
CPU Hardware Architecture and
Performance Optimization

G. Amadio (CERN)

Our Main Goals

● Understand the architecture of modern CPU hardware

○ Hardware evolution

○ Main features of modern hardware

● Understand how to analyze the performance of our code

○ How to identify performance bottlenecks

○ What to measure and how to measure it

● Combine architectural knowledge and performance analysis

○ How to interpret performance measurements

○ What changes to make to the software

2

CPU Hardware
Architecture and Evolution

Early Computing Devices

4

1820s

Difference Engine

Automatic mechanical
calculator designed to
tabulate polynomial
functions. Designed and first
created by Charles Babbage.

1620– 1630

Slide Rule

Uses logarithm scales to help
with multiplications and also
computing other functions.
Extensively used by engineers
in the last century, before
computers became powerful.

1642

Pascaline

Mechanical calculator
invented by Blaise Pascal to
help his father with tax
calculations. Could add and
subtract.

2700 – 2300 BC

Abacus

Used since ancient times,
until Arabic numerals became
the norm. Still in use as an
educational tool.

Images: Wikipedia

https://en.wikipedia.org/wiki/Pascal%27s_calculator
https://en.wikipedia.org/wiki/Abacus
https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/Difference_engine

Ada Lovelace, the first computer programmer

5

Augusta Ada King, Countess of Lovelace (10 December
1815 – 27 November 1852) was an English mathematician
and writer, known for her work on Charles Babbage's
proposed mechanical general-purpose computer, the
Analytical Engine. She was the first to recognize that the
new machine had applications beyond simple calculations.
She arguably wrote the first “computer program”. In her
article entitled “note G” on the Analytical Engine, she
described in detail an algorithm to compute a sequence of
Bernoulli numbers using it.

Source: Wikipedia

https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Bernoulli_number

The Turing Machine: concept of first generic computer

State transition diagram

Universal
Turing

Machine

0 0 0 00 0 1 1 0 1 01 0 11 0 1 01 0 1
Infinite tape

S1

S3

S2

S4

S5

S6

H

HEAD: READ/WRITE/MOVE

doi:10.1112/plms/s2-42.1.230

source: https://aturingmachine.com

1

A Turing machine is capable of computing
any computable sequence.

6

https://aturingmachine.com/
https://doi.org/10.1112/plms/s2-42.1.230
https://aturingmachine.com
https://en.wikipedia.org/wiki/Turing_machine

From Turing Machine to Stored-Program Computer

7

1936

Turing Machine

Conceptually the first general
computing machine.

1937

Harvard IBM Mark I

Inspired on the Analytical Engine.
One of the earliest general-purpose
electromechanical computers.
First computer bug discovered on
it by Grace Hopper.

1942-1945

ABC, Colossus, ENIAC

First truly digital computers,
based on boolean logic and
vacuum tubes.

1947

Solid-State Transistor

The first solid-state transistor
was a based on a point-contact
connection to a crystal by closely
spaced thin gold foils.

1949

Assembly Language

Beginning of standardization of how
to program computer with abstract
instruction sets.

1950

EDVAC

First stored-program computer,
based on John von Neumann’s
architecture concept from 1945.

John von Neumann Architecture

Central Processing Unit
(CPU)

Memory Unit

Control Unit

Arithmetic/Logic UnitInput
Device

Output
Device

8

9

https://ourworldindata.org/moores-law

Integrated Circuit-Based Microprocessors

10

1970

Intel 4004

First Intel
microprocessor.
2,300 Transistors.

1972

Intel 8008

First 8 bit microprocessor.
3,500 Transistors.

1975

MOS 6502

Powered many popular devices,
such as the Apple II, Atari 2600,
Commodore 64, and the NES.
3,510 Transistors.

1976

Zilog Z80

8-bit microprocessor.
Powered devices such as
Sega Master System and Mega Drive,
and Sinclair’s ZX Spectrum.

1978

Intel 8086

First 16-bit microprocessor. 29,000 Transistors.
Its successor, the Intel 8088, a slightly modified
version, powered first IBM PC.

1985

Intel 80386

32-bit microprocessor.
275,000 Transistors, 33MHz.
Cemented Intel’s PC market
dominance.

https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-8086.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-8008.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-4004.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-8086-and-the-ibm-pc.html

Intel’s 8086 Registers and Assembly

11

Source: Wikipedia

; _strtolower:
; Copy a null-terminated ASCII string, converting
; all alphabetic characters to lower case.
; ES=DS
; Entry stack parameters
; [SP+4] = src, Address of source string
; [SP+2] = dst, Address of target string
; [SP+0] = Return address
;
_strtolower proc
 push bp ;Set up the call frame
 mov bp,sp
 push si
 push di
 mov si,[bp+6] ;Set SI = src (+2 due to push bp)
 mov di,[bp+4] ;Set DI = dst
 cld ;string direction ascending

loop: lodsb ;Load AL from [si], inc si
 cmp al,'A' ;If AL < 'A',
 jl copy ; Skip conversion
 cmp al,'Z' ;If AL > 'Z',
 jg copy ; Skip conversion
 add al,'a'-'A' ;Convert AL to lowercase
copy: stosb ;Store AL to [di], inc di
 or al,al ;If AL <> 0,
 jne loop ; Repeat the loop

done: pop di ; restore di and si
 pop si
 pop bp ;Restore the prev call frame
 ret ;Return to caller

 end proc

https://en.wikipedia.org/wiki/Intel_8086

Intel x86 Assembly

12

Registers available in the x86-64 instruction set

By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

SSE4.2AVX/AVX2

AVX512

13

https://commons.wikimedia.org/w/index.php?curid=32745525

Instruction Sets

● CISC (Complex Instruction Set Computer)
○ Intel x86 and AMD64

■ Most laptop and desktop PCs, Playstation 5, Xbox One

○ IBM System z (mainframe computers)
● RISC (Reduced Instruction Set Computer)

○ ARM
■ Amazon Graviton (AWS VMs)
■ Apple M1–M4 (iPhone, iPad, iMacs)
■ Ampere Altra, Fujitsu A64FX, etc
■ Qualcomm (mobile phones, tablets)
■ Nintendo Game Boy Advance, DS, 3DS and Switch, Raspberry Pi, etc

○ IBM’s PowerPC
■ Apple Macintosh (1994–2005), Nintendo GameCube and Wii, Playstation 3, Xbox 360

○ DEC Alpha, MIPS, Motorola 68000, RISC-V, SPARC, SuperH
■ Apple II (M68k), Nintendo 64, PlayStation 1 and 2 (MIPS), Sega Saturn and Dreamcast (SuperH)

14

Programming Language Evolution

15

1947
Assembly

Low-level language.
High correspondence
between language and
hardware instructions.

Code written in
assembly is converted
to machine code using
an assembler, which
was a big upgrade over
previous forms of
programming.

1954
Fortran

One of the earliest
high-level imperative
programming
languages.

Introduced procedural
programming, double
precision, and complex
numbers. Still popular
in HPC, including in
GPU application
programming.

1963
BASIC

Beginner's All-purpose
Symbolic Instruction
Code is a family of
high-level languages.

BASIC became popular
during the 8-bit era, but
declined in popularity
in the 90s, when more
advanced languages
like C were the norm.

1979
C++

C++ was designed with
systems programming,
embedded software,
and efficiency in mind.

Although many think of
C++ as a superset of C
or C with classes, their
latest versions are not
fully compatible. Used
extensively in HEP and
HPC nowadays.

1972
C

Originally developed to
implement many of the
utilities for UNIX OSs.
Still in wide use today.

C is a portable,
imperative language
with a static type
system and which
supports structured
programming.

50 Years of Microprocessor Trend Data

16

source: https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

50 Years of Microprocessor Trend Data

17

source: https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

Breakdown of Dennard’s Scaling

18

● Power density per unit area stopped decreasing
● Frequency could no longer keep increasing after each die shrink

○ But the transistor numbers kept growing

● Single-thread performance gains continued, albeit at a slower pace
○ More complexity: pipelining, superscalar, out-of-order execution, SIMD

● AMD and Intel bring 64-bit CPUs to the mainstream market
○ Intel with IA-64, and AMD with amd64 (x86_64), announced in 1999

● From symmetric multiprocessing (SMP) to multithreading (SMT)
○ In the ‘90s, dual socket high-end servers became popular
○ First SMT capable CPU was the Intel Pentium 4, released in 2002

● First dual core processors began to appear in mid 2000s
● The era of parallelism is born

https://en.wikipedia.org/wiki/Dennard_scaling

Instruction-Level Parallelism

19

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write BackTime

Operation-Level Parallelism

Pipelining

Superscalar Execution

Symmetric multithreading (SMT)

20

CPU

Without SMT

With SMT

CPU

CPU CPU 0

Thread 1Thread 2

CPU 1

Thread 1

Thread 2

Core 0

Logical
Core 0

Logical
Core 1

Threads scheduled one at a time on each physical core

Threads run simultaneously on two logical cores

Throughput:

Throughput:

Time

21

CPU Architecture
Generic Dual Core CPU

Source: Systems Performance 2nd Edition, Brendan Gregg

● Logical Components
○ Control Unit
○ Arithmetic Logic Units (ALUs)
○ Floating Point Unit (FPU)
○ Branch Predictor Unit (BPU)
○ Memory Management Unit (MMU)
○ Translation Lookaside Buffer (TLB)

● Memory Subsystem
○ L1(~32–512KB per core)
■ L1 Instruction Cache
■ L1 Data Cache

○ L2 (~1–8MB per core)
■ Instruction/Data Shared Cache

○ L3 (up to ~8MB–1.1GB per socket)
■ Last level cache (LLC)

https://www.oreilly.com/library/view/systems-performance-2nd/9780136821694/

Memory Hierarchy

22

1

CPU Registers & L1 Cache
L1 Latency: 1–5 cycles
L1 Size: 32–512K / core

3

L3 Cache
Latency: ~40 cycles
Size: 8MB – 1.1GB

5

SSD, HDD, Tape Storage
SSD Latency: 10–70 µs
HDD Latency: 10–15 ms
Tape Latency: varies, minutes to hours,
depends on if tape is already mounted

2

L2 Cache
Latency: ~12 cycles

Size: ~1M / core

4

Main Memory
Latency: 100–400 cycles
Size: 10s of GB to few TB

L2

L1

L3

DRAM

Storage

23

 Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html

Latency Numbers Every Programmer Should Know

(~5 CPU cycles)

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Virtual Memory

24

● First appeared in the Atlas computer in 1962
● Memory Management Unit (MMU)
● Memory managed in pages

○ Page sizes are usually 4K, 16K, 64K
○ May also support “huge pages” of 2MB, 1GB

● Hides fragmentation of physical memory
● Memory hierarchy managed by the kernel
● Makes application programming easier

○ Memory looks contiguous
○ No need to worry about fragmentation
○ Seems to own whole address space
○ Enabled timesharing features

Main Memory

MMU IOMMU

CPU Other
Devices

Virtual Addresses Device Addresses

Physical Addresses

https://www.computerhistory.org/timeline/1962/

Page
Fault

Virtual
Address

The Translation Lookaside Buffer

“A translation lookaside buffer (TLB)
is a memory cache that is used to
reduce the time taken to access a
user memory location.
It is a part of the chip's memory
management unit (MMU). The TLB
stores the recent translations of
virtual memory to physical memory
and can be called an
address-translation cache.”

25

CPU
Core

TLB

MMU

Page Table
(Main Memory)

L1 L2

TLB miss

TLB hit

Physical
Address

Virtual to Physical Translation

Disk

https://en.wikipedia.org/wiki/Translation_lookaside_buffer

https://en.wikipedia.org/wiki/Translation_lookaside_buffer

● First dual core CPUs debut in 2004
○ Pentium D, based on Pentium 4
○ AMD Athlon X2

● Quickly evolved from 2 to 4 cores
○ Stagnated at 4 cores for several years

● Ryzen brought AMD back in the game
○ Offered more cores, forced Intel to do the same

● ARM finally begins move from phones to servers
○ Amazon Graviton, Fujitsu A64FX, Ampere Altra

● Innovations in packaging led to multi-chip CPUs
○ AMD EPYC, Intel Sapphire and Emerald Rapids

The Parallel Era

26

AMD EPYC Bergamo

Fujitsu A64FX

Intel Emerald Rapids

27

Ampere Roadmap 2020 – 2026

Source: Ampere

Non-Uniform Memory Architecture (NUMA)

28

CPU CPU

CPU CPU

I/O

Core 1 Core 2 Core 3 Core 4

L1/L2 L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3 Core 4

L1/L2 L1/L2 L1/L2 L1/L2

Shared L3

DRAM

29

Source: AMD

30

AMD Zen4 Architecture in detail

Source: AMD

31
Source: Intel

SIMD Vectorization

Scalar
processing

SIMD
processing

Instructions
Data
Results

32

● Intel® Pentium Processor (1993)
 32bit

● Multimedia Extensions (MMX in 1997)
 64bit integer support only

● Streaming SIMD Extensions (SSE in 1999 to SSE4.2 in 2008)
 32bit/64bit integer and floating point, no masking

● Advanced Vector Extensions (AVX in 2011 and AVX2 in 2013)
 Fused multiply-add (FMA), HW gather support (AVX2)

● Many Integrated Core Architecture (Xeon Phi™ Knights Corner in 2013)
 HW gather/scatter, exponential

● AVX512 on Knights Landing, Skylake Xeon, and Core X-series (2016/2017)
 Conflict detection instructions

History of Intel® SIMD ISA Extensions

= 32 bit word

33

● AVX 10
○ Supported on both P-cores and E-cores
○ Brings benefits of AVX512 to smaller registers

● Advanced Matrix Extensions (AMX)
○ Targeted at AI applications
○ SIMD for small matrix operations
○ Available on 4th and 5th generation Xeon

● Advanced Performance Extensions (APX)
○ Adds new features that improve general-purpose performance
○ Expands x86 instruction set with more general-purpose registers (from 16 to 32)
○ New REX2 prefix provides uniform access to the new registers
○ Adds conditional forms of load, store, and compare/test instructions
○ New prefix increase average instruction length, but there are less instructions overall

Evolution of Intel® SIMD ISA Extensions

34

35

Microarchitecture of
a Modern Intel Core

Intel Golden Cove Core

● Front End
○ Instruction Fetch and Decode
○ Branch Predictor Unit (BPU)
○ L1 Instruction Cache
○ Instruction TLB

● Back End
○ Execution Engine

■ Scheduler
■ Register File
■ Execution Units (EUs)

○ Memory Subsystem
■ Load/Store Units (LSU)
■ L1 / L2 Data Cache
■ Data TLB

By Saneandsad - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=113727886

https://commons.wikimedia.org/w/index.php?curid=113727886

Meteor Lake Hybrid Architecture

36

Ultra Mobile
Mobile Desktop

Meteor Lake Block Diagram

Source: Intel

37

Source: Intel

38

Source: Intel

39

Source: Intel

40

Source: Intel

● Modern machines have up to 8 sockets
● Trend towards reduction back to 2 onlySockets2

Modern Hardware

41

● Has always been there
● Run copies of your code on each nodeSystems1

● Higher frequency no longer possible
● 128 cores in each socket now commonCores3
● Hardware has N physical cores
● OS sees 2N logical cores, shared exec.Threads4
● Superscalar execution
● Multiple instructions executed at oncePorts5
● Parallel instruction execution steps
● Fetch / Decode / Execute / Write BackPipelining6
● SSE4.2, AVX2, AVX512, AVX10
● PowerPC Altivec, ARM SVE, etcSIMD Vectors7

1

3

6

7

2

4

5

Summary

42

● We’ve come a long way, modern hardware is quite complex
○ NUMA Architecture (multi socket)
○ High parallelism (multicore, superscalar)
○ Advanced Packaging (chiplets)
○ Hybrid Architectures (performance/efficiency)
○ Variable CPU frequency scaling (turbo boost, thermal throttling)
○ Accelerators and Heterogeneity (GPUs, NPUs, FPGAs, ASICs)

● Performance does not come for free, we needed to adapt our software
○ Concurrency and Parallelism (processes, threads, SIMD)
○ Memory alignment, access patterns, fragmentation
○ Code layout, compiler optimizations, data structures, software design
○ Need the right tools to guide us: profilers, static analysis, etc
○ Need the right methodology: identify causes of bottlenecks, address the right issue

Performance Analysis
on Modern CPUs

Performance is challenging

● Measuring Performance
○ Instrumentation and measurement has some overhead
○ Sophisticated hardware architecture (out of order, superscalar)
○ Variable CPU frequency scaling (turbo boost, thermal throttling)
○ Often missing symbols (JIT, interpreted languages, stripped binaries)
○ Unreliable stack unwinding (deep call stacks, inlining, missing frame pointers)

● Optimization and Tuning
○ Floating-point arithmetics is complicated (denormals)
○ Memory access patterns, fragmentation, (mis-)alignment
○ Concurrency issues (shared resources with hyperthreading, contention)
○ Reliance on compiler optimizations (exceptions vs vectorization, dead code)

44

Instrumentation-Based Profiling

● Use a timer and print out how long a section of code takes to run
○ Simplest form of instrumentation
○ Make changes and measure again

● Use an instrumentation-based profiler
○ May need to compile application with profiling information (-g -pg)
○ Run the application and analyze the output file
○ Examples: gprof, valgrind, uftrace
○ Yields number of calls for each function, unlike sampling
○ Usually suffers from high overhead
○ Cannot use in production systems

45

https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://valgrind.org/
https://uftrace.github.io/

Flat profile example using gprof
$ pack -f 0.5 examples/ellipsoids # compiled with -O2 -g -pg, simulates a packing of ellipsoids, as shown below
100.00% 0.5000 0.0000/min 2.1e-01 ev/s 4.9 s
$ file gmon.out
gmon.out: GNU prof performance data - version 1
$ gprof --no-graph pack | head -n 20
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 34.05 0.95 0.95 7677145 0.00 0.00 HGrid::find_neighbors(Particle const*, std::vector<Particle*>&)
 24.73 1.64 0.69 66007037 0.00 0.00 intersect(Particle const&, Particle const&, float)
 7.89 1.86 0.22 31828514 0.00 0.00 Ellipsoid::support(Vector const&) const
 5.38 2.01 0.15 6685781 0.00 0.00 Particle::world_transform(float) const
 4.30 2.13 0.12 140620355 0.00 0.00 Ellipsoid::bounding_radius() const
 3.94 2.24 0.11 10459271 0.00 0.00 closest_point_triangle(Point&, Point&, Point&, result&)
 3.23 2.33 0.09 13858812 0.00 0.00 Simplex::add_vertex(Vector const&, Point const&, Point const&)
 2.15 2.39 0.06 13858812 0.00 0.00 Simplex::update()
 2.15 2.45 0.06 4288132 0.00 0.00 closest_point_tetrahedron(Point&, Point&, Point&, Point& result&)
 1.79 2.50 0.05 13732871 0.00 0.00 Simplex::reduce()
 1.79 2.55 0.05 481841 0.00 0.00 check_overlap(Particle&)
 1.79 2.60 0.05 1000 0.00 0.00 Ellipsoid::name() const
 1.43 2.64 0.04 6784500 0.00 0.00 time_of_impact(Particle const&, Particle const&, float, float)
 1.43 2.68 0.04 3342851 0.00 0.00 Simplex::reset()
 1.43 2.72 0.04 _init

46

Flat profile example using valgrind
$ valgrind --tool=callgrind -- pack -f 0.5 examples/ellipsoids # no need for -pg
==2140677== Callgrind, a call-graph generating cache profiler
==2140677== Copyright (C) 2002-2017, and GNU GPL'd, by Josef Weidendorfer et al.
==2140677== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2140677== Command: pack -f 0.5 examples/ellipsoids
==2140677==
==2140677== For interactive control, run 'callgrind_control -h'.
100.00% 0.5000 0.0000/min 6.7e-03 ev/s 150.0 s
==2140677==
==2140677== Events : Ir
==2140677== Collected : 29183525425
==2140677==
==2140677== I refs: 29,183,525,425
$ kcachegrind callgrind.out.2140677

47

● Official Linux profiler (source code is part of the kernel itself)
● Both hardware and software based performance monitoring
● Much lower overhead compared with instrumentation-based profiling
● Kernel and user space
● Counting and Sampling

○ Counting — count occurrences of a given event (e.g. cache misses)
○ Event-based Sampling — a sample is recorded when a threshold of events has occurred
○ Time-based Sampling — samples are recorded at a given fixed frequency
○ Instruction-based Sampling — processor follows instructions and samples events they create

● Static and Dynamic Tracing
○ Static — pre-defined tracepoints in software
○ Dynamic — tracepoints created using uprobes (user) or kprobes (kernel)

48

perf – Performance analysis tools for Linux

http://perf.wiki.kernel.org/

Sampling

49

main() f() g()main() g() f() main()f()
no sampling

Time

main()

f()

g()

user space
syscall()

kernel

block interrupt

g()

f()

main()

end

off-cpuon-cpu on-cpu

Tracing

50

Time

main()

f()

g()

user space
syscall()

kernel

block interrupt

g()

f()

main()

main() f() g() g() f()

end

main()

off-cpuon-cpu on-cpu

perf – subcommands
bash ~ $ perf

 usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

 The most commonly used perf commands are:
 annotate Read perf.data (created by perf record) and display annotated code
 archive Create archive with object files with build-ids found in perf.data file
 c2c Shared Data C2C/HITM Analyzer.
 config Get and set variables in a configuration file.
 data Data file related processing
 diff Read perf.data files and display the differential profile
 evlist List the event names in a perf.data file
 list List all symbolic event types
 mem Profile memory accesses
 record Run a command and record its profile into perf.data
 report Read perf.data (created by perf record) and display the profile
 sched Tool to trace/measure scheduler properties (latencies)
 script Read perf.data (created by perf record) and display trace output
 stat Run a command and gather performance counter statistics
 timechart Tool to visualize total system behavior during a workload
 top System profiling tool.
 version display the version of perf binary
 probe Define new dynamic tracepoints
 trace strace inspired tool

 See 'perf help COMMAND' for more information on a specific command.

51

Flat profile example using perf
$ pack -f 0.5 examples/ellipsoids # compiled with -O2 -g
100.00% 0.5000 0.0001/min 3.2e-01 ev/s 3.1 s
$ perf record -F 1000 -e cycles -- pack -f 0.5 examples/ellipsoids
perf record -F 1000 -e cycles -- pack -f 0.5 examples/ellipsoids
100.00% 0.5000 0.0002/min 2.9e-01 ev/s 3.5 s
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.138 MB perf.data (3431 samples)]
$ perf report --stdio | sed -ne /Overhead/,25p
Overhead Command Shared Object Symbol
........
#
 34.07% pack pack [.] HGrid::find_neighbors
 29.13% pack pack [.] intersect
 8.23% pack pack [.] Ellipsoid::support
 5.74% pack pack [.] Particle::world_transform
 3.72% pack pack [.] closest_point_tetrahedron
 3.65% pack pack [.] closest_point_triangle
 2.42% pack pack [.] Simplex::update
 2.27% pack pack [.] Ellipsoid::bounding_radius
 2.25% pack pack [.] Simplex::contains
 2.19% pack pack [.] check_overlap
 0.95% pack libm.so.6 [.] __sincos
 0.61% pack pack [.] HGrid::insert
 0.51% pack pack [.] Simplex::reduce
 0.37% pack pack [.] Simplex::closest

52

CPU Features for Performance Analysis

53

● Performance Monitoring Unit (PMU)
○ Performance monitoring counters (PMC)

■ Hardware: cycles, instructions, branches, stalled cycles in frontend/backend, etc
■ PMUs have several slots (usually 4–6) for counting hardware events together
■ Core PMU (CPU related events) and Uncore PMUs (I/O, caches, memory, interconnect)
■ If more events need to be measured than fit in a PMU, this needs to be done via multiplexing

● Varies depending on hardware vendor/model
○ Basic events have equivalents in most hardware
○ More specific events may only be available on certain hardware models
○ Some events have the same name, but count different things (e.g. cache misses)

● Profilers make use of hardware/software events
○ Software events: page faults, context switches, migrations, etc

● Intel VTune, AMD µprof, macOS Instruments, Linux perf, etc

perf – hardware and software events
bash ~ $ perf list hw cache

List of pre-defined events (to be used in -e):

 branch-instructions OR branches [Hardware event]
 branch-misses [Hardware event]
 cache-misses [Hardware event]
 cache-references [Hardware event]
 cpu-cycles OR cycles [Hardware event]
 instructions [Hardware event]
 stalled-cycles-backend OR idle-cycles-backend [Hardware event]
 stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]

 L1-dcache-load-misses [Hardware cache event]
 L1-dcache-loads [Hardware cache event]
 L1-dcache-prefetches [Hardware cache event]
 L1-icache-load-misses [Hardware cache event]
 L1-icache-loads [Hardware cache event]
 branch-load-misses [Hardware cache event]
 branch-loads [Hardware cache event]
 dTLB-load-misses [Hardware cache event]
 dTLB-loads [Hardware cache event]
 iTLB-load-misses [Hardware cache event]
 iTLB-loads [Hardware cache event]

54

bash ~ $ perf list sw

List of pre-defined events (to be used in -e):

 alignment-faults [Software event]
 bpf-output [Software event]
 context-switches OR cs [Software event]
 cpu-clock [Software event]
 cpu-migrations OR migrations [Software event]
 dummy [Software event]
 emulation-faults [Software event]
 major-faults [Software event]
 minor-faults [Software event]
 page-faults OR faults [Software event]
 task-clock [Software event]

 duration_time [Tool event]

perf – Intel Skylake events
bash ~ $ perf list pipeline

List of pre-defined events (to be used in -e):

pipeline:
 arith.divider_active
 [Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations]
 baclears.any
 [Counts the total number when the front end is resteered, mainly when the BPU cannot provide a correct prediction]
 br_inst_retired.all_branches
 [All (macro) branch instructions retired Spec update: SKL091]
 br_inst_retired.all_branches_pebs
 [All (macro) branch instructions retired Spec update: SKL091 (Must be precise)]
 br_inst_retired.conditional
 [Conditional branch instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.far_branch
 [Counts the number of far branch instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.near_call
 [Direct and indirect near call instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.near_return
 [Return instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.near_taken
 [Taken branch instructions retired Spec update: SKL091 (Precise event)]
 br_inst_retired.not_taken
 [Counts all not taken macro branch instructions retired Spec update: SKL091 (Precise event)]
 br_misp_retired.all_branches
 [All mispredicted macro branch instructions retired]
 ...

55

perf – AMD Ryzen events
bash ~ $ perf list core

List of pre-defined events (to be used in -e):

core:
 ex_div_busy
 [Div Cycles Busy count]
 ex_div_count
 [Div Op Count]
 ex_ret_brn
 [Retired Branch Instructions]
 ex_ret_brn_far
 [Retired Far Control Transfers]
 ex_ret_brn_ind_misp
 [Retired Indirect Branch Instructions Mispredicted]
 ex_ret_brn_misp
 [Retired Branch Instructions Mispredicted]
 ex_ret_brn_resync
 [Retired Branch Resyncs]
 ex_ret_brn_tkn
 [Retired Taken Branch Instructions]
 ex_ret_brn_tkn_misp
 [Retired Taken Branch Instructions Mispredicted]
 ex_ret_cond
 [Retired Conditional Branch Instructions]
 ex_ret_cond_misp
 [Retired Conditional Branch Instructions Mispredicted]
 ...

56

perf – static tracepoint events
bash ~ $ sudo perf list 'sched:*'

List of pre-defined events (to be used in -e):

 sched:sched_kthread_stop [Tracepoint event]
 sched:sched_kthread_stop_ret [Tracepoint event]
 sched:sched_migrate_task [Tracepoint event]
 sched:sched_move_numa [Tracepoint event]
 sched:sched_pi_setprio [Tracepoint event]
 sched:sched_process_exec [Tracepoint event]
 sched:sched_process_exit [Tracepoint event]
 sched:sched_process_fork [Tracepoint event]
 sched:sched_process_free [Tracepoint event]
 sched:sched_process_wait [Tracepoint event]
 sched:sched_stat_runtime [Tracepoint event]
 sched:sched_stick_numa [Tracepoint event]
 sched:sched_swap_numa [Tracepoint event]
 sched:sched_switch [Tracepoint event]
 sched:sched_wait_task [Tracepoint event]
 sched:sched_wake_idle_without_ipi [Tracepoint event]
 sched:sched_wakeup [Tracepoint event]
 sched:sched_wakeup_new [Tracepoint event]
 sched:sched_waking [Tracepoint event]

57

Map of the
Linux Kernel

58

https://makelinux.github.io/kernel/map/

59

perf – event sources

Source: http://www.brendangregg.com/perf.html

http://www.brendangregg.com/perf.html

Linux Observability Tools

60

Source: http://www.brendangregg.com/perf.html

http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/perf.html

Linux eBPF-based Observability Tools

61

Source: http://www.brendangregg.com/perf.html

http://brendangregg.com/ebpf.html
http://www.brendangregg.com/perf.html

Flamegraphs

62

● Visualization tool by Brendan Gregg
○ https://www.brendangregg.com/flamegraphs.html

● Call stacks on the vertical axis
● Number of samples as width
● Easy to identify where time is spent
● Not very good for in-depth analysis
● Built-in support now exists in perf
● Creates browseable HTML file

perf script flamegraph -- root.exe -l -q

https://www.brendangregg.com/flamegraphs.html

Avoid broken stack traces and missing symbols

● Compile code with debugging information (-g)
● Add -fno-omit-frame-pointer to compile options to keep frame pointer
● Install system packages with debugging info for the kernel and system libs

When recording data:

● Use --call-graph=fp/dwarf + DWARF debugging information
● Use precise events to avoid skidding (cycles:pp instead of just cycles)
● Adjust sampling rate to avoid large amounts of data and high overhead
● Sample events in a group if computing derived metrics (e.g. instr. per cycle)
● See man perf-list for more information on events and their modifiers

63

Frame Pointer

64

0000000000000000 <square>:
 0: c5 fa 59 c0 vmulss %xmm0,%xmm0,%xmm0
 4: c3 ret
 5: 66 66 2e 0f 1f 84 00 data16 cs nopw 0x0(%rax,%rax,1)
 c: 00 00 00 00

0000000000000010 <cube>:
 10: c5 f8 28 c8 vmovaps %xmm0,%xmm1
 14: e8 00 00 00 00 call 19 <cube+0x9>
 19: c5 fa 59 c1 vmulss %xmm1,%xmm0,%xmm0
 1d: c3 ret

● Saved/restored on each function call
● Lightweight and accurate backtraces
● DWARF backtraces not as accurate
● High overhead for very short functions

0000000000000000 <square>:
 0: c5 fa 59 c0 vmulss %xmm0,%xmm0,%xmm0
 4: c3 ret
 5: 66 66 2e 0f 1f 84 00 data16 cs nopw 0x0(%rax,%rax,1)

0000000000000010 <cube>:
 10: 55 push %rbp
 11: c5 f8 28 c8 vmovaps %xmm0,%xmm1
 15: 48 89 e5 mov %rsp,%rbp
 18: e8 00 00 00 00 call 1d <cube+0xd>
 1d: 5d pop %rbp
 1e: c5 fa 59 c1 vmulss %xmm1,%xmm0,%xmm0
 22: c3 ret

Without frame pointer

With frame pointer

float square(float x)
{
 return x * x;
}

float cube(float x)
{
 return x * square(x);
}

Simple square and cube functions

65

ROOT startup flamegraph for various configurations

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)

66

ROOT startup flamegraph for various configurations

Missing symbols

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)

67

ROOT startup flamegraph for various configurations

Broken stack unwinding

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)

68

ROOT startup flamegraph for various configurations

Correctly merged stacks

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)

perf stat – counting cycles vs instructions vs wall time
 # measure ROOT startup 20 times and print stats with averages and deviations

 $ perf stat -d -r 20 -- root.exe -l -q >/dev/null

 Performance counter stats for 'root.exe -l -q' (20 runs):

 119.72 msec task-clock # 0.442 CPUs utilized (+- 0.76%)
 579 context-switches # 0.005 M/sec (+- 4.34%)
 13 cpu-migrations # 0.109 K/sec (+- 6.94%)
 11260 page-faults # 0.094 M/sec (+- 0.49%)
 493768274 cycles # 4.125 GHz (+- 0.75%) (66.72%)
 33420383 stalled-cycles-frontend # 6.77% frontend cycles idle (+- 1.56%) (75.75%)
 177325752 stalled-cycles-backend # 35.91% backend cycles idle (+- 1.87%) (79.76%)
 532310517 instructions # 1.08 insn per cycle
 # 0.33 stalled cycles per insn (+- 0.35%) (82.16%)
 107905661 branches # 901.351 M/sec (+- 0.26%) (82.38%)
 2282743 branch-misses # 2.12% of all branches (+- 0.77%) (78.52%)
 246528817 L1-dcache-loads # 2059.290 M/sec (+- 1.12%) (71.14%)
 5628008 L1-dcache-load-misses # 2.28% of all L1-dcache hits (+- 1.30%) (63.57%)
 <not supported> LLC-loads
 <not supported> LLC-load-misses

 0.2709 +- 0.0205 seconds time elapsed (+- 7.58%)

69

 # same measurements again, to show difference in noise for wall time, cycles, instructions

 $ perf stat -d -r 20 -- root.exe -l -q >/dev/null

 Performance counter stats for 'root.exe -l -q' (20 runs):

 118.38 msec task-clock # 0.565 CPUs utilized (+- 0.73%)
 433 context-switches # 0.004 M/sec (+- 12.62%)
 12 cpu-migrations # 0.103 K/sec (+- 5.57%)
 11267 page-faults # 0.095 M/sec (+- 0.50%)
 488189557 cycles # 4.124 GHz (+- 0.73%) (60.32%)
 32509432 stalled-cycles-frontend # 6.66% frontend cycles idle (+- 1.70%) (78.43%)
 175081210 stalled-cycles-backend # 35.86% backend cycles idle (+- 1.45%) (83.54%)
 533538019 instructions # 1.09 insn per cycle
 # 0.33 stalled cycles per insn (+- 0.35%) (84.97%)
 108436560 branches # 915.999 M/sec (+- 0.29%) (84.34%)
 2279445 branch-misses # 2.10% of all branches (+- 1.05%) (81.41%)
 244414949 L1-dcache-loads # 2064.653 M/sec (+- 0.94%) (71.80%)
 5720566 L1-dcache-load-misses # 2.34% of all L1-dcache hits (+- 1.35%) (55.19%)
 <not supported> LLC-loads
 <not supported> LLC-load-misses

 0.2093 +- 0.0220 seconds time elapsed (+- 10.53%)

 # (ratio of wall clock durations)
 $ bc -l <<< "0.2709 / 0.2093"
 1.29431438127090301003

 # (ratio of cycles measurements)
 $ bc -l <<< "493768274 / 488189557"
 1.01142735832835522944

 # (ratio of instructions measurements)
 $ bc -l <<< "532310517 / 533538019"
 0.99769931671917086006

Intel’s Last Branch Record

70

● Useful when frame pointers are not available
● Use with perf record -b or perf record --call-graph=lbr
● Hardware registers on Intel CPUs that allow sampling branches
● Registers hold a ring buffer of the most recent branch decisions
● Useful to analyze branching behavior (branching probabilities, mispredictions)
● Available on AMD Zen4 or later CPUs

○ On older CPUs, some events provide similar functionality

● Articles describing LBR on LWN.net
○ An introduction to last branch records [LWN.net]
○ Advanced usage of last branch records [LWN.net]

https://lwn.net/Articles/680985/
https://lwn.net/Articles/680996/

Precise CPU Events for Sampling

71

● PMU counts events on a per-core basis
○ Sample is taken when counter reaches threshold
○ Fixed frequency sampling achieved by predicting/adjusting the threshold
○ Instruction-level parallelism and speculative execution introduce noise and skidding

■ Only one base pointer per thread
■ Many instructions in flight on the core at the same time
■ Shared resources mean mixed counting when using hyperthreading

● Intel Processor Event-Based Sampling (PEBS)
○ Instruction pointer (and auxiliary information) stored in a designated area
○ No interrupts during sampling, reduced or no skidding

● AMD Instruction-Based Sampling (IBS)
○ Tracks instructions rather than events, marks every Nth instruction to be tracked
○ Two forms: IBS Fetch sampling (front-end) and IBS Op sampling (back-end)

“Precise Event Sampling on AMD Versus Intel: Quantitative and Qualitative Comparison” doi: 10.1109/TPDS.2023.3257105

https://easyperf.net/blog/2018/06/08/Advanced-profiling-topics-PEBS-and-LBR#processor-event-based-sampling-pebs
https://github.com/jlgreathouse/AMD_IBS_Toolkit?tab=readme-ov-file#background-on-instruction-based-sampling
https://dl.acm.org/doi/10.1109/TPDS.2023.3257105

Instructions vs Micro-operations (µops)

Instructions from a CISC instruction set are usually broken into one or more RISC-like
operations in hardware. For example, an addition of two values from memory may be broken
into memory loads into registers, the addition itself, then memory stores.
These operations are usually called micro-ops and abbreviated as µops. Some PMUs have
hardware events that allow counting separately µops issued, executed, and retired.

While instructions are usually split into simpler µops, the µops can instead be fused together
when instructions are decoded in the front-end of the processor. Microfusion is when µops
from the same machine instruction are fused together, and macrofusion is when µops from
distinct instructions are fused.

72

Instructions Retired vs Executed

Instructions executed refers to any instructions that have been processed by the CPU. For
example, a multiplication of two numbers that has loaded the inputs, calculated the results
and stored it somewhere. This metric includes speculatively executed instructions on
branches that may have been discarded later on.

Instructions retired refers to executed instructions that have actually contributed to the main
line of execution of a program, that is, that has not been discarded as speculatively executed.

Instructions per cycle (IPC) is a measure of the instruction-level parallelism, or how many
instructions were retired on average in each CPU cycle. CPI (cycles per instruction) is also
common. Typically up to 4 instructions per cycle can be executed on AMD/Intel CPUs.

73

Top-Down Microarchitecture Analysis

74

Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture," 2014 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), Monterey, CA,

2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459.

µops
Retired?

µops
Allocated?

Backend
Stalled?

Retiring Bad
Speculation

Backend
Bound

Front End
Bound

Yes

Yes

Yes No

No

No

The Top-Down Characterization is a
hierarchical organization of event-based
metrics that identifies the dominant
performance bottlenecks in an application.

Its aim is to show, on
average, how well the CPU’s
pipelines are being utilized
while running an application.

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

https://doi.org/10.1109/ISPASS.2014.6844459
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

75

Top-Down
Microarchitecture
Analysis

● Retiring
○ Useful Work

● Bad Speculation
○ Branching Issues

● Front End Bound
○ Instruction Fetch Issues

● Back End Bound
○ Core Bound
■ Port Utilization
■ Execution Latency

○ Memory Bound
■ Cache misses
■ Memory Bandwidth

Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture,"
2014 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459

CPU Pipeline Slots

Front End
Bound

Bad
SpeculationRetiring Backend Bound

Fe
tc

h
La

te
nc

y

Fe
tc

h
Ba

nd
w

id
th

iT
LB

 M
is

s

iC
ac

he
 M

is
s

Br
an

ch
 R

es
te

er
s

Fe
tc

h
So

ur
ce

 1

Fe
tc

h
So

ur
ce

 2

Base

M
ic

ro
co

de
Se

qu
en

ce
r

Br
an

ch

M
is

pr
ed

ic
tio

n

M
ac

hi
ne

Cl

ea
rs

Sc
al

ar

O
th

er

Fl
oa

tin
g

Po
in

t
A

rit
hm

et
ic

s
Ve

ct
or

Ex
ec

ut
io

n
Po

rt
s

Ut
ili

za
tio

n

Di
vi

de
r

3+
 P

or
ts

0
Po

rt
s

1
or

 2
 P

or
ts

Core
Bound

Memory
Bound

L1
 B

ou
nd

L2
 B

ou
nd

L3
 B

ou
nd

St
or

e
Bo

un
d

DR
A

M
 B

ou
nd

La
te

nc
y

Ba
nd

w
id

th

Not Stalled Stalled

https://doi.org/10.1109/ISPASS.2014.6844459
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_CLEARS-RESTEERS
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/machine-clears.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/machine-clears.html

Expected Ranges of Pipeline Slots for Each Category

76

Category
Client/Desktop

Application
Server/Database

Distributed Application
High Performance Computing

(HPC) Application

Retiring 20 – 50% 10 – 30% 30 – 70%

Back-End
Bound

20 – 40% 20 – 60% 20 – 40%

Front-End
Bound

5 – 10% 10 – 25% 5 – 10%

Bad
Speculation

5 – 10% 5 – 10% 1 – 5%

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

Roofline Performance Model

77

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

Arithmetic Intensity [FLOPs/Byte]

Pe
rf

or
m

an
ce

 [G
FL

O
Ps

]

CPU Cap: Scalar Add / Multiply

Memory Cap: L1

Memory Cap: L2

Memory Cap: L3

CPU Cap: Vector Add / Multiply

CPU Cap: Fused Multiply/Add (FMA)

Memory Bound Compute Bound

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

perf – recording and reporting data

78

bash ~ $ perf record -g -F max -- root.exe -l -q
info: Using a maximum frequency rate of 32500 Hz

[perf record: Woken up 6 times to write data]
[perf record: Captured and wrote 2.003 MB perf.data (7035 samples)]
bash ~ $ perf report -q --stdio -c root.exe | head -n 20
comm: root.exe
 82.13% 0.00% root.exe [.] _start
 |
 ---_start
 __libc_start_main@@GLIBC_2.34
 __libc_start_call_main
 main
 |
 |--79.94%--TRint::TRint
 | |
 | |--76.22%--TApplication::TApplication
 | | |
 | | --76.14%--ROOT::Internal::GetROOT2
 | | TROOT::InitInterpreter
 | | |
 | | |--69.43%--CreateInterpreter
 | | | |
 | | | --69.41%--TCling::TCling
 | | | |
 | | | |--32.52%--RegisterCxxModules

perf – flat profile report

79

bash ~ $ perf report -q --stdio --call-graph=none -c root.exe | head -n 25
comm: root.exe
 82.13% 0.01% root.exe [.] main
 82.13% 0.00% libc.so.6 [.] __libc_start_call_main
 82.13% 0.00% libc.so.6 [.] __libc_start_main@@GLIBC_2.34
 82.13% 0.00% root.exe [.] _start
 79.94% 0.00% libRint.so.6.30.06 [.] TRint::TRint
 76.22% 0.00% libCore.so.6.30.06 [.] TApplication::TApplication
 76.14% 0.00% libCore.so.6.30.06 [.] ROOT::Internal::GetROOT2
 76.14% 0.00% libCore.so.6.30.06 [.] TROOT::InitInterpreter
 69.43% 0.00% libCling.so.6.30.06 [.] CreateInterpreter
 69.41% 0.00% libCling.so.6.30.06 [.] TCling::TCling
 38.76% 0.00% libCling.so.6.30.06 [.] clang::CompilerInstance::loadModule
 38.52% 0.00% libCling.so.6.30.06 [.] clang::CompilerInstance::findOrCompileModuleAndReadAST
 38.32% 0.21% libCling.so.6.30.06 [.] clang::ASTReader::ReadAST
 32.52% 0.00% libCling.so.6.30.06 [.] RegisterCxxModules
 32.26% 0.00% libCling.so.6.30.06 [.] LoadModule
 31.87% 0.00% libCling.so.6.30.06 [.] cling::Interpreter::loadModule
 31.75% 0.01% libCling.so.6.30.06 [.] clang::Sema::ActOnModuleImport
 26.63% 0.00% libCling.so.6.30.06 [.] cling::Interpreter::Interpreter
 22.80% 0.28% [kernel.kallsyms] [k] entry_SYSCALL_64
 22.51% 0.29% [kernel.kallsyms] [k] asm_exc_page_fault
 22.14% 0.36% [kernel.kallsyms] [k] do_syscall_64
 21.68% 0.31% [kernel.kallsyms] [k] exc_page_fault
 19.17% 0.38% [kernel.kallsyms] [k] do_user_addr_fault
 19.08% 0.00% libCling.so.6.30.06 [.] cling::IncrementalParser::ParseInternal

perf – flat profile report by self-time

80

bash ~ $ perf report -q --stdio --call-graph=none --no-children --percent-limit 0.75 -c root.exe
comm: root.exe
 5.85% libz.so.1.3.1 [.] inflate_fast
 4.11% libCling.so.6.30.06 [.] llvm::SimpleBitstreamCursor::Read
 2.63% [kernel.kallsyms] [k] unmap_page_range
 2.27% libCling.so.6.30.06 [.] llvm::BitstreamCursor::readRecord
 1.89% [kernel.kallsyms] [k] __mod_lruvec_state
 1.78% [kernel.kallsyms] [k] srso_untrain_ret
 1.77% [kernel.kallsyms] [k] srso_return_thunk
 1.53% [kernel.kallsyms] [k] trace_hardirqs_off
 1.43% libz.so.1.3.1 [.] adler32_z
 1.32% [kernel.kallsyms] [k] __lruvec_stat_mod_folio
 1.31% [kernel.kallsyms] [k] clear_page_rep
 1.31% ld-linux-x86-64.so.2 [.] _dl_lookup_symbol_x
 1.26% libCling.so.6.30.06 [.] llvm::StringMapImpl::LookupBucketFor
 1.10% [kernel.kallsyms] [k] preempt_count_add
 1.04% [kernel.kallsyms] [k] __mod_memcg_lruvec_state
 0.97% [kernel.kallsyms] [k] link_path_walk
 0.94% [kernel.kallsyms] [k] preempt_count_sub
 0.92% libz.so.1.3.1 [.] inflate_table
 0.85% [kernel.kallsyms] [k] percpu_counter_add_batch
 0.81% libc.so.6 [.] _int_malloc
 0.79% libz.so.1.3.1 [.] inflate
 0.76% ld-linux-x86-64.so.2 [.] do_lookup_x

perf – hierarchical profile report

81

bash ~ $ perf report -q --stdio --call-graph=none --hierarchy --percent-limit 1 --comm root.exe
comm: root.exe
 92.93% root.exe
 47.60% [kernel.kallsyms]
 2.63% [k] unmap_page_range
 1.89% [k] __mod_lruvec_state
 1.78% [k] srso_untrain_ret
 1.77% [k] srso_return_thunk
 1.53% [k] trace_hardirqs_off
 1.32% [k] __lruvec_stat_mod_folio
 1.31% [k] clear_page_rep
 1.10% [k] preempt_count_add
 1.04% [k] __mod_memcg_lruvec_state
 26.75% libCling.so.6.30.06
 4.11% [.] llvm::SimpleBitstreamCursor::Read
 2.27% [.] llvm::BitstreamCursor::readRecord
 1.26% [.] llvm::StringMapImpl::LookupBucketFor
 9.10% libz.so.1.3.1
 5.85% [.] inflate_fast
 1.43% [.] adler32_z
 4.56% libc.so.6
 no entry >= 1.00%
 2.96% ld-linux-x86-64.so.2
 1.31% [.] _dl_lookup_symbol_x
 1.12% libCore.so.6.30.06
 no entry >= 1.00%

perf – pre-packaged metrics (Intel CPU)
bash ~ $ perf list metrics

Metrics:

 Backend_Bound
 [This category represents fraction of slots where no uops are delivered due to a lack of required resources for accepting new uops in the Backend]
 Bad_Speculation
 [This category represents fraction of slots wasted due to incorrect speculations]
 BpTB
 [Branch instructions per taken branch]
 CLKS
 [Per-Logical Processor actual clocks when the Logical Processor is active]
 CPI
 [Cycles Per Instruction (per Logical Processor)]
 CPU_Utilization
 [Average CPU Utilization]
 CoreIPC
 [Instructions Per Cycle (per physical core)]
 Frontend_Bound
 [This category represents fraction of slots where the processor's Frontend undersupplies its Backend]
 ILP
 [Instruction-Level-Parallelism (average number of uops executed when there is at least 1 uop executed)]
 IPC
 [Instructions Per Cycle (per Logical Processor)]
 Instructions
 [Total number of retired Instructions]
 IpB
 [Instructions per Branch (lower number means higher occurance rate)]
 IpCall
 [Instruction per (near) call (lower number means higher occurance rate)]
 IpL
 [Instructions per Load (lower number means higher occurance rate)]

82

perf – pre-packaged metrics (Intel CPU)
bash ~ $ perf stat -M Frontend_Bound,Backend_Bound,Bad_Speculation,Retiring -- root -l -q

 Performance counter stats for 'root -l -q':

 535853293 cycles
 # 0.32 Frontend_Bound (50.07%)
 676507752 idq_uops_not_delivered.core (50.07%)
 803157447 uops_issued.any # 0.10 Bad_Speculation
 # 0.28 Backend_Bound (49.93%)
 540449552 cycles
 # 0.31 Retiring (49.93%)
 676523326 idq_uops_not_delivered.core (49.93%)
 19393734 int_misc.recovery_cycles (49.93%)
 667220596 uops_retired.retire_slots (49.93%)

 0.243072802 seconds time elapsed

 0.158384000 seconds user
 0.088028000 seconds sys

bash ~ $

83

Example – using perf + awk to get percent retiring

84

Example – using perf + awk to get percent retiring

85

Matrix Multiplication
#include <stdio.h>
#include <stdlib.h>

// This version has minor modifications applied, the
// original version is linked at the bottom of the slide

#define SIZE 1024
#define LENGTH 32

int **mkmatrix(int rows, int cols);
void zeromatrix(int rows, int cols, int **m);
void freematrix(int rows, int **m);

int **mmult(int rows, int cols,
 int **m1, int **m2, int **m3) {
 int i, j, k;

 for (i=0; i<rows; i++) {
 for (j=0; j<cols; j++) {
 m3[i][j] = 0;
 for (k=0; k<cols; k++)
 m3[i][j] += m1[i][k] * m2[k][j];
 }
 }
 return(m3);
}

86

int main(int argc, char *argv[]) {

 int i, n = ((argc == 2) ? atoi(argv[1]) : LENGTH);

 int **m1 = mkmatrix(SIZE, SIZE);
 int **m2 = mkmatrix(SIZE, SIZE);
 int **mm = mkmatrix(SIZE, SIZE);

 zeromatrix(SIZE, SIZE, mm);

 for (i=0; i<n; i++)
mm = mmult(SIZE, SIZE, m1, m2, mm);

 printf("%d %d %d %d\n",
 mm[0][0], mm[2][3], mm[3][2], mm[4][4]);

 freematrix(SIZE, m1);
 freematrix(SIZE, m2);
 freematrix(SIZE, mm);
 return(0);
}

https://github.com/llvm-mirror/test-suite/blob/master/SingleSource/Benchmarks/Shootout/matrix.c

https://github.com/llvm-mirror/test-suite/blob/master/SingleSource/Benchmarks/Shootout/matrix.c

Simple Top-Down Analysis with perf

87

Annotated Source

88

Load m1[i][k] and m2[k][j] into memory and multiply

Add result into m3[i][j]

Loading m2 matrix elements in column major order is causing backend stalls.

Top-Down Analysis with Intel VTune Profiler

89

As shown by the red arrows, the
loop is being performed in column
major order, which in C/C++ is not
optimal, because the memory
layout is row major. Therefore, we
need to perform a loop inversion
for the indices j and k to improve
performance.

Loop inversion solves the problem

90

Now we are no longer bound by the backend. The speedup obtained
was ≈2x with this change. Can we improve this result?
We can parallelize the code with OpenMP, for example.

Parallel code with OpenMP gains more performance

91

The percentage of time spent retiring is too high. This is also
indicative of a problem. Letʼs look again at the annotated source.

Annotated Source with perf annotate

92

The loop is still using scalar instructions.
We can further improve performance with vectorization.

Vectorization significantly improves performance

93

Weʼve improved performance from ~30s down to 0.54s, not bad!
Thatʼs a speedup of about 56.3x.

Comparison between initial and final versions

94

Final performance summary in VTune (10x runtime)

95

Matrix Multiplication Roofline Performance

96

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

Arithmetic Intensity [FLOPs/Byte]

Pe
rf

or
m

an
ce

 [G
FL

O
Ps

]

CPU Cap: Scalar Add / Multiply

Memory Cap: L1

Memory Cap: L2

Memory Cap: L3

CPU Cap: Vector Add / Multiply

CPU Cap: Fused Multiply/Add (FMA)

Fix bad memory access pattern.
Performance improved, but many cores are still idle.

Parallelize the code, now limited
only by scalar CPU performance.

Vectorize with SIMD instructions,
now weʼre close to the roofline.
Job done.

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

Low Level Performance
Optimization Guidelines

98

Top-Down
Microarchitecture
Analysis

● Bad Speculation
○ Unpredictable branches
○ Virtual Inheritance

● Front End Bound
○ Code Layout and Bloat
○ Loops with large body

● Core Bound
○ Loops with short body
○ Arithmetics/Data Dependencies
○ Divisions and Special Functions

● Memory Bound
○ Cache Misses
○ True and False Sharing
○ Bad Memory Access Patterns

Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture,"
2014 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459

CPU Pipeline Slots

Front End
Bound

Bad
SpeculationRetiring Backend Bound

Fe
tc

h
La

te
nc

y

Fe
tc

h
Ba

nd
w

id
th

iT
LB

 M
is

s

iC
ac

he
 M

is
s

Br
an

ch
 R

es
te

er
s

Fe
tc

h
So

ur
ce

 1

Fe
tc

h
So

ur
ce

 2

Base

M
ic

ro
co

de
Se

qu
en

ce
r

Br
an

ch

M
is

pr
ed

ic
tio

n

M
ac

hi
ne

Cl

ea
rs

Sc
al

ar

O
th

er

Fl
oa

tin
g

Po
in

t
A

rit
hm

et
ic

s
Ve

ct
or

Ex
ec

ut
io

n
Po

rt
s

Ut
ili

za
tio

n

Di
vi

de
r

3+
 P

or
ts

0
Po

rt
s

1
or

 2
 P

or
ts

Core
Bound

Memory
Bound

L1
 B

ou
nd

L2
 B

ou
nd

L3
 B

ou
nd

St
or

e
Bo

un
d

DR
A

M
 B

ou
nd

La
te

nc
y

Ba
nd

w
id

th

Not Stalled Stalled

https://doi.org/10.1109/ISPASS.2014.6844459
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_CLEARS-RESTEERS
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/machine-clears.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/machine-clears.html

Bad Speculation Performance Tuning

99

● Sources of unpredictable branches
○ Even distribution of choices
○ Loops over virtual objects
○ Stochastic processes

● Conditional code in loops
● Long conditional expressions

○ Latency until branch can be taken
○ Stronger penalty if predictor is wrong

● Function calls are also branches!
○ Worse if they are in another library

● Branchless code
○ Replace branches with arithmetics
○ Replace branches with predication
○ Replace branches with table lookup

● Annotate likely/unlikely branches
○ Improve branch prediction statistics
○ Helps with code layout optimization

● Ordering of branch conditionals
○ Most/Least likely first
○ Shortcircuit to decision early

● Loop splitting, statically linking

Main Causes of Bad Speculation Optimization Techniques

Example of Bad Speculation

100

Be careful with what you assume the compiler
can optimize for you.

Example of Bad Speculation

101

Be careful with what you assume the compiler
can optimize for you.

102

Effective Ordering of Conditionals

When a branching condition has several terms, order it
from the most discriminant term to the least. Here, the
energy is different much more frequently than material
or particle type, so this order leads to more early
decisions and better performance.

Probabilities:

mat == currentMaterial ⇒ 98.9%
matParticle == part->GetDefinition ⇒ 71.6%
matKinEnergy == part->GetKineticEnergy() ⇒ 32.1%

Note that these are independent. They are equal
together only about 6.9% of the time.

Front-End Performance Tuning

103

● Front-End Latency
○ Function inlining
○ Code bloat, duplication

■ More libraries ⇒ more pages to load

○ Frequent function calls
■ More instructions, call overhead

● Front-End Bandwidth
○ Loops with large body
○ Scalar-only arithmetics
○ Overloaded microop cache
○ Instructions need to be re-decoded

● Function inlining
● Basic block reordering
● Basic block placement (alignment)
● Reduce code size, duplication
● Enable link-time optimizations
● Use profile-guided optimization

○ Code layout matching control flow

● Optimize iTLB usage (huge pages)
● SIMD Vectorization (less instructions)

Sources of Front-End Performance Issues Optimization Techniques

SIMD Programming Models

● Auto-vectorization

● OpenMP 4.1

● Compiler Pragmas

● SIMD Library

● Compiler Intrinsics

● Assembly

float a[N], b[N], c[N];

for (int i = 0; i < N; i++)
 a[i] = b[i] * c[i];

float a[N], b[N], c[N];

#pragma omp simd
#pragma ivdep
for (int i = 0; i < N; i++)
 a[i] = b[i] * c[i];

#include <x86intrin.h>
__m256 a, b, c;

a = _mm256_mul_ps(b, c);

#include <Vc/Vc>
Vc::SimdArray<float, N> a, b, c;

a = b * c;

asm volatile(“vmulps %ymm1, %ymm0”);

104

Vectorization of Linear Algebra

void cross(const double * __restrict__ a, const double * __restrict__ b, double *result)
{
 result[0] = a[1]*b[2] - a[2]*b[1];
 result[1] = a[2]*b[0] - a[0]*b[2];
 result[2] = a[0]*b[1] - a[1]*b[0];
 return;
}

void cross_avx2(const double * __restrict__ a, const double * __restrict__ b, double *result)
{
 __m256d a012 = _mm256_load_pd(a);
 __m256d b012 = _mm256_load_pd(b);
 __m256d a201 = _mm256_permute4x64_pd(a012, _MM_SHUFFLE(3,1,0,2));
 __m256d b201 = _mm256_permute4x64_pd(b012, _MM_SHUFFLE(3,1,0,2));
 __m256d tmp = _mm256_fmsub_pd(b012, a201, _mm256_mul_pd(a012, b201));
 tmp = _mm256_permute4x64_pd(tmp, _MM_SHUFFLE(3,1,0,2));
 tmp = _mm256_blend_pd(_mm256_setzero_pd(), tmp, 0x7); // put zero on 4th position
 _mm256_store_pd(result, tmp);
 return;
}

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using
these objects can be sped up by using internal and external vectorization. Simple arithmetics (+ – × ÷) can be auto-vectorized by the
compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

Example: vector cross product (source)

105

Vectorization of Linear Algebra

cross(double const*, double const*, double*):
 1 vmovsd 0x10(%rdi),%xmm0
 2 vmulsd 0x8(%rsi),%xmm0,%xmm0
 3 vmovsd 0x8(%rdi),%xmm1
 4 vfmsub231sd 0x10(%rsi),%xmm1,%xmm0
 5 vmovsd %xmm0,(%rdx)
 6 vmovsd (%rdi),%xmm0
 7 vmulsd 0x10(%rsi),%xmm0,%xmm0
 8 vmovsd 0x10(%rdi),%xmm2
 9 vfmsub231sd (%rsi),%xmm2,%xmm0
10 vmovsd %xmm0,0x8(%rdx)
11 vmovsd 0x8(%rdi),%xmm0
12 vmulsd (%rsi),%xmm0,%xmm0
13 vmovsd (%rdi),%xmm3
15 vfmsub231sd 0x8(%rsi),%xmm3,%xmm0
16 vmovsd %xmm0,0x10(%rdx)
17 retq

cross_avx2(double const*, double const*, double*):
 1 vmovapd (%rdi),%ymm2
 2 vmovapd (%rsi),%ymm0
 3 vpermpd $0xd2,%ymm2,%ymm1
 4 vpermpd $0xd2,%ymm0,%ymm3
 5 vmulpd %ymm3,%ymm2,%ymm2
 6 vfmsub132pd %ymm1,%ymm2,%ymm0
 7 vxorpd %xmm1,%xmm1,%xmm1
 8 vpermpd $0xd2,%ymm0,%ymm0
 9 vblendpd $0x7,%ymm0,%ymm1,%ymm0
 10 vmovapd %ymm0,(%rdx)
 11 retq

Advantages with AVX2: less memory moves, smaller number of instructions (therefore smaller cost to inline), 2.5x faster, and in this form
it is transparent to the caller (same interface as generic code). However, code is more complex, needs to care about memory alignment.

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using
these objects can be sped up by using internal and external vectorization. Simple arithmetics (+ – × ÷) can be auto-vectorized by the
compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

Example: vector cross product (assembly)

106

Vectorization of Linear Algebra

cross(double const*, double const*, double*):
 1 vmovsd 0x10(%rdi),%xmm0
 2 vmulsd 0x8(%rsi),%xmm0,%xmm0
 3 vmovsd 0x8(%rdi),%xmm1
 4 vfmsub231sd 0x10(%rsi),%xmm1,%xmm0
 5 vmovsd %xmm0,(%rdx)
 6 vmovsd (%rdi),%xmm0
 7 vmulsd 0x10(%rsi),%xmm0,%xmm0
 8 vmovsd 0x10(%rdi),%xmm2
 9 vfmsub231sd (%rsi),%xmm2,%xmm0
10 vmovsd %xmm0,0x8(%rdx)
11 vmovsd 0x8(%rdi),%xmm0
12 vmulsd (%rsi),%xmm0,%xmm0
13 vmovsd (%rdi),%xmm3
15 vfmsub231sd 0x8(%rsi),%xmm3,%xmm0
16 vmovsd %xmm0,0x10(%rdx)
17 retq

cross_avx2(double const*, double const*, double*):
 1 vmovapd (%rdi),%ymm2
 2 vmovapd (%rsi),%ymm0
 3 vpermpd $0xd2,%ymm2,%ymm1
 4 vpermpd $0xd2,%ymm0,%ymm3
 5 vmulpd %ymm3,%ymm2,%ymm2
 6 vfmsub132pd %ymm1,%ymm2,%ymm0
 7 vxorpd %xmm1,%xmm1,%xmm1
 8 vpermpd $0xd2,%ymm0,%ymm0
 9 vblendpd $0x7,%ymm0,%ymm1,%ymm0
 10 vmovapd %ymm0,(%rdx)
 11 retq

Advantages with AVX2: less memory moves, smaller number of instructions (therefore smaller cost to inline), 2.5x faster, and in this form
it is transparent to the caller (same interface as generic code). However, code is more complex, needs to care about memory alignment.

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using
these objects can be sped up by using internal and external vectorization. Simple arithmetics (+ – × ÷) can be auto-vectorized by the
compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

Example: vector cross product (assembly)

107

Core Bound Performance Tuning

● Function call overhead
○ Short, frequently called functions

● Virtual inheritance, prevents inlining
● Poor port utilization

○ Chains of load/store instructions

● Arithmetics with data dependencies
○ True dependency (read-after-write)
○ Anti-dependency (write-after-read)
○ Output dependency (write-after-write)

● Divisions and square roots

● Function inlining
● Loop unrolling
● Replace recursion with iteration
● Avoid data access indirections
● Regular data members vs pointers
● Split long loops with dependencies
● Use the parenthesis in arithmetics
● Factor out common expressions
● Hide latency from divisions

108

Sources of Execution Bottlenecks Optimization Techniques

IEEE 754 Floating-Point Representation

109

● Floating point numbers are represented with a base β and a precision p

● For β = 2 and p = 4, the number
¼ = 0.25 can be written exactly
as 1.000 × 2⁻²

● Not all numbers can be represented

● For example, 0.04 is approximated

● With base β = 2 and precision p = 24:
0.04 ≅ 1.01000111101011100001010₂ × 2⁻⁵ ≅ 0.039999999105930328369140625

● Float: sign bit, 7 bit exponent, 23 bit mantissa

● Double: sign bit, 11 bit exponent, 52 bit mantissa

● Note: mantissa is stored as 1.NNNNN…N₂ such that effectively we have 24 and 53 bit
mantissas

$ root -l

root [0] float x = 0.04;

root [1] printf("%.28f\n", x);

0.0399999991059303283691406250

root [2] *reinterpret_cast<int*>(&x)

(int) 1025758986

root [3] .q

IEEE 754 Floating-Point Representation

110

● Floating point numbers are represented with a base β and a precision p

● For β = 2 and p = 4, the number
¼ = 0.25 can be written exactly
as 1.000 × 2⁻²

● Not all numbers can be represented

● For example, 0.04 is approximated

● With base β = 2 and precision p = 24:
0.04 ≅ 1.01000111101011100001010₂ × 2⁻⁵ ≅ 0.039999999105930328369140625

● Float: sign bit, 7 bit exponent, 23 bit mantissa

● Double: sign bit, 11 bit exponent, 52 bit mantissa

● Note: mantissa is stored as 1.NNNNN…N₂ such that effectively we have 24 and 53 bit
mantissas

$ python

Python 3.12.3 (main, Apr 10 2024, 10:27:02) on linux

>>> bin(1025758986)

'0b111101001000111101011100001010'

>>> 2 * 0b101000111101011100001010 / 2**24 * 2**-5

0.03999999910593033

Often Source of Amusing Bugs

111

● In Minecraft boats normally protect
passengers from fall damage
○ But not when falling from some heights

● In Minecraft, g = 0.04 blocks / tick²
○ Well, almost!

● Hn = (1 + 2 + 3 + ...) x 0.04 = 0.04 n(n+1)/2
● So when k(k+1) is a multiple of 1/0.04=25,

something interesting happens
○ status = IN_AIR → status = ON_LAND
○ Code that checks fall damage is tricked,

fails to update status to onGround = true

● Deciphered by Matt Parker (linked video)

https://bugs.mojang.com/browse/MC-119369
https://bugs.mojang.com/browse/MC-119369
https://www.youtube.com/watch?v=ei58gGM9Z8k
https://www.youtube.com/watch?v=ei58gGM9Z8k

Often Source of Amusing Bugs

112

● In Minecraft boats normally protect
passengers from fall damage
○ But not when falling from some heights

● In Minecraft, g = 0.04 blocks / tick²
○ Well, almost!

● Hn = (1 + 2 + 3 + ...) x 0.04 = 0.04 n(n+1)/2
● So when k(k+1) is a multiple of 1/0.04=25,

something interesting happens
○ status = IN_AIR → status = ON_LAND
○ Code that checks fall damage is tricked,

fails to update status to onGround = true

● Deciphered by Matt Parker (linked video)

https://bugs.mojang.com/browse/MC-119369
https://bugs.mojang.com/browse/MC-119369
https://www.youtube.com/watch?v=ei58gGM9Z8k
https://www.youtube.com/watch?v=ei58gGM9Z8k

Floating-Point Numbers are Denser Towards Zero

113

$ root -l
root [0] printf("%.16f\n", 0.1f);
0.1000000014901161
root [1] printf("%.16f\n", 0.1); /* double, not float */
0.1000000000000000
root [2] FLT_EPSILON
(float) 1.19209e-07f
root [3] printf("%.16f\n", 1.0f + 0.75f * FLT_EPSILON);
1.0000001192092896
root [4] printf("%.16f\n", 1.0f + 1.00f * FLT_EPSILON);
1.0000001192092896
root [5] printf("%.16f\n", 1.0f + 1.25f * FLT_EPSILON);
1.0000001192092896

root [6] printf("%.16f\n", 1.0f + 1.50f * FLT_EPSILON);
1.0000002384185791
root [7] printf("%.16f\n", 1.0f + 1.75f * FLT_EPSILON);
1.0000002384185791
root [8] printf("%.16f\n", 1.0f + 2.00f * FLT_EPSILON);
1.0000002384185791
root [9] printf("%.16f\n", 1.0f + 2.50f * FLT_EPSILON);
1.0000002384185791

0
1 2 3 4 5 6 7 8-8 -7 -6 -5 -4 -3 -2 -1 ……

One important aspect of floating-point
numbers is that they are denser near the
origin. Therefore, one needs to be careful
when choosing units for physical quantities
such that numerical calculations do not
stray too far from 1.0. When numbers
become too big, the rounding errors can
become quite significant. On the right, we
demonstrate that rounding when crossing a
density boundary at a power of 2.

Examples
0 01111111111 00 ≙ 3FF0 0000 0000 0000 ≙ +20 × 1 = 1

0 10000000000 00 ≙ 4000 0000 0000 0000 ≙ +21 × 1 = 2

1 10000000000 00 ≙ C000 0000 0000 0000 ≙ −21 × 1 = −2

0 00000000000 00 ≙ 0000 0000 0000 0000 ≙ +0

1 00000000000 00 ≙ 8000 0000 0000 0000 ≙ −0

0 11111111111 00 ≙ 7FF0 0000 0000 0000 ≙ +∞ (positive infinity)

1 11111111111 00 ≙ FFF0 0000 0000 0000 ≙ −∞ (negative infinity)

0 11111111111 0001 ≙ 7FF0 0000 0000 0001 ≙ NaN (sNaN on most processors)

0 11111111111 1001 ≙ 7FF8 0000 0000 0001 ≙ NaN (qNaN on most processors)

0 11111111111 11 ≙ 7FFF FFFF FFFF FFFF ≙ NaN (alternative encoding)

0 01111111111 0001 ≙ 3FF0 0000 0000 0001

 ≙ +20 × (1 + 2−52) ≈ 1.0000000000000002
Try it in https://www.h-schmidt.net/FloatConverter/IEEE754.html

114

https://www.h-schmidt.net/FloatConverter/IEEE754.html

G4PhysicsVector::Interpolation()

115

116

Arithmetics: Instruction Level Parallelism

Refactoring terms saves some multiplications, but note also
the parenthesis. Floating point arithmetics is not associative.
Parenthesizing ensures that each of the independent
multiplications can be performed in parallel. This alone
reduces estimated execution from 60 to 51 cycles (llvm-mca).

Without parenthesis With parenthesis

same register ⇒ sequential different registers ⇒ parallel

117

Arithmetics: Instruction Level Parallelism

Legend

118

Arithmetics: Instruction Level Parallelism

Legend

Top 20 classes in Geant4 Before Optimizations

119

Top 20 classes in Geant4 After Optimizations

120

Floating-Point Performance Tips

121

● Keep numbers small for better accuracy
● Be careful with direct comparisons
● If you can, use integer arithmetics instead
● Divisons are very slow, use them only when necessary
● Beware of unwanted conversions between single and double precision
● You can optimize for speed or accuracy, but rarely both at the same time
● Forget -Ofast, it will often break your code by assuming associativity
● Avoid long double at all costs, it uses the FP87 unit and is very slow
● Watch out for denormals and NaNs, they can significantly affect performance

Memory Bound Performance Tuning

● Bad cache locality
○ Spatial locality
○ Temporal locality

● Bad cache coherence
○ Cache invalidation
○ True and false sharing

● Bad data structures
○ Padding
○ Low information density

● Low information density

● Avoid data access indirections
○ Chains of loads rarely satisfy locality

● Group reads/writes to same struct
● Regular data members vs pointers
● Avoid contiguous per-thread data
● Try to pack holes in data structures
● Replace bools with bit flags
● Use smaller data types (int, float)
● Optimize dTLB usage (huge pages)
● Minimize number of heap allocations

122

Sources of Memory Issues Optimization Techniques

123

Data Access Patterns: Avoid Indirections

Chained accessors via pointers require several memory
accesses to retrieve a single piece of data, with similar cost
to traversing a linked list. Here we can avoid 3 access
indirections by reusing the value of fCurrentVolume.

124

Data Access Patterns: Avoid Indirections

Not good! Traverses pointer
chains multiple times, and
G4TouchableHandle is actually
reference counted, so this has
branches and is incrementing
and decrementing counters
multiple times too!

These actually return fDynamicParticle->Get...()!

125

Data Access Patterns: Avoid Indirections

126

Avoid Distant Data Accesses

Finding the field manager is expensive. It requires accessing
distant pieces of data like the fFieldPropagator class member
to call its method, and the track’s current volume. However,
we can avoid checking the field for neutral and/or massless
particles, as the field has no effect on them.

127

Data Access Patterns: Group Nearby Reads & Writes

If a class member needs to be accessed multiple times
inside a function or method, prefer keeping these accesses
close together to avoid unnecessary cache misses.

128

Unnecessary Work: Caching Data

This method is always called with each element of
each material in a loop, so the element is never the
same, and the cache was missed 100% of the time.

Loop Optimizations:
Invariant Expressions

for (int i = 0; i < N; ++i) {

 for (int j = 0; j < N; ++j)

 a[j] = b[j] * c[i];

}

129

Expressions that do not change with the
loop iteration are called loop invariants.

Loop invariants should be hoisted out of the
loop to avoid unnecessary computations.

for (int i = 0; i < N; ++i) {

 auto ci = c[i];

 for (int j = 0; j < N; ++j)

 a[j] = b[j] * c[i];

}

Loop Optimizations:
Invariant Conditionals for (int i = 0; i < N; ++i) {

 a[i] += b[i];

 if (reset)

 b[i] = 0.0;

}

130

The body of a loop may contain conditional
expressions that may cause poor
performance due to branch mispredictions.

The solution is to write two versions of the
loop body, and move the condition outside.

for (int i = 0; i < N; i++)

 a[i] += b[i];

if (reset)

 for (int i = 0; i<N; i++)

 b[i] = 0.0;

Loops with if statements inside

…can sometimes be replaced with separate loops

Loop Optimizations:
Loop Unrolling

for (int i = 0; i < N; ++i)

 a[i] = b[i] * c[i];

131

Loop unrolling can improve performance by
reducing the trip count (how many times the
body of the loop is run).

Loop unrolling can also help with SIMD
vectorization. When it is also vectorized, the
unrolled loop puts less pressure in the
instruction cache, as there are less
instructions overall in the body of the loop.

auto n = N/2;

for (int i = 0; i < n; i += 2) {

 a[i] = b[i] * c[i];

 a[i+1] = b[i+1] * c[i+1];

}

No loop unrolling

Loop unrolled once

Loop Optimizations:
Strength Reduction

for (int i = 0; i < N; ++i) {

 a[i] = b[3 * i] * c[i];

 d[i] = f[3 * i] * g[i];

}

132

The body of a loop may contain expensive
operations or similar operations that can be
replaced with cheaper ones.

Here, we replace a multiplication with
additions, and avoid computing it twice.

Modern compilers likely already optimize
this specific example, however, by
computing 3*i only once and reusing it.

int j = 0;

for (int i = 0; i<N; i++,j+=3) {

 a[i] = b[j] * c[i];

 d[i] = f[j] * g[i];

}

Multiplication in index

…can be replaced with additions

Geant4 Simulation Timeline

133

perf stat -d – overview of Geant4 initialization

134

Whoa, that’s a lot of backend cycles idle!

Record Geant4 initialization for further analysis

135

G4{h,Mu}PairProd. account for ~40% of initialization

136

Top 3 models account for ~60% of backend stalls

137

How to improve performance?

● Look for pair production model in Geant4 Physics Manual
○ Rework expressions for cross sections with pencil/paper to reduce arithmetic operations

● Avoid unnecessary calls to G4Log function when calculating zeta
● Remove data dependencies

○ Break up large for loop into several smaller for loops
■ Compute together things that don’t depend on each other
■ Hide latency from divisions
■ When calling G4Log, input is already available

○ Move common expressions out of for loop all together

● Remove code duplication from the two classes with essentially the same version of this
function by inheriting the base version in the derived class

138

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/electromagnetic/muon_incident/pair.html

How to improve performance?

● Look for pair production model in Geant4 Physics Manual
○ Rework expressions for cross sections with pencil/paper to reduce arithmetic operations

● Avoid unnecessary calls to G4Log function when calculating zeta
● Remove data dependencies

○ Break up large for loop into several smaller for loops
○ Compute together things that don’t depend on each other
○ Hide latency from divisions
○ When calling G4Log, input is already available
○ Move common expressions out of for loop

● Remove code duplication from the two classes with essentially the same version of this
function by inheriting the base version in the derived class

139

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/electromagnetic/muon_incident/pair.html

140

Return early to avoid unnecessary divisions

Moving the early return up reduces unnecessary divisions.
Also a3 <= 0 is harder to understand than the new form.

Result of expensive call to G4Log not always used

141

this call to G4Log
can be avoided when
zeta1 <= 0.0

result of division used right away

this if statement for treating hydrogen
differently can be replaced by branchless

code (index based on boolean result)

Avoid calling G4Log by replacing condition

142

We can avoid calling G4Log by replacing
the condition with an equivalent one for the
input argument of G4Log.

Big loop with many data dependencies (cont.)

143

hottest source lines
shown by perf annotate

Observations:

● Big for loop with fixed iteration count, but no vectorization
○ Loop has common expressions that can be moved out

● Variable names make code hard to understand
● Many data dependencies reduce parallelism
○ Results of divisions and sqrt used immediately
■ Result of tmn = G4Log(tmnexp) used immediately
■ Results of divisions and sqrt used inside call to G4Log
○ G4Log is called (and inlined!) 4 times just here
■ G4Log inlined 10 times just in this function!

Use perf annotate to find hottest parts of the code

144

hottest instructions

145

Big loop with many data dependencies

Data dependencies between arithmetic operations can
create execution latency even without cache misses.

146

Split it into two loops to hide latency from divisions

Data dependencies between arithmetic operations can
create execution latency even without cache misses.

Breaking up long loops into smaller parts makes it
possible to hide some of the latency from divisions and
math function calls with instruction level parallelism.

147

Reduce Code Duplication

This was a copy of
G4MuPairProductionModel::ComputeDMicroscopicCrossSection.
We can keep only the copy from the base class.

From ~40% of initialization to ~27%, not bad!

148

Revisiting overview of Geant4 initialization (before)

149

Revisiting overview of Geant4 initialization (after)

150

DWARF can show time spent in inlined functions

151

DWARF also allows to sort by source line

152

Physics models call G4Log and G4Exp many times during
initialization, so the results on the left are expected.
However, this is also an indication that there may be room for
optimization in G4Log and G4Exp as well, since we see backend stall
cycles without many L1 cache misses.
G4Log at least is also called many times in the event loop to fetch
cross section data with energy interpolated as log(E).

DWARF also allows to sort by source line (2)

153

Same as before, but sampled in the event loop.

Data dependencies seem to be the culprit again

154

Looking at the code for G4Log, we see
that the line with most stalls
(G4Log.hh:250 in previous slide) is a
line immediately using the result of a
division after it is computed.

G4Log inlined many times, maybe that’s a problem?

155

G4Log inlined at least 932 times in physics processes.
Makes libG4processes.so 1–2% larger because of this.

(release ~300K larger / debug 10MB larger)

156

G4Log function inlined G4Log function not inlined

No big difference, so problem is not due to code bloat

G4Log inlined many times, but it’s not a problem (yet)

What happens if we use std::log and std::exp?

157

Extra ~10% speedup! Could make sense to use std::log at initialization only.

A pinch of UNIX wisdom – on handling complexity
Rule 1 You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places,
so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

Rule 2 Measure. Don't tune for speed until you've measured, and even then don't unless one part of the code
overwhelms the rest.

Rule 3 Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have big constants. Until
you know that n is frequently going to be big, don't get fancy. (Even if n does get big, use Rule 2 first.)

Rule 4 Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms
as well as simple data structures.

Rule 5 Data dominates. If you've chosen the right data structures and organized things well, the algorithms will
almost always be self-evident. Data structures, not algorithms, are central to programming.

Rule 6 There is no Rule 6.

158

from “Notes on C Programming”, by Rob Pike

A pinch of UNIX wisdom – on handling complexity
Rule 1 You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places,
so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

Rule 2 Measure. Don't tune for speed until you've measured, and even then don't unless one part of the code
overwhelms the rest.

Rule 3 Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have big constants. Until
you know that n is frequently going to be big, don't get fancy. (Even if n does get big, use Rule 2 first.)

Rule 4 Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms
as well as simple data structures.

Rule 5 Data dominates. If you've chosen the right data structures and organized things well, the algorithms will
almost always be self-evident. Data structures, not algorithms, are central to programming.

Rule 6 There is no Rule 6.

159

from “Notes on C Programming”, by Rob Pike

Geant4 Microarchitecture Usage on Haswell Server

160

Front-End Bound

Memory Bound

Retiring

Bad Speculation

11.9%

53.8%

37.9%

2.8%

Mostly memory bound on Haswell

Geant4 Microarchitecture Usage on Skylake Desktop

161

Front-End Bound

Memory Bound

Retiring

Bad Speculation

21.5%

39.7%

22.8%

9.1%

Mostly frontend and core bound on Skylake, quite different than Haswell

Core Bound

7.0%

Conclusions and lessons learned

● Problems don’t always happen where we expect
○ Always measure to make sure your hypothesis for the cause is correct

● The fastest thing you can do is to not do anything
○ Avoid unnecessary work in your code (e.g. checking field manager for neutral particles)

● Beware of data dependencies
○ Reoder computations to take advantage of instruction level parallelism
○ Strong dependencies can make your code slow even if L1 misses are low

● Beware of indirect accesses via pointers and calls to other shared objects
○ Patterns like obj->GetFoo()->GetBar()->GetBaz() are too common in C++
○ Accessing Baz becomes as expensive as traversing a list every time, bad for locality
○ Frequent calls across shared objects are expensive, it’s better to merge into a single library

162

Data-Oriented Design

What is Data-Oriented Design?

● CppCon 2014 talk by Mike Acton

● Reminder of first principles on how data
structures influence final performance

● A program is something that transforms
input data from one form to another

● If you don’t understand the data,
you don’t understand the problem

● Different data ⇒ different problem

● Where there’s one, there are many,
optimize for the many

● You need to understand the hardware
your software is running on

164

https://www.youtube.com/watch?v=rX0ItVEVjHc
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B

CPU vs Memory
Performance Gap

● CPU performance has grown much
faster than memory performance

● Memory access latency is often the
main performance issue

● L3 cache has grown significantly, but
L1 and L2 remain relatively small

● L2 cache misses are still expensive

● Ultimately, speed of light limits peak
performance (c ≈ 30cm / ns)

165

memory latency

Memory advances have not kept up with Moore’s Law

166

 Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html

Latency Numbers Every Programmer Should Know

(~5 CPU cycles)

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Object-Oriented vs Data-Oriented Design

167

Object-Oriented

● Polymorphism, abstract interfaces
○ Defer implementation to concrete types

● Classes, Inheritance, Encapsulation
○ Data available only via exposed interface

● Data and operations/behavior together
○ Extend data and behavior
○ Reuse code from parent classes
○ Less chance to optimize data layout
○ Higher demand on instruction cache

■ Many methods per object type

Data-Oriented

● Optimize memory access pattern
○ Make use of full cachelines
○ Use all available memory bandwidth
○ Spatial and temporal cache locality

● Data structures separate from code
○ Improves also front-end metrics
○ Move all movable objects together
○ Single function rather than methods
○ Commonly implemented as an

Entity-Component-System in games

A pinch of UNIX wisdom – on handling complexity
Rule 1 You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places,
so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

Rule 2 Measure. Don't tune for speed until you've measured, and even then don't unless one part of the code
overwhelms the rest.

Rule 3 Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have big constants. Until
you know that n is frequently going to be big, don't get fancy. (Even if n does get big, use Rule 2 first.)

Rule 4 Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms
as well as simple data structures.

Rule 5 Data dominates. If you've chosen the right data structures and organized things well, the algorithms will
almost always be self-evident. Data structures, not algorithms, are central to programming.

Rule 6 There is no Rule 6.

168

from “Notes on C Programming”, by Rob Pike

Entity Component System Concepts

What they do it in computer games

169

Entity Component System Concepts

x
y
z

Particle Electron Photon Neutrino

m m

170

x
y
z

x
y
z

What they do it in computer games

x
y
z

…could also be applied to detector simulation

Array of Structure vs Structure of Array Data Layouts

struct track {
/* event structure */
int32_t id;
int32_t parent;

/* geometry data */
float x;
float y;
float z;

int32_t geometry_id;

/* physics data */
float vx;
float vy;
float vz;
float E;

 ...
};

template<unsigned int N>
struct TrackBlock {
 static constexpr unsigned int nElem = N;

 /* event structure */
 std::array<int32_t, nElem> id;
 std::array<int32_t, nElem> parent;

 /* geometry data */
 std::array<float, nElem> x;
 std::array<float, nElem> y;
 std::array<float, nElem> z;

 static constexpr mass = 0.511f;
 ...
};

AoS Structure SoA Structure

171

Performance numbers for simple kinetic energy kernel

Performance counter stats for 'AoS' (average of 20 runs):

 483.46 msec task-clock # 0.999 CPUs utilized
 1 context-switches # 0.001 K/sec
 0 cpu-migrations # 0.000 K/sec
 1138 page-faults # 0.002 M/sec
 1687395641 cycles # 3.490 GHz
 106037669 stalled-cycles-frontend # 6.28% frontend cycles idle
 1283753418 stalled-cycles-backend # 76.08% backend cycles idle
 1996927212 instructions # 1.18 insn per cycle
 # 0.64 stalled cycles per insn
 19497066 branches # 40.328 M/sec
 40196 branch-misses # 0.21% of all branches
 622021303 L1-dcache-loads # 1286.609 M/sec
 123124358 L1-dcache-load-misses # 19.79% of all L1-dcache accesses
 42493039 L1-icache-loads # 87.894 M/sec
 149328 L1-icache-load-misses # 0.35% of all L1-icache accesses
 31003 dTLB-loads # 0.064 M/sec
 8598 dTLB-load-misses # 27.73% of all dTLB cache accesses
 26 iTLB-loads # 0.055 K/sec
 19 iTLB-load-misses # 72.30% of all iTLB cache accesses

 0.484160 +- 0.000367 seconds time elapsed

Performance counter stats for 'SoA' (average of 20 runs):

 118.78 msec task-clock # 0.994 CPUs utilized
 1 context-switches # 0.010 K/sec
 0 cpu-migrations # 0.000 K/sec
 1138 page-faults # 0.010 M/sec
 414521761 cycles # 3.490 GHz
 131647110 stalled-cycles-frontend # 31.76% frontend cycles idle
 182606710 stalled-cycles-backend # 44.05% backend cycles idle
 122945544 instructions # 0.30 insn per cycle
 # 1.49 stalled cycles per insn
 17639259 branches # 148.508 M/sec
 38941 branch-misses # 0.22% of all branches
 81264204 L1-dcache-loads # 684.179 M/sec
 42555034 L1-dcache-load-misses # 52.37% of all L1-dcache accesses
 8799361 L1-icache-loads # 74.083 M/sec
 38984 L1-icache-load-misses # 0.44% of all L1-icache accesses
 13098 dTLB-loads # 0.110 M/sec
 6723 dTLB-load-misses # 51.33% of all dTLB cache accesses
 5 iTLB-loads # 0.040 K/sec
 112 iTLB-load-misses # 2363.16% of all iTLB cache accesses

 0.119446 +- 0.000115 seconds time elapsed

AoS Data Layout SoA Data Layout

About 4x faster for SoA. Much lower number of cycles, L1 loads, and TLB loads, easily auto-vectorized.

172

pahole – inspect layout of data structures

173

bash $ pahole -M -C G4LogicalVolume /usr/lib64/libG4geometry.so
class G4LogicalVolume {
public:

int ()(void) * * _vptr.G4LogicalVolume; /* 0 8 */
static G4LVManager subInstanceManager; /* 0 0 */
G4PhysicalVolumeList fDaughters; /* 8 24 */
class G4String fName; /* 32 32 */
/* --- cacheline 1 boundary (64 bytes) --- */
class G4UserLimits * fUserLimits; /* 64 8 */
class G4SmartVoxelHeader * fVoxel; /* 72 8 */
G4double fSmartless; /* 80 8 */
class G4Region * fRegion; /* 88 8 */
G4double fBiasWeight; /* 96 8 */
class shared_ptr<const G4VisAttributes> fVisAttributes; /* 104 16 */
class G4VSolid * fSolid; /* 120 8 */
/* --- cacheline 2 boundary (128 bytes) --- */
class G4VSensitiveDetector * fSensitiveDetector; /* 128 8 */
class G4FieldManager * fFieldManager; /* 136 8 */
class G4LVData * lvdata; /* 144 8 */
G4int instanceID; /* 152 4 */
enum EVolume fDaughtersVolumeType; /* 156 4 */
G4bool fOptimise; /* 160 1 */
G4bool fRootRegion; /* 161 1 */
G4bool fLock; /* 162 1 */

/* size: 168, cachelines: 3, members: 18, static members: 1 */
/* padding: 5 */
/* last cacheline: 40 bytes */

};

Members which are accessed most
often are in 3 different cachelines.

Must load fName whenever checking
fDaughters. Inefficient use of memory
hierarchy due to mix of hot and cold
data on each cacheline.

perf – memory access analysis: loads and stores

174

perf – memory access analysis: ROOT RDataFrame

175

See also: https://community.intel.com/t5/Intel-Moderncode-for-Parallel/What-is-the-aim-of-the-line-fill-buffer/td-p/1180777

Line Fill Buffer (sits between L1 and L2)

 Red flag, too many remote cache accesses

https://community.intel.com/t5/Intel-Moderncode-for-Parallel/What-is-the-aim-of-the-line-fill-buffer/td-p/1180777

Using perf to measure average load latency

176

 in CPU cycles

Avg. load latency = L1 miss pending cycles / (L1 misses + LFB hits)

perf mem report -s mem

177

perf mem report -s dso,symbol

178

~46% of high latency loads happen in
functions related to RDF filters...

perf mem report – symbol annotation

179

per-thread values in contiguous memory

perf mem report -s phys_daddr

180

high load latency happens in nearby addresses

perf c2c – cache to cache analysis

181

See also: https://hpc-wiki.info/hpc/FalseSharing

https://hpc-wiki.info/hpc/FalseSharing

perf c2c report

182

https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://joemario.github.io/blog/2016/09/01/c2c-blog/

perf c2c report

183

perf c2c report – cacheline details (press ‘d’)

184

185

perf c2c report – cacheline details, more columns

186

perf c2c report – cacheline details, expanded stack

Data-Type Profiling

187

linux $ perf mem record --ldlat=50 -- git fsck # collect loads with latency > 50 cycles
Checking objects: 100% (10271178/10271178), done.
Checking connectivity: 10223233, done.
[perf record: Woken up 395 times to write data]
[perf record: Captured and wrote 99.888 MB perf.data (1629334 samples)]
linux $ perf mem report --stdio -s type,typeoff --percent-limit 1
Overhead Samples Data Type Data Type Offset
........
 83.88% 1450665 (unknown) (unknown) +0 (no field)
 4.30% 100109 (stack operation) (stack operation) +0 (no field)
 3.79% 3712 struct malloc_chunk struct malloc_chunk +8 (mchunk_size)
 1.40% 2336 struct object struct object +0 (parsed)
 1.08% 842 struct malloc_chunk struct malloc_chunk +32 (fd_nextsize)
linux $ perf annotate --data-type=object
Annotate type: 'struct object' in /usr/libexec/git-core/git (3282 samples):
==
 samples offset size field
 104 0 40 struct object {
 0 0 4 unsigned int parsed;
 0 0 4 unsigned int type;
 0 0 4 unsigned int flags;
 104 4 36 struct object_id oid {
 104 4 32 unsigned char* hash;
 0 36 4 int algo;
 };
 };

● Introduced in latest versions of perf
○ First available in perf 6.8
○ Better with perf 6.10 and later

● Data recorded with perf mem record
● Attributes sample addresses back to the

data-type associated with that address
● Two methods to make use of it

○ perf mem report -s type,typeoff
○ perf annotate --data-type=<type>

● Still needs some help for pointer types
○ Part of LLVM’s -fdebug-info-for-profiling

Data profiling of git fsck on Linux kernel repository

See also: https://lwn.net/Articles/955709/

https://github.com/llvm/llvm-project/pull/81545
https://lwn.net/Articles/955709/

Packing Simulation Revisited

188

$ perf record -e cycles -F 1000 -- pack -f 0.6 ellipsoids
100.00% 0.6000 0.0000/min 2.6e-02 ev/s 38.2 s
[perf record: Woken up 5 times to write data]
[perf record: Captured 1.457 MB perf.data (38005 samples)]
$ perf report --stdio --percent-limit 0.25
Overhead Command Shared Object Symbol
........
#
 39.53% pack pack intersect
 32.60% pack pack HGrid::find_neighbors
 7.62% pack pack Ellipsoid::support
 3.76% pack pack closest_point_tetrahedron
 3.37% pack pack closest_point_triangle
 2.77% pack pack Simplex::closest
 2.46% pack pack Ellipsoid::bounding_radius
 2.07% pack pack check_overlap
 1.94% pack pack Simplex::contains
 1.15% pack libm.so.6 __sincos
 0.37% pack pack HGrid::make_hash
 0.36% pack pack HGrid::insert

void HGrid::find_neighbors(const Particle* p, std::vector<Particle*>& neighbors) {
 hash_t hash; unsigned int mask = occupied_level_mask;
 Vector x = p->position();

 for (unsigned int level = 0; level <= MAX_LEVEL; mask >>=1, level++) {
 if (mask == 0) return; /* no more occupied levels to check */
 if ((mask & 1) == 0) continue; /* level is not occupied */

 float cell_size = MAX_CELL_SIZE / (1 << level);
 float inv_cell_size = 1.0f / cell_size;
 float delta = p->bounding_radius(t_curr) + cell_size/2.0 + EPSILON;

 hash.data.level = level;
 short int imin = (short int) floor((x[0] - delta) * inv_cell_size);
 short int jmin = (short int) floor((x[1] - delta) * inv_cell_size);
 short int kmin = (short int) floor((x[2] - delta) * inv_cell_size);
 short int imax = (short int) ceil((x[0] + delta) * inv_cell_size);
 short int jmax = (short int) ceil((x[1] + delta) * inv_cell_size);
 short int kmax = (short int) ceil((x[2] + delta) * inv_cell_size);

 for (short int i = imin; i < imax; i++) {
 hash.data.x = i;
 for (short int j = jmin; j < jmax; j++) {
 hash.data.y = j;
 for (short int k = kmin; k < kmax; k++) {
 hash.data.z = k;
 if (grid.find(hash.value) != grid.end()) {
 Particle *neighbor = grid[hash.value];
 while(neighbor != NULL) {
 if (neighbor != p)
 neighbors.push_back(neighbor);
 neighbor = neighbor->next();
 }
 }
 }
 }
 }
 }
}

grid is an instance of std::map<hash, Particle*>, but this class
stores data as an array of red-black tree nodes, with the value
contiguously in memory in each node. This means that it
loads all values along with the keys when traversing it.

Packing Simulation Revisited

189

$ perf record -e cycles -F 1000 -- pack -f 0.6 ellipsoids
100.00% 0.6000 0.0000/min 2.6e-02 ev/s 38.2 s
[perf record: Woken up 5 times to write data]
[perf record: Captured 1.457 MB perf.data (38005 samples)]
$ perf report --stdio --percent-limit 0.25
Overhead Command Shared Object Symbol
........
#
 39.53% pack pack intersect
 32.60% pack pack HGrid::find_neighbors
 7.62% pack pack Ellipsoid::support
 3.76% pack pack closest_point_tetrahedron
 3.37% pack pack closest_point_triangle
 2.77% pack pack Simplex::closest
 2.46% pack pack Ellipsoid::bounding_radius
 2.07% pack pack check_overlap
 1.94% pack pack Simplex::contains
 1.15% pack libm.so.6 __sincos
 0.37% pack pack HGrid::make_hash
 0.36% pack pack HGrid::insert

 enum _Rb_tree_color { _S_red = false, _S_black = true };

 _Rb_tree_node_base
 {
 typedef _Rb_tree_node_base* _Base_ptr;
 typedef const _Rb_tree_node_base* _Const_Base_ptr;

 _Rb_tree_color _M_color;
 _Base_ptr _M_parent;
 _Base_ptr _M_left;
 _Base_ptr _M_right;
 };

 template<typename _Val>
 struct _Rb_tree_node : public _Rb_tree_node_base
 {
 typedef _Rb_tree_node<_Val>* _Link_type;

 _Val _M_value_field;

 _Val*
 _M_valptr()
 { return _M_storage._M_ptr(); }

 const _Val*
 _M_valptr() const
 { return _M_storage._M_ptr(); }
 };

Value contiguous in memory
after enum and 3 pointers.

enum = int = 4 bytes
4 pointers = 4 x 8 = 32 bytes
node = 36 bytes, misaligned
with cachelines

Traversing the map to find key is expensive

190

Cache hit/miss rates with perf mem

191

bash $ perf mem record -C 0 -t load --ldlat=20 -- taskset -c 0 ./pack --seed 17 -f 0.45 bench2.in
100.00% 0.4500 0.0000/min 1.8e-02 ev/s 54.1 s
[perf record: Woken up 64 times to write data]
[perf record: Captured and wrote 16.013 MB perf.data (208040 samples)]
bash $ perf mem report --stdio -s mem
To display the perf.data header info, please use --header/--header-only options.
#
#
Total Lost Samples: 0
#
Samples: 208K of event 'cpu/mem-loads,ldlat=20/P'
Total weight : 9857968
Sort order : mem
#
Overhead Samples Memory access
........
#
 90.65% 178426 L1 hit
 4.36% 12798 LFB/MAB hit
 3.95% 15602 L2 hit
 0.98% 1203 L3 hit
 0.04% 7 Remote Any cache hit
 0.01% 3 RAM hit
 0.00% 1 L3 miss

perf mem report -s mem,sym --hierarchy

192

New data profiling can show which structures are hit
bash $ perf annotate --data-type=Particle

Annotate type: 'Particle' in pack (7940 samples):
==
 samples offset size field
 7940 0 160 Particle {
 5 80 8 Shape* m_shape;
 0 88 4 float m_growth_rate;
 0 92 4 float m_mass;
 0 96 4 float m_inv_mass;
 0 100 4 unsigned int m_tag;
 0 104 4 unsigned int m_event_id;
 2 112 8 long unsigned int m_hash;
 1 120 8 long unsigned int m_collisions;
 1 128 8 Particle* m_prev;
 7931 136 8 Particle* m_next;
 0 144 16 union {
 0 144 16 __m128 m_color;
 0 144 16 struct {
 0 144 4 float r;
 0 148 4 float g;
 0 152 4 float b;
 0 156 4 float a;
 };
 };

193

When looking for adjacent particles to
check for intersections, we build the
list of neighbors and iterate through a
list, so m_next is a hot field for slow
loads (>20 cycles).

Color not used during simulation, can
make it compile-time optional for
better performance, and reorder hot
field into the first cache line.

After optimization, less samples on hot member
bash $ perf annotate --data-type=Particle

Annotate type: 'Particle' in pack (7541 samples):
==
 samples offset size field
 7541 0 128 Particle {
 7530 0 8 Particle* m_next;
 0 8 8 Particle* m_prev;
 2 16 8 long unsigned int m_hash;
 2 24 8 Shape* m_shape;
 0 32 16 Point m_position;
 0 48 16 Quaternion m_orientation;
 0 64 16 Vector m_velocity;
 0 80 16 Vector m_ang_velocity;
 0 96 4 float m_time;
 0 100 4 float m_growth_rate;
 0 104 4 float m_mass;
 0 108 4 float m_inv_mass;
 6 112 8 long unsigned int m_collisions;
 0 120 4 unsigned int m_tag;
 1 124 4 unsigned int m_event_id;
 };

194

L1 cache hit rate also improved after optimization
bash $ perf mem record -C 0 -t load --ldlat=20 -- taskset -c 0 ./pack --seed 17 -f 0.45 bench2.in
100.00% 0.4500 0.0000/min 1.9e-02 ev/s 53.4 s
[perf record: Woken up 63 times to write data]
[perf record: Captured and wrote 15.887 MB perf.data (205679 samples)]
bash $ perf mem report --stdio -s mem
To display the perf.data header info, please use --header/--header-only options.
#
#
Total Lost Samples: 0
#
Samples: 205K of event 'cpu/mem-loads,ldlat=20/P'
Total weight : 9887519
Sort order : mem
#
Overhead Samples Memory access
........
#
 93.01% 183502 L1 hit
 3.12% 12339 L2 hit
 3.11% 9010 LFB/MAB hit
 0.68% 813 L3 hit
 0.07% 12 Remote RAM hit
 0.01% 2 L3 miss
 0.00% 1 RAM hit

195

Summary and Conclusions

● Compiler can help with optimizing computations, not so much with memory access
● Many tools are available to inspect and optimize memory access patterns

○ pahole, perf mem, perf c2c, VTune memory access analysis

● Data-Oriented design collects key concepts to design memory efficient software
○ Separate data structures and operations on data
○ Focus on avoiding high latency and wasting memory bandwidth

● Many other indicators of bad memory access patterns
○ Backend Bound - stalled cycles at backend are a good indicator of inefficiencies

■ Core Bound - data dependencies in arithmetics, chains of high latency instructions
■ Memory Bound - not only read, but also write, some codes can be store bound

○ Cache Misses - main indicator of memory access issues
■ Need to watch for problem size: hit rate high for small workloads, inevitably higher on larger workloads
■ Cache associativity and locality can lead to complex issues, avoid loops with power of 2 trip length

196

“Programmers waste enormous amounts of time thinking about, or worrying

about, the speed of noncritical parts of their programs, and these attempts at

efficiency actually have a strong negative impact when debugging and

maintenance are considered. We should forget about small efficiencies, say

about 97% of the time: premature optimization is the root of all evil. Yet we

should not pass up our opportunities in that critical 3%”

— Donald Knuth

197

