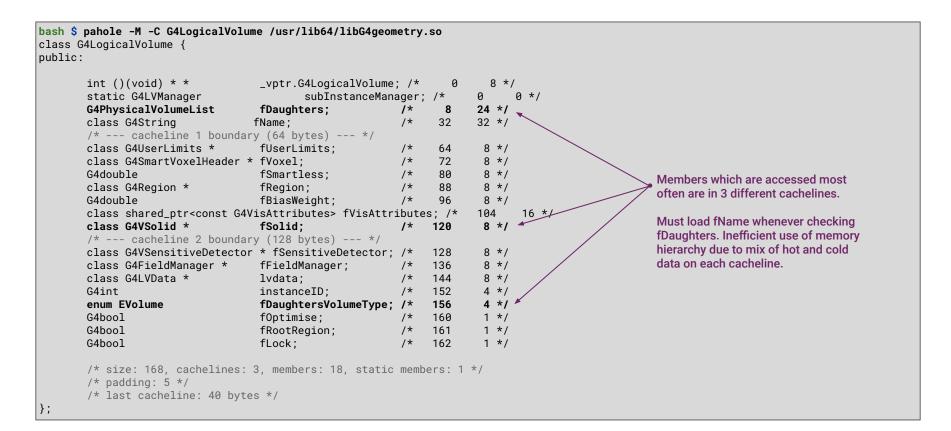
};

# Performance numbers for simple kinetic energy kernel

#### **AoS Data Layout**

Performance counter stats for 'AoS' (average of 20 runs):

483.46	msec	task-clock	#		CPUs utilized
1		context-switches	#		K/sec
0		cpu-migrations	#	0.000	K/sec
1138		page-faults	#	0.002	M/sec
1687395641		cycles	#	3.490	GHz
106037669		stalled-cycles-frontend	#	6.28%	frontend cycles idle
1283753418		stalled-cycles-backend	#	76.08%	backend cycles idle
1996927212		instructions	#	1.18	insn per cycle
			#	0.64	stalled cycles per insn
19497066		branches	#	40.328	M/sec
40196		branch-misses	#	0.21%	of all branches
622021303		L1-dcache-loads	#	1286.609	M/sec
123124358		L1-dcache-load-misses	#	19.79%	of all L1-dcache access
42493039		L1-icache-loads	#	87.894	M/sec
<b>42493039</b> 149328		<b>L1-icache-loads</b> L1-icache-load-misses	# #		
				0.35%	of all L1-icache access
149328		L1-icache-load-misses	#	0.35% 0.064	of all L1-icache access M/sec
149328 31003		L1-icache-load-misses dTLB-loads	# #	0.35% 0.064 27.73%	of all L1-icache access


#### **SoA Data Layout**

Performance counter stats for 'SoA' (average of 20 runs):

118.78 msec	task-clock	#	0 004	CPUs utilized
110.70 msec	context-switches	#		
1				
0	cpu-migrations		0.000	
1138	page-faults	#	0.010	M/sec
414521761	cycles	#	3.490	GHz
131647110	stalled-cycles-frontend	#	31.76%	frontend cycles idle
182606710	stalled-cycles-backend	#	44.05%	backend cycles idle
122945544	instructions	#	0.30	insn per cycle
		#	1.49	stalled cycles per insn
17639259	branches	#	148.508	M/sec
38941	branch-misses	#	0.22%	of all branches
81264204	L1-dcache-loads	#	684.179	M/sec
42555034	L1-dcache-load-misses	#	52.37%	of all L1-dcache accesses
42555034 8799361	L1-dcache-load-misses L1-icache-loads	# #		
			74.083	
8799361	L1-icache-loads	#	<b>74.083</b> 0.44%	M/sec of all L1-icache accesses
<b>8799361</b> 38984	<b>L1-icache-loads</b> L1-icache-load-misses	# #	<b>74.083</b> 0.44% 0.110	M/sec of all L1-icache accesses
<b>8799361</b> 38984 13098	<b>L1-icache-loads</b> L1-icache-load-misses dTLB-loads	# # #	<b>74.083</b> 0.44% 0.110 51.33%	M/sec of all L1-icache accesses M/sec of all dTLB cache accesses
<b>8799361</b> 38984 13098 6723	<b>L1-icache-loads</b> L1-icache-load-misses dTLB-loads dTLB-load-misses	# # # #	<b>74.083</b> 0.44% 0.110 51.33% 0.040	M/sec of all L1-icache accesses M/sec of all dTLB cache accesses
<b>8799361</b> 38984 13098 6723 5	L1-icache-loads L1-icache-load-misses dTLB-loads dTLB-load-misses iTLB-loads	# # # #	<b>74.083</b> 0.44% 0.110 51.33% 0.040	M/sec of all L1-icache accesses M/sec of all dTLB cache accesses K/sec
8799361 38984 13098 6723 5 112	L1-icache-loads L1-icache-load-misses dTLB-loads dTLB-load-misses iTLB-loads	# # # # # #	<b>74.083</b> 0.44% 0.110 51.33% 0.040	M/sec of all L1-icache accesses M/sec of all dTLB cache accesses K/sec
8799361 38984 13098 6723 5 112	L1-icache-loads L1-icache-load-misses dTLB-loads dTLB-load-misses iTLB-loads iTLB-load-misses	# # # # # #	<b>74.083</b> 0.44% 0.110 51.33% 0.040	M/sec of all L1-icache accesses M/sec of all dTLB cache accesses K/sec

About 4x faster for SoA. Much lower number of cycles, L1 loads, and TLB loads, easily auto-vectorized.

### pahole – inspect layout of data structures



### perf – memory access analysis: loads and stores

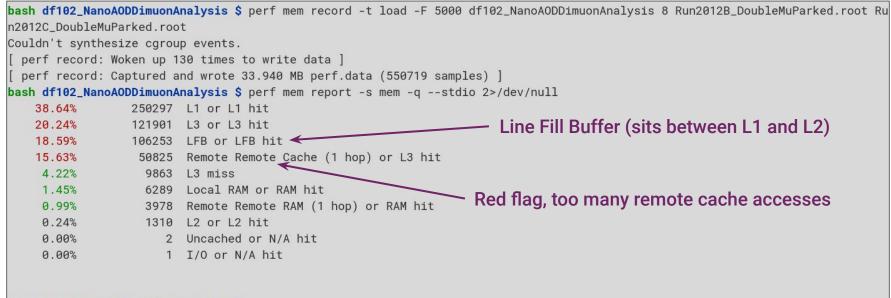
PERF-MEM(1) perf Manual
NAME
perf-mem - Profile memory accesses
SYNOPSIS
perf mem [<options>] (record [<command>] | report)

#### DESCRIPTION

"perf mem record" runs a command and gathers memory operation data from it, into perf.data. Perf record options are accepted and are passed through.

"perf mem report" displays the result. It invokes perf report with the right set of options to display a memory access profile. By default, loads and stores are sampled. Use the -t option to limit to loads or stores.

Note that on Intel systems the memory latency reported is the use-latency, not the pure load (or store latency). Use latency includes any pipeline queueing delays in addition to the memory subsystem latency.


On Arm64 this uses SPE to sample load and store operations, therefore hardware and kernel support is required. See **perf-arm-spe**(1) for a setup guide. Due to the statistical nature of SPE sampling, not every memory operation will be sampled.

#### OPTIONS

Manual page perf-mem(1) line 1 (press h for help or q to quit)

PERF-MEM(1)

# perf – memory access analysis: ROOT RDataFrame



bash df102_NanoAODDimuonAnalysis \$ _

# Using perf to measure average load latency

bash df102_NanoAODDimuonAnalysis \$ perf stat -M Load_Miss_Real_Latency -- df102_NanoAODDimuonAnalysis 8 Run2012B_DoubleMuParked. root Run2012C_DoubleMuParked.root

Performance counter stats for 'df102_NanoAODDimuonAnalysis 8 Run2012B_DoubleMuParked.root Run2012C_DoubleMuParked.root':

970,326,211mem_load_uops_retired.hit_lfb #188.23 Load_Miss_Real_Latency438,536,118,97011d_pend_miss.pendingin CPU cycles1,359,436,464mem_load_uops_retired.l1_missin CPU cycles

20.844816183 seconds time elapsed

148.564065000 seconds user 2.591617000 seconds sys

Avg. load latency = L1 miss pending cycles / (L1 misses + LFB hits)

bash df102_NanoAODDimuonAnalysis \$ perf list mem_load_uops_retired.hit_lfb | uniq

#### cache:

mem_load_uops_retired.hit_lfb
 [Retired load uops which data sources were load uops missed L1 but hit
 FB due to preceding miss to the same cache line with data not ready
 Supports address when precise. Spec update: HSM30 (Precise event)]

Metric Groups:

### perf mem report -s mem

0	verhead	of event 'cpu/mem-loads,ldlat=50/P', Event count (approx.): 172369311 Samples Memory access		
-	41.51%	226882 L1 or L1 hit		
	+ 17.49% 0x	fffffffffffff		
	- 12.00%	GIclone (inlined)		
	- 12.00%	start_thread		
- 12.00% tbb::internal::rml::private_worker::thread_routine				
- tbb::internal::rml::private_worker::run				
		- 11.99% tbb::internal::market::process		
		tbb::internal::arena::process		
		tbb::internal::custom_scheduler <tbb::internal::intelschedulertraits>::local_wait_for_all</tbb::internal::intelschedulertraits>		
		tbb::internal::custom_scheduler <tbb::internal::intelschedulertraits>::process_bypass_loop</tbb::internal::intelschedulertraits>		
		- tbb::interface9::internal::start_for <tbb::blocked_range<unsigned int="">, tbb::internal::parallel_for_body</tbb::blocked_range<unsigned>		
		- 10.39% 0x7f4e4344317f		
		- 10.18% 0x7f4e42dffa42		
		- ROOT::Detail::RDF::RLoopManager::RunAndCheckFilters		
		+ 8.11% ROOT::Internal::RDF::RActionCRTP <root::internal::rdf::raction<root::internal::rdf::fil< td=""></root::internal::rdf::raction<root::internal::rdf::fil<>		
	+ 2.10% 0x5	id581065ec7		
	18.96%	113828 LFB or LFB hit		
	17.36%	114120 L3 or L3 hit		
	13.12%	59491 Remote Remote Cache (1 hop) or L3 hit		
		14681 N/A miss		

# perf mem report -s dso,symbol

Sa	mples: 543K o	f event 🔽	pu/mem-loads,ldlat=50/P , Eve	nt c	ount (approx.): 172369311
	0verhead	Samples	Shared Object	Sym	bol
+	27.12%	131151	df102_NanoAODDimuonAnalysis	[.]	ROOT::Detail::RDF::RFilter <bool (*)(unsigned="" int),="" root::detail::rdf:<="" th=""></bool>
+	17.33%	66980	libTree.so.6.22.02	[.]	TBranch::GetBasketAndFirst
+	13.86%	62434	df102_NanoAODDimuonAnalysis	[.]	ROOT::Detail::RDF::RFilter <bool (*)(root::vecops::rvec<int=""> const&amp;),</bool>
+	5.51%	32071	libTreePlayer.so.6.22.02	[.]	ROOT::Internal::TTreeReaderValueBase::ProxyReadTemplate<&ROOT::Detail
+	5.33%	20471	libROOTDataFrame.so.6.22.02	[.]	ROOT::Detail::RDF::RLoopManager::RunAndCheckFilters
+	5.07%	21584	libTree.so.6.22.02	[.]	TBranch::GetEntry
+	3.66%	24977	df102_NanoAODDimuonAnalysis	[.]	ROOT::Internal::RDF::RColumnValue <root::vecops::rvec<float> &gt;::Get<ro< th=""></ro<></root::vecops::rvec<float>
	2.76%	16451	libTreePlayer.so.6.22.02	[.]	ROOT::Internal::TTreeReaderValueBase::GetAddress
+	2.48%	18397	df102_NanoAODDimuonAnalysis	[.]	ROOT::Internal::RDF::RColumnValue <root::vecops::rvec<int> &gt;::Get<root< th=""></root<></root::vecops::rvec<int>
+	2.28%	17109	df102_NanoAODDimuonAnalysis	[.]	<pre>std::swap<r00t::vecops::rvec<int> &gt;</r00t::vecops::rvec<int></pre>
+	2.15%	16151	df102_NanoAODDimuonAnalysis	[.]	<pre>std::swap<root::vecops::rvec<float> &gt;</root::vecops::rvec<float></pre>
+	2.02%	16377	df102_NanoAODDimuonAnalysis	[.]	ROOT::Detail::RDF::RCustomColumn <float (*)(root::vecops::rvec<float=""></float>
+	1.72%	12478	df102_NanoAODDimuonAnalysis	[.]	ROOT::Internal::RDF::RActionCRTP <root::internal::rdf::raction<root::i< th=""></root::internal::rdf::raction<root::i<>
	1.23%	4550	[kernel.kallsyms]	[k]	copy_user_enhanced_fast_string
+	1.23%	5657	df102_NanoAODDimuonAnalysis	[.]	ROOT::Detail::RDF::RLoopManager::CheckFilters@plt
+	0.88%	5830	libRI0.so.6.22.02	[.]	TBufferFile::ReadFastArray
+	0.67%	10988	df102_NanoAODDimuonAnalysis	[.]	ROOT::VecOps::InvariantMass <float></float>
	0.58%	8216	libHist.so.6.22.02	[.]	
	0.49%	3864	libTreePlayer.so.6.22.02	[.]	0x000000000df63f ~46% of high latency loads happen in
	0.36%	7884	libz.so.1.2.11	[.]	inflate_table functions related to RDF filters
	0.32%	4976	libRI0.so.6.22.02	[.]	TBufferFile::ReadArray

### perf mem report – symbol annotation

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		t 'cpu/mem-loads,ldlat=50/P', 5000 Hz, Event count (approx.): 172369311
Percent		<pre>ilter<bool (*)(unsigned="" int),="" root::detail::rdf::rloopmanager="">::CheckFilters /nvme/amadio/df102_NanoAODDim \$0x8,%rsp</bool></pre>
0.15	pop	%rbx
0.68	pop	%rbp
1.23	рор	%r12
0.04	pop	%r13
0.27	рор	%r14
0.01	pop	%r15
	← retq	
	nop	
0.00	mov	%rdi,%rbx
	if (!fPr	evData.CheckFilters(slot, entry)) {
15.13	mov	0xf0(%rdi),%rdi
	mov	%rdx,%rbp
	→ callq	ROOT::Detail::RDF::RLoopManager::CheckFilters@plt
	test	%al,%al
	→ jne	26d60 <root::detail::rdf::rfilter<bool (*)(unsigned="" int),="" root::detail::rdf::rloopmanager="">::CheckFilters(u</root::detail::rdf::rfilter<bool>
	fLastRes	ult[slot] = false;
	mov	0x30(%rbx),%rdx
	movl	\$0x0, (%rdx, %r13, 4) per-thread values in contiguous memory
	fLastChe	<pre>ckedEntry[slot] = entry;</pre>
5.40	mov	0x18(%rbx),%rdx
Press 'h	n' for help on	key bindings

# perf mem report -s phys_daddr

Samples: 543K of event 'cpu/mem-loads,ldlat=50/P', Event count (approx.): 172369311						
Overhead Samples Data Physical Address						
- 4.00% 20056 [.] 0x000000e4fff6e08						
3.53%GIclone (inlined)						
start_thread						
tbb::internal::rml::private_worker::thread_routine						
tbb::internal::rml::private_worker::run						
tbb::internal::market::process						
tbb::internal::arena::process						
tbb::internal::custom_scheduler <tbb::internal::intelschedulertraits>::local_wait_for_all</tbb::internal::intelschedulertraits>						
tbb::internal::custom_scheduler <tbb::internal::intelschedulertraits>::process_bypass_loop</tbb::internal::intelschedulertraits>						
- tbb::interface9::internal::start_for <tbb::blocked_range<unsigned int="">, tbb::internal::parallel_for_body<std::function< p=""></std::function<></tbb::blocked_range<unsigned>						
- 3.05% 0x7f4e4344317f						
0x7f4e42dffa42						
- ROOT::Detail::RDF::RLoopManager::RunAndCheckFilters						
+ 2.20% ROOT::Internal::RDF::RActionCRTP <root::internal::rdf::raction<root::internal::rdf::fillparhelper<th1d>,</root::internal::rdf::raction<root::internal::rdf::fillparhelper<th1d>						
0.86% ROOT::Detail::RDF::RFilter <bool (*)(unsigned="" int),="" root::detail::rdf::rloopmanager="">::CheckFilters</bool>						
+ 3.75% 9553 [.] 0x000000e4fff6df0						
+ 2.68% 12526 [.] 0x000000e4fff6ee0						
+ 2.46% 12056 [.] 0x0000000e4fff6e20 high load latency happens in nearby addresses						
+ 2.10% 11397 [.] 0x000000e4fff6ee8						
+ 2.06% 10564 [.] 0x000000e4fff6eb0						
+ 1.48% 9597 [.] 0x00000058bb3c248						
Press '?' for help on key bindings						

## perf c2c - cache to cache analysis

```
PERF-C2C(1)
                                                          perf Manual
                                                                                                                    PERF-C2C(1)
                                                                                              See also: https://hpc-wiki.info/hpc/FalseSharing
NAME
       perf-c2c - Shared Data C2C/HITM Analyzer.
SYNOPSIS
       perf c2c record [<options>] <command>
       perf c2c record [<options>] -- [<record command options>] <command>
       perf c2c report [<options>]
DESCRIPTION
       C2C stands for Cache To Cache.
       The perf c2c tool provides means for Shared Data C2C/HITM analysis. It allows you to track down the cacheline
       contentions.
       On x86, the tool is based on load latency and precise store facility events provided by Intel CPUs. On PowerPC, the
       tool uses random instruction sampling with thresholding feature.
       These events provide: - memory address of the access - type of the access (load and store details) - latency (in
       cycles) of the load access
```

The c2c tool provide means to record this data and report back access details for cachelines with highest contention - highest number of HITM accesses.

# perf c2c report

Sha	red Dat	a Cache Line Table	(	44 entri	es, sorte	d on Total	L HITMs)						
		Cacheli	ne		Total	Tot	LLC	Load Hitm	n	Stor	e Refere	nce	Load Dra
I	index	Address	Node	PA cnt	records	Hitm	Total	Lcl	Rmt	Total	L1Hit	L1Miss	Lcl
+	0	0x561f510789c0	0-1	7463	13115	17.40%	5172	1368	3804	11	3	9	18
+	1	0x561f518b1740	0	5382	8536	12.44%	3698	1593	2105	1747	836	911	21
+	2	0x561f51078a00	0-1	6447	10046	10.42%	3099	892	2207	27	3	24	64
+	3	0x561f518b1e40	0	5749	8859	9.96%	2962	801	2161	181	18	163	7
+	4	0x561f518afdc0	0-1	3304	5386	7.34%	2182	738	1444	456	45	411	16
+	5	0x561f518b1a40	0	4888	7554	7.25%	2154	721	1433	2927	1244	1683	16
+	6	0x561f518b1b80	0	2923	4846	6.74%	2004	617	1387	36	1	35	19
+	7	0x561f518b1800	0	3320	5532	6.39%	1900	544	1356	1333	591	742	10
+	8	0x561f51078a40	0-1	3543	5902	4.45%	1322	352	970	21	5	16	9
+	9	0x561f518b1ac0	0	1446	2186	1.30%	387	73	314	868	327	541	16
+	10	0x561f518b2640	0-1	1364	2150	1.09%	324	10	314	290	54	236	3
+	11	0x561f518b2580	0-1	1711	2348	0.94%	279	181	98	402	105	297	4
+	12	0x561f518b1a80	0	510	1815	0.83%	247	9	238	734	148	586	3
+	13	0x561f518b24c0	0-1	1113	1535	0.82%	245	145	100	278	88	190	4
F	14	0x561f518b34c0	0-1	991	1990	0.66%	196	1	195	1108	1106	2	5
F	15	0x561f518b1840	0	347	1244	0.57%	170	7	163	346	66	280	2
F	16	0x561f518b2540	0-1	1358	2220	0.57%	170	0	170	906	904	2	3
F	17	0x561f518b2680	0-1	1723	2943	0.54%	160	1	159	1668	1470	198	б
F.	18	0x561f518b3040	0-1	866	1830	0.50%	148	1	147	1050	1050	0	1
F	19	0x561f518b1ec0	0	17115	30175	0.49%	147	23	124	0	0	0	400

# perf c2c report

		Cacheli	ne		Total	Tot	LLC	Load Hitr	m	Stor	e Refere	nce	Load Dra
	Index	Address	Node	PA cnt	records	Hitm	Total	Lcl	Rmt	Total	L1Hit	L1Miss	Lcl
23	0	0x561f510789c0	0-1	7463	13115	17.40%	5172	1368	3804	11	3	9	18
	+ 0.00%	ROOT::Detail::RDF	::RFil	ter <bool< td=""><td>(*)(unsig</td><td>gned int),</td><td>ROOT::Det</td><td>ail::RDF</td><td>::RLoopMa</td><td>anager&gt;::C</td><td>heckFilt</td><td>ers</td><td></td></bool<>	(*)(unsig	gned int),	ROOT::Det	ail::RDF	::RLoopMa	anager>::C	heckFilt	ers	
	+ 0.00%	ROOT::Detail::RDF	::RLoo	pManager	::CheckFi	lters@plt							
	0.00%	apic_timer_interr	upt										
	1	0x561f518b1740	0	5382	8536	12.44%	3698	1593	2105	1747	836	911	21
	2	0x561f51078a00	0-1	6447	10046	10.42%	3099	892	2207	27	3	24	64
	3	0x561f518b1e40	0	5749	8859	9.96%	2962	801	2161	181	18	163	7
	4	0x561f518afdc0	0-1	3304	5386	7.34%	2182	738	1444	456	45	411	16
	5	0x561f518b1a40	0	4888	7554	7.25%	2154	721	1433	2927	1244	1683	16
	6	0x561f518b1b80	0	2923	4846	6.74%	2004	617	1387	36	1	35	19
	7	0x561f518b1800	0	3320	5532	6.39%	1900	544	1356	1333	591	742	10
	8	0x561f51078a40	0-1	3543	5902	4.45%	1322	352	970	21	5	16	9
	9	0x561f518b1ac0	0	1446	2186	1.30%	387	73	314	868	327	541	16
	10	0x561f518b2640	0-1	1364	2150	1.09%	324	10	314	290	54	236	3
	11	0x561f518b2580	0-1	1711	2348	0.94%	279	181	98	402	105	297	4
	12	0x561f518b1a80	0	510	1815	0.83%	247	9	238	734	148	586	3
	13	0x561f518b24c0	0-1	1113	1535	0.82%	245	145	100	278	88	190	4
	14	0x561f518b34c0	0-1	991	1990	0.66%	196	1	195	1108	1106	2	5
	15	0x561f518b1840	0	347	1244	0.57%	170	7	163	346	66	280	2
	16	0x561f518b2540	0-1	1358	2220	0.57%	170	0	170	906	904	2	3

# perf c2c report - cacheline details (press 'd')

Cad	cheline 0	x561f510	789c0										
-	HIT	М	Store	Refs		- CL -				- cycles		Total	сри
	Rmt	Lcl	L1 Hit	L1 Miss	0ff	Node	PA cnt	Code address	rmt hitm	lcl hitm	load	records	cnt
+	8.39%	9.14%	0.00%	0.00%	0x10	0-1	3	0x561f4ebc2470	408	284	339	1002	2
+	4.02%	2.63%	0.00%	0.00%	0x10	0-1	3	0x561f4ebd0d23	515	327	320	540	2
+	1.74%	1.90%	0.00%	0.00%	0x10	0-1	3	0x561f4ebd0cff	464	314	322	247	2
+	1.24%	2.27%	0.00%	0.00%	0x10	0-1	3	0x561f4ebd0d0e	360	241	309	173	2
+	1.05%	0.73%	0.00%	0.00%	0x10	0-1	3	0x561f4ebd0cfb	641	241	656	130	2
+	0.34%	0.22%	0.00%	0.00%	0x10	0-1	3	0x561f4ebd0d05	337	164	364	48	2
+	0.26%	0.29%	0.00%	0.00%	0x10	0-1	3	0x561f4ebd0d12	332	173	202	39	2
+	0.11%	0.07%	0.00%	0.00%	0x10	0-1	3	0x561f4ebd0d10	306	150	118	17	2
+	0.03%	0.00%	33.33%	11.11%	0x10	1	1	0x561f4ebd0d20	312	0	0	4	1
+	0.00%	0.00%	0.00%	33.33%	0x10	0-1	2	0x561f4ebd0d46	0	0	0	3	1
+	7.33%	8.48%	0.00%	0.00%	0x18	0-1	3	0x561f4ebc2470	389	283	343	934	5
+	3.52%	3.36%	0.00%	0.00%	0x18	0-1	3	0x561f4ebd0d23	467	372	247	529	4
+	1.42%	1.54%	0.00%	0.00%	0x18	0-1	3	0x561f4ebd0cff	404	381	330	216	4
+	1.52%	0.80%	0.00%	0.00%	0x18	0-1	3	0x561f4ebd0d0e	394	181	304	178	4
+	1.13%	0.58%	0.00%	0.00%	0x18	0-1	3	0x561f4ebd0cfb	466	293	699	129	4
+	0.21%	0.37%	0.00%	0.00%	0x18	0-1	3	0x561f4ebd0d05	349	299	435	37	4
+	0.18%	0.22%	0.00%	0.00%	0x18	0-1	2	0x561f4ebd0d12	301	176	208	26	3
+	0.08%	0.00%	0.00%	0.00%	0x18	0-1	2	0x561f4ebd0d10	296	0	220	12	2
+	0.03%	0.00%	0.00%	0.00%	0x18	0-1	2	0x561f4ebd0d03	275	0	440	3	2
+	0.00%	0.00%	33.33%	0.00%	0x18	0	1	0x561f4ebd0d20	0	0	0	1	1

## perf c2c report – cacheline details, more columns

	Total	cpu			Shared		
load	records	cnt		Symbol	Object	Source:Line	Node
339	1002	2	[.]	ROOT::Detail::RDF::RLoopMa	df102_NanoAODDimuonAnalysis	ROOT::Detail::RDF::RLoopManage	1 🔷
320	540	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:87	1
322	247	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:86	1
309	173	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:99	1
656	130	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:86	1
364	48	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:86	1
202	39	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:99	1
118	17	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:99	1
0	4	1	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:99	1
0	3	1	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:96	1
343	934	5	[.]	ROOT::Detail::RDF::RLoopMa	df102_NanoAODDimuonAnalysis	ROOT::Detail::RDF::RLoopManage	0
247	529	4	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:87	0
330	216	4	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:86	0
304	178	4	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:99	0
699	129	4	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:86	0
435	37	4	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:86	0
208	26	3	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:99	0
220	12	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:99	0
440	3	2	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:86	0
0	1	1	[.]	ROOT::Detail::RDF::RFilter	df102_NanoAODDimuonAnalysis	RFilter.hxx:99	1

## perf c2c report – cacheline details, expanded stack

HI	ТМ	Store	Refs		- CL -				- cycles		Total	ср
Rmt	Lcl	L1 Hit	L1 Miss	Off	Node	PA cnt	Code address	rmt hitm	lcl hitm	load	records	cn
0.00%	0.00%	0.00%	11.11%	0x18	0	1	0x561f4ebd0d46	0	0	0	1	
7.23%	7.16%	0.00%	0.00%	0x20	0-1	3	0x561f4ebc2470	413	257	333	891	
ROOT:	:Detail::R	DF::RLoop	Manager::	CheckF	ilters	@plt						
ROOT:	:Detail::R	DF::RFilt	ter <bool (<="" td=""><td>(*)(uns:</td><td>igned</td><td>int), ROOT</td><td>::Detail::RDF::RLo</td><td>opManager&gt;</td><td>::CheckFilte</td><td>rs</td><td></td><td></td></bool>	(*)(uns:	igned	int), ROOT	::Detail::RDF::RLo	opManager>	::CheckFilte	rs		
ROOT:	:Detail::R	DF::RFilt	ter <bool (<="" td=""><td>(*)(R001</td><td>T::Vec</td><td>Ops::RVec&lt;</td><td>int&gt; const&amp;), ROOT</td><td>::Detail::</td><td>RDF::RFilter</td><td><bool (*<="" td=""><td>)(unsigned</td><td>int),</td></bool></td></bool>	(*)(R001	T::Vec	Ops::RVec<	int> const&), ROOT	::Detail::	RDF::RFilter	<bool (*<="" td=""><td>)(unsigned</td><td>int),</td></bool>	)(unsigned	int),
ROOT:	:Internal:	:RDF::RAG	ctionCRTP<	<root::]< td=""><td>Intern</td><td>al::RDF::R</td><td>Action<root::inter< td=""><td>nal::RDF::</td><td>FillParHelpe</td><td>r<th1d>,</th1d></td><td>ROOT::Deta</td><td>il::R</td></root::inter<></td></root::]<>	Intern	al::RDF::R	Action <root::inter< td=""><td>nal::RDF::</td><td>FillParHelpe</td><td>r<th1d>,</th1d></td><td>ROOT::Deta</td><td>il::R</td></root::inter<>	nal::RDF::	FillParHelpe	r <th1d>,</th1d>	ROOT::Deta	il::R
ROOT:	:Detail::R	DF::RLoop	Manager::	RunAnd	CheckF	ilters						
0x7fe	aa2613a42											
	aa2613a42 aa2c5717f											
0x7fe	aa2c5717f	::interna	al::start_	_for <tb< td=""><td>b::blo</td><td>cked_range</td><td><unsigned int="">, tb</unsigned></td><td>b::interna</td><td>l::parallel_</td><td>for_body</td><td><std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<></td></tb<>	b::blo	cked_range	<unsigned int="">, tb</unsigned>	b::interna	l::parallel_	for_body	<std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:::	aa2c5717f interface9						<unsigned int="">, tb edulerTraits&gt;::pro</unsigned>			for_body	<std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:: tbb::	aa2c5717f interface9 internal::	custom_so	cheduler <t< td=""><td>tbb::int</td><td>ternal</td><td>::IntelSch</td><td></td><td>cess_bypas</td><td>s_loop</td><td>for_body</td><td><std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<></td></t<>	tbb::int	ternal	::IntelSch		cess_bypas	s_loop	for_body	<std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:: tbb:: tbb::	aa2c5717f interface9 internal::	custom_so custom_so	cheduler <t< td=""><td>tbb::int</td><td>ternal</td><td>::IntelSch</td><td>edulerTraits&gt;::pro</td><td>cess_bypas</td><td>s_loop</td><td>for_body</td><td><std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<></td></t<>	tbb::int	ternal	::IntelSch	edulerTraits>::pro	cess_bypas	s_loop	for_body	<std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:: tbb:: tbb:: tbb::	aa2c5717f interface9 internal:: internal::	custom_so custom_so arena::pi	cheduler <t cheduler<t rocess</t </t 	tbb::int	ternal	::IntelSch	edulerTraits>::pro	cess_bypas	s_loop	for_body	v <std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:: tbb:: tbb:: tbb:: tbb::	aa2c5717f interface9 internal:: internal:: internal:: internal::	custom_so custom_so arena::pi market::;	cheduler <t cheduler<t rocess process</t </t 	tbb::int tbb::int	ternal ternal	::IntelSch	edulerTraits>::pro	cess_bypas	s_loop	for_body	v <std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:: tbb:: tbb:: tbb:: tbb:: tbb::	aa2c5717f interface9 internal:: internal:: internal:: internal:: internal::	custom_so custom_so arena::pi market::p rml::priv	cheduler <t cheduler<t rocess process vate_worke</t </t 	tbb::int tbb::int er::run	ternal ternal	::IntelSch ::IntelSch	edulerTraits>::pro	cess_bypas	s_loop	for_body	v <std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:: tbb:: tbb:: tbb:: tbb:: tbb:: tbb::	aa2c5717f interface9 internal:: internal:: internal:: internal:: internal::	custom_so custom_so arena::pi market::p rml::priv	cheduler <t cheduler<t rocess process vate_worke</t </t 	tbb::int tbb::int er::run	ternal ternal	::IntelSch ::IntelSch	edulerTraits>::pro	cess_bypas	s_loop	for_body	v <std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:: tbb:: tbb:: tbb:: tbb:: tbb:: tbb:: start	aa2c5717f interface9 internal:: internal:: internal:: internal:: internal:: _thread	custom_so custom_so arena::pr market::p rml::priv rml::priv	cheduler <t cheduler<t rocess process vate_worke</t </t 	tbb::int tbb::int er::run	ternal ternal	::IntelSch ::IntelSch	edulerTraits>::pro	cess_bypas	s_loop	for_body	v <std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>
0x7fe tbb:: tbb:: tbb:: tbb:: tbb:: tbb:: tbb:: start	aa2c5717f interface9 internal:: internal:: internal:: internal:: internal::	custom_so custom_so arena::pr market::p rml::priv rml::priv	cheduler <t cheduler<t rocess process vate_worke</t </t 	tbb::int tbb::int er::run	ternal ternal	::IntelSch ::IntelSch	edulerTraits>::pro	cess_bypas	s_loop	for_body 334	v <std::funct< td=""><td>ion<v< td=""></v<></td></std::funct<>	ion <v< td=""></v<>

# **Data-Type Profiling**

- Introduced in latest versions of perf
  - First available in perf 6.8
  - Better with perf 6.10 and later
- Data recorded with perf mem record
- Attributes sample addresses back to the data-type associated with that address
- Two methods to make use of it
  - $\circ$  perf mem report -s type,typeoff
  - o perf annotate --data-type=<type>
- Still needs some help for pointer types
  - Part of LLVM's -fdebug-info-for-profiling

#### Data profiling of git fsck on Linux kernel repository

<pre>linux \$ perf mem recordldlat=50 git fsck # collect loads with latency &gt; 50 cycl</pre>	es
Checking objects: 100% (10271178/10271178), done.	
Checking connectivity: 10223233, done.	
[ perf record: Woken up 395 times to write data ]	
[ perf record: Captured and wrote 99.888 MB perf.data (1629334 samples) ]	
linux \$ perf mem reportstdio -s type,typeoffpercent-limit 1	
# Overhead Samples Data Type Data Type Offset	
#	
83.88% 1450665 (unknown) (unknown) +0 (no field)	
4.30% 100109 (stack operation) (stack operation) +0 (no field)	
3.79% 3712 struct malloc_chunk struct malloc_chunk +8 (mchunk_size)	
1.40% 2336 struct object struct object +0 (parsed)	
1.08% 842 struct malloc_chunk struct malloc_chunk +32 (fd_nextsize)	
linux \$ perf annotatedata-type=object	
Annotate type: 'struct object' in /usr/libexec/git-core/git (3282 samples):	
samples offset size field	
104 0 40 struct object {	
0 0 4 unsigned int parsed;	
0 0 4 unsigned int type;	
0 0 4 unsigned int flags;	
104 4 36 struct object_id oid {	
104 4 32 unsigned char* hash;	
0 36 4 int algo;	

};

See also: https://lwn.net/Articles/955709/

# **Packing Simulation Revisited**

\$ perf record -e cycles -F 1000 -- pack -f 0.6 ellipsoids 100.00% 0.6000 0.0000/min 2.6e-02 ev/s 38.2 s perf record: Woken up 5 times to write data ] perf record: Captured 1.457 MB perf.data (38005 samples) ] \$ perf report --stdio --percent-limit 0.25 Overhead Command Shared Object Symbol # # # 39.53% pack pack intersect 32.60% pack pack HGrid::find neighbors 7.62% pack pack Ellipsoid::support closest_point_tetrahedron 3.76% pack pack pack closest_point_triangle 3.37% pack 2.77% pack Simplex::closest pack 2.46% pack Ellipsoid::bounding_radius pack 2.07% pack pack check_overlap 1.94% pack pack Simplex::contains sincos 1.15% pack libm.so.6 0.37% pack pack HGrid::make hash 0.36% pack pack HGrid::insert

void HGrid::find_neighbors(const Particle* p, std::vector<Particle*>& neighbors) {
 hash_t hash; unsigned int mask = occupied_level_mask;
 Vector x = p->position();

```
for (unsigned int level = 0; level <= MAX_LEVEL; mask >>=1, level++) {
  if (mask == 0) return; /* no more occupied levels to check */
  if ((mask & 1) == 0) continue; /* level is not occupied */
```

```
float cell_size = MAX_CELL_SIZE / (1 << level);
float inv_cell_size = 1.0f / cell_size;
float delta = p->bounding_radius(t_curr) + cell_size/2.0 + EPSILON;
```

```
hash.data.level = level;
short int imin = (short int) floor((x[0] - delta) * inv_cell_size);
short int jmin = (short int) floor((x[1] - delta) * inv_cell_size);
short int kmin = (short int) floor((x[2] - delta) * inv_cell_size);
short int imax = (short int) ceil((x[0] + delta) * inv_cell_size);
```

```
short int jmax = (short int) ceil((x[1] + delta) * inv_cell_size);
short int kmax = (short int) ceil((x[2] + delta) * inv_cell_size);
```

grid is an instance of std::map<hash, Particle*>, but this class stores data as an array of red-black tree nodes, with the value contiguously in memory in each node. This means that it loads all values along with the keys when traversing it.

# **Packing Simulation Revisited**

_				
	00.00% 0.6	000 0.000	les -F 1000 0/min 2.6e-02 ( up 5 times to	
l i				erf.data (38005 samples) ]
Ś			opercent-li	
#			Shared Object	
#				oymbol .
#				
17	39.53%	pack	pack	intersect
	32.60%	•	pack	HGrid::find_neighbors
		• • • •	•	
	7.62%		pack	Ellipsoid::support
	3.76%	pack	pack	closest_point_tetrahedron
	3.37%	pack	pack	closest_point_triangle
	2.77%	pack	pack	Simplex::closest
	2.46%	, pack	, pack	Ellipsoid::bounding_radius
	2.07%	, pack	, pack	check_overlap
	1.94%	, pack	, pack	Simplex::contains
	1.15%		libm.so.6	sincos
	0.37%	• · · ·	pack	HGrid::make_hash
	0.36%	pack	pack	HGrid::insert
	01000	P	paore	

```
enum _Rb_tree_color { _S_red = false, _S_black = true };
 _Rb_tree_node_base
  typedef _Rb_tree_node_base* _Base_ptr;
  typedef const _Rb_tree_node_base* _Const_Base_ptr;
  Rb tree color
                    _M_color;
                 _M_parent;
_M_left;
  _Base_ptr
  _Base_ptr
  _Base_ptr
                    _M_right;
};
template<typename _Val>
  struct _Rb_tree_node : public _Rb_tree_node_base
    typedef _Rb_tree_node<_Val>* _Link_type;
    after enum and 3 pointers.
    Val*
    _M_valptr()
                                   enum = int = 4 bytes
    { return _M_storage._M_ptr(); }
                                   4 pointers = 4 \times 8 = 32 bytes
                                   node = 36 bytes, misaligned
    const Val*
                                   with cachelines
    _M_valptr() const
    { return _M_storage._M_ptr(); }
};
```

#### Traversing the map to find key is expensive

		'ibs_op//', 1000 Hz, Event count (approx.): 174896447829
HGrid:::	find_neighbors	/home/amadio/src/rocpack/pack [Percent: local period]
Samples	struct le	ss : public binary_function<_Tp, _Tp, bool>
	{	
	_GLIBCXX1	4_CONSTEXPR
	bool	
	operator(	)(const _Tp&x, const _Tp&y) const
	{ return	x <y; th="" }<=""></y;>
159	mov	-0x48(%rbp),%rdx
88	mov	%r13,%r9
100	mov	%rsi,%rax
121		%ax, %ax
		mplM_key_compare(_S_key(x),k))
2266	240: cmp	%rdx,0x20(%rax)
	↓ jae	450
	{ return	static_cast<_Link_type>(x->_M_right);    }
766	mov	0x18(%rax),%rax
	while (	x != 0)
898	test	%rax,%rax
2	† jne	240
258	mov	%r9,%rax
	find(cons	t _Key&k)
	{	
Press '	h' for help on	key bindings

#### Cache hit/miss rates with perf mem

```
bash $ perf mem record -C 0 -t load --ldlat=20 -- taskset -c 0 ./pack --seed 17 -f 0.45 bench2.in
100.00% 0.4500 0.0000/min 1.8e-02 ev/s 54.1 s
[ perf record: Woken up 64 times to write data ]
[ perf record: Captured and wrote 16.013 MB perf.data (208040 samples) ]
bash $ perf mem report --stdio -s mem
# To display the perf.data header info, please use --header/--header-only options.
#
#
#
 Total Lost Samples: 0
#
# Samples: 208K of event 'cpu/mem-loads,ldlat=20/P'
# Total weight : 9857968
# Sort order : mem
#
# Overhead
          Samples Memory access
#
                         #
   90.65%
                178426 L1 hit
    4.36%
                 12798 LFB/MAB hit
    3.95%
                 15602
                        L2 hit
    0.98%
                  1203 L3 hit
    0.04%
                  7 Remote Any cache hit
    0.01%
                   3 RAM hit
    0.00%
                    1 L3 miss
```

## perf mem report -s mem,sym --hierarchy

verhead	Samples		access / Symbol
90.65%	178426	L1 hit	
47.89%	84778	[.]	HGrid::find_neighbors
22.39%	47769	[.]	intersect
8.78%	19603	[.]	Simplex::closest
3.42%	9093	[.]	Simplex::add_vertex
3.13%	6182	[.]	closest_point_tetrahedron
2.01%	3721	[.]	Simplex::contains
1.56%	3719	[.]	Polyhedron::support
0.26%	553	[.]	PeriodicBoundary::reposition
4.36%	12798	LFB/MAE	3 hit
2.61%	8059	[.]	intersect
1.00%	3449	[.]	HGrid::find_neighbors
3.95%	15602	L2 hit	
2.18%	8606	[.]	HGrid::find_neighbors
1.62%	6434	[.]	intersect
0.98%	1203	L3 hit	
0.41%	594	[.]	intersect
0.33%	469	[.]	HGrid::find_neighbors

Fip: To compute metrics for samples use perf record -e '{cycles,instructions}' ... ; perf script -F +metric

## New data profiling can show which structures are hit

bash \$ perf anr	notateda	ta-type=Pa	rticle				
Annotate type:	'Particle'	in pack (7	7940 samples):				
==================					============	=====	
samples	offset	size	field				
7940	0	160 I	Particle	{			
5	80	8	Shape* m	_shape;			
0	88	4	float m	_growth_rate	e;		
0	92	4	float m	_mass;			
0	96	4	float m	_inv_mass;			
0	100	4	unsigned i	.nt m_tag	g;		
0	104	4	unsigned i	.nt m_eve	ent_id;		
2	112	8	long unsig		m_hash;		
1	120	8	long unsig	ned int	m_colli:	sions;	
1	128	8	Particle*	m_pre	ev;		
7931	136	8	Particle*	m_nex	xt; 🔪		
0	144	16	union	{			When looking for adjacent particles to
0	144	16	m128	m_col	lor; 📃 🔪	<	check for intersections, we build the
0	144	16	struct	{		$\sim$	list of neighbors and iterate through a
0	144	4	fl	.oat r;			list, so m_next is a hot field for slow loads (>20 cycles).
0	148	4	fl	.oat g;			idaus (>20 cycles).
0	152	4	fl	.oat b;			Color not used during simulation, can
0	156	4	fl	.oat a;			make it compile-time optional for
			};				better performance, and reorder hot
			};				field into the first cache line.

#### After optimization, less samples on hot member

oash \$ perf anr			(7541 samples):
Annotate type.			
samples	offset	size	field
7541	0	128	Particle {
7530	0	8	Particle* m_next;
0	8	8	Particle* m_prev;
2	16	8	long unsigned int m_hash;
2	24	8	Shape* m_shape;
0	32	16	Point m_position;
0	48	16	Quaternion m_orientation;
0	64	16	<pre>Vector m_velocity;</pre>
0	80	16	<pre>Vector m_ang_velocity;</pre>
0	96	4	float m_time;
0	100	4	float m_growth_rate;
0	104	4	float m_mass;
0	108	4	float m_inv_mass;
6	112	8	long unsigned int m_collisions;
0	120	4	unsigned int m_tag;
1	124	4	unsigned int m_event_id;
			};


#### L1 cache hit rate also improved after optimization

```
bash $ perf mem record -C 0 -t load --ldlat=20 -- taskset -c 0 ./pack --seed 17 -f 0.45 bench2.in
100.00% 0.4500 0.0000/min 1.9e-02 ev/s 53.4 s
[ perf record: Woken up 63 times to write data ]
[ perf record: Captured and wrote 15.887 MB perf.data (205679 samples) ]
bash $ perf mem report --stdio -s mem
# To display the perf.data header info, please use --header/--header-only options.
#
#
#
 Total Lost Samples: 0
#
# Samples: 205K of event 'cpu/mem-loads,ldlat=20/P'
# Total weight : 9887519
# Sort order : mem
#
# Overhead
           Samples Memory access
#
                         #
   93.01%
                 183502
                        L1 hit
    3.12%
                 12339
                        L2 hit
    3.11%
                  9010
                        LFB/MAB hit
    0.68%
                   813
                        L3 hit
    0.07%
                   12 Remote RAM hit
    0.01%
                    2 L3 miss
    0.00%
                     1 RAM hit
```

#### **Summary and Conclusions**

- Compiler can help with optimizing computations, not so much with memory access
- Many tools are available to inspect and optimize memory access patterns
  - pahole, perf mem, perf c2c, VTune memory access analysis
- Data-Oriented design collects key concepts to design memory efficient software
  - Separate data structures and operations on data
  - Focus on avoiding high latency and wasting memory bandwidth
- Many other indicators of bad memory access patterns
  - Backend Bound stalled cycles at backend are a good indicator of inefficiencies
    - Core Bound data dependencies in arithmetics, chains of high latency instructions
    - Memory Bound not only read, but also write, some codes can be store bound
  - Cache Misses main indicator of memory access issues
    - Need to watch for problem size: hit rate high for small workloads, inevitably higher on larger workloads
    - Cache associativity and locality can lead to complex issues, avoid loops with power of 2 trip length

- "Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%"
- Donald Knuth

