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Our Main Goals

● Understand the architecture of modern CPU hardware

○ Hardware evolution

○ Main features of modern hardware

● Understand how to analyze the performance of our code

○ How to identify performance bottlenecks

○ What to measure and how to measure it

● Combine architectural knowledge and performance analysis

○ How to interpret performance measurements

○ What changes to make to the software
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CPU Hardware
Architecture and Evolution



Early Computing Devices
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1820s

Difference Engine

Automatic mechanical 
calculator designed to 
tabulate polynomial 
functions. Designed and first 
created by Charles Babbage.

1620– 1630

Slide Rule

Uses logarithm scales to help 
with multiplications and also 
computing other functions. 
Extensively used by engineers 
in the last century, before 
computers became powerful.

1642

Pascaline

Mechanical calculator 
invented by Blaise Pascal to 
help his father with tax 
calculations. Could add and 
subtract.

2700 – 2300 BC

Abacus

Used since ancient times, 
until Arabic numerals became 
the norm. Still in use as an 
educational tool.

Images: Wikipedia

https://en.wikipedia.org/wiki/Pascal%27s_calculator
https://en.wikipedia.org/wiki/Abacus
https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/Difference_engine


Ada Lovelace, the first computer programmer
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Augusta Ada King, Countess of Lovelace (10 December 
1815 – 27 November 1852) was an English mathematician 
and writer, known for her work on Charles Babbage's 
proposed mechanical general-purpose computer, the 
Analytical Engine. She was the first to recognize that the 
new machine had applications beyond simple calculations. 
She arguably wrote the first “computer program”. In her 
article entitled “note G” on the Analytical Engine, she 
described in detail an algorithm to compute a sequence of 
Bernoulli numbers using it.

Source: Wikipedia

https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Bernoulli_number


The Turing Machine: concept of first generic computer

State transition diagram
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source: https://aturingmachine.com

1

A Turing machine is capable of computing
any computable sequence.
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https://aturingmachine.com/
https://doi.org/10.1112/plms/s2-42.1.230
https://aturingmachine.com
https://en.wikipedia.org/wiki/Turing_machine


From Turing Machine to Stored-Program Computer
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1936

Turing Machine

Conceptually the first general 
computing machine.

1937

Harvard IBM Mark I

Inspired on the Analytical Engine. 
One of the earliest general-purpose 
electromechanical computers.
First computer bug discovered on 
it by Grace Hopper.

1942-1945

ABC, Colossus, ENIAC

First truly digital computers, 
based on boolean logic and 
vacuum tubes.

1947

Solid-State Transistor

The first solid-state transistor 
was a based on a point-contact 
connection to a crystal by closely 
spaced thin gold foils.

1949

Assembly Language

Beginning of standardization of how 
to program computer with abstract 
instruction sets.

1950

EDVAC

First stored-program computer, 
based on John von Neumann’s 
architecture concept from 1945.



John von Neumann Architecture

Central Processing Unit
(CPU)

Memory Unit

Control Unit

Arithmetic/Logic UnitInput 
Device

Output 
Device
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https://ourworldindata.org/moores-law


Integrated Circuit-Based Microprocessors
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1970

Intel 4004

First Intel
microprocessor.
2,300 Transistors.

1972

Intel 8008

First 8 bit microprocessor.
3,500 Transistors.

1975

MOS 6502

Powered many popular devices, 
such as the Apple II, Atari 2600, 
Commodore 64, and the NES.
3,510 Transistors.

1976

Zilog Z80

8-bit microprocessor.
Powered devices such as
Sega Master System and Mega Drive,
and Sinclair’s ZX Spectrum.

1978

Intel 8086

First 16-bit microprocessor. 29,000 Transistors.
Its successor, the Intel 8088, a slightly modified 
version, powered first IBM PC.

1985

Intel 80386

32-bit microprocessor.
275,000 Transistors, 33MHz.
Cemented Intel’s PC market
dominance.

https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-8086.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-8008.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-4004.html
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-8086-and-the-ibm-pc.html


Intel’s 8086 Registers and Assembly
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Source: Wikipedia

; _strtolower:
; Copy a null-terminated ASCII string, converting
; all alphabetic characters to lower case.
; ES=DS
; Entry stack parameters
;   [SP+4] = src, Address of source string
;   [SP+2] = dst, Address of target string
;   [SP+0] = Return address
;
_strtolower proc
            push    bp             ;Set up the call frame
            mov     bp,sp
            push    si
            push    di
            mov     si,[bp+6]       ;Set SI = src (+2 due to push bp)
            mov     di,[bp+4]       ;Set DI = dst
            cld                     ;string direction ascending
            
loop:       lodsb                   ;Load AL from [si], inc si
            cmp     al,'A'          ;If AL < 'A',
            jl      copy            ; Skip conversion
            cmp     al,'Z'          ;If AL > 'Z',
            jg      copy            ; Skip conversion
            add     al,'a'-'A'      ;Convert AL to lowercase
copy:       stosb                   ;Store AL to [di], inc di
            or      al,al           ;If AL <> 0,
            jne     loop            ; Repeat the loop
            
done:       pop     di              ; restore di and si
            pop     si
            pop     bp              ;Restore the prev call frame
            ret                     ;Return to caller

         end     proc

https://en.wikipedia.org/wiki/Intel_8086


Intel x86 Assembly
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Registers available in the x86-64 instruction set

By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

SSE4.2AVX/AVX2

AVX512
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https://commons.wikimedia.org/w/index.php?curid=32745525


Instruction Sets

● CISC (Complex Instruction Set Computer)
○ Intel x86 and AMD64

■ Most laptop and desktop PCs, Playstation 5, Xbox One

○ IBM System z (mainframe computers)
● RISC (Reduced Instruction Set Computer)

○ ARM
■ Amazon Graviton (AWS VMs)
■ Apple M1–M4 (iPhone, iPad, iMacs)
■ Ampere Altra, Fujitsu A64FX, etc
■ Qualcomm (mobile phones, tablets)
■ Nintendo Game Boy Advance, DS, 3DS and Switch, Raspberry Pi, etc

○ IBM’s PowerPC
■ Apple Macintosh (1994–2005), Nintendo GameCube and Wii, Playstation 3, Xbox 360

○ DEC Alpha, MIPS, Motorola 68000, RISC-V, SPARC, SuperH
■ Apple II (M68k), Nintendo 64, PlayStation 1 and 2 (MIPS), Sega Saturn and Dreamcast (SuperH)
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Programming Language Evolution
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1947
Assembly

Low-level language. 
High correspondence 
between language and 
hardware instructions.

Code written in 
assembly is converted 
to machine code using 
an assembler, which 
was a big upgrade over 
previous forms of 
programming.

1954
Fortran

One of the earliest 
high-level imperative 
programming 
languages.

Introduced procedural 
programming, double 
precision, and complex 
numbers. Still popular 
in HPC, including in 
GPU application 
programming.

1963
BASIC

Beginner's All-purpose 
Symbolic Instruction 
Code is a family of 
high-level languages.

BASIC became popular 
during the 8-bit era, but 
declined in popularity 
in the 90s, when more 
advanced languages 
like C were the norm.

1979
C++

C++ was designed with 
systems programming, 
embedded software, 
and efficiency in mind.

Although many think of 
C++ as a superset of C 
or C with classes, their 
latest versions are not  
fully compatible. Used 
extensively in HEP and 
HPC nowadays.

1972
C

Originally developed to 
implement many of the 
utilities for UNIX OSs. 
Still in wide use today.

C is a portable, 
imperative language 
with a static type 
system and which 
supports structured 
programming.



50 Years of Microprocessor Trend Data
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source: https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


50 Years of Microprocessor Trend Data
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source: https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Breakdown of Dennard’s Scaling
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● Power density per unit area stopped decreasing
● Frequency could no longer keep increasing after each die shrink

○ But the transistor numbers kept growing

● Single-thread performance gains continued, albeit at a slower pace
○ More complexity: pipelining, superscalar, out-of-order execution, SIMD

● AMD and Intel bring 64-bit CPUs to the mainstream market
○ Intel with IA-64, and AMD with amd64 (x86_64), announced in 1999

● From symmetric multiprocessing (SMP) to multithreading (SMT)
○ In the ‘90s, dual socket high-end servers became popular
○ First SMT capable CPU was the Intel Pentium 4, released in 2002

● First dual core processors began to appear in mid 2000s
● The era of parallelism is born

https://en.wikipedia.org/wiki/Dennard_scaling


Instruction-Level Parallelism
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Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back

Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write Back
Fetch Decode Execute Write BackTime

Operation-Level Parallelism

Pipelining

Superscalar Execution



Symmetric multithreading (SMT)
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CPU

Without SMT

With SMT

CPU

CPU CPU 0

Thread 1Thread 2

CPU 1

Thread 1

Thread 2

Core 0

Logical
Core 0

Logical 
Core 1

Threads scheduled one at a time on each physical core

Threads run simultaneously on two logical cores

Throughput:

Throughput:

Time



21

CPU Architecture
Generic Dual Core CPU

Source: Systems Performance 2nd Edition, Brendan Gregg

● Logical Components
○ Control Unit
○ Arithmetic Logic Units (ALUs)
○ Floating Point Unit (FPU)
○ Branch Predictor Unit (BPU)
○ Memory Management Unit (MMU)
○ Translation Lookaside Buffer (TLB)

● Memory Subsystem
○ L1(~32–512KB per core)
■ L1 Instruction Cache
■ L1 Data Cache

○ L2 (~1–8MB per core)
■ Instruction/Data Shared Cache

○ L3 (up to ~8MB–1.1GB per socket)
■ Last level cache (LLC)

https://www.oreilly.com/library/view/systems-performance-2nd/9780136821694/


Memory Hierarchy
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1

CPU Registers & L1 Cache
L1 Latency: 1–5 cycles
L1 Size: 32–512K / core

3

L3 Cache
Latency: ~40 cycles
Size: 8MB – 1.1GB

5

SSD, HDD, Tape Storage
SSD Latency: 10–70 µs
HDD Latency: 10–15 ms
Tape Latency: varies, minutes to hours, 
depends on if tape is already mounted

2

L2 Cache
Latency: ~12 cycles

Size: ~1M / core

4

Main Memory
Latency: 100–400 cycles
Size: 10s of GB to few TB

L2

L1

L3

DRAM

Storage
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    Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html 

Latency Numbers Every Programmer Should Know

(~5 CPU cycles)

https://colin-scott.github.io/personal_website/research/interactive_latency.html


Virtual Memory

24

● First appeared in the Atlas computer in 1962
● Memory Management Unit (MMU)
● Memory managed in pages

○ Page sizes are usually 4K, 16K, 64K
○ May also support “huge pages” of 2MB, 1GB

● Hides fragmentation of physical memory
● Memory hierarchy managed by the kernel
● Makes application programming easier

○ Memory looks contiguous
○ No need to worry about fragmentation
○ Seems to own whole address space
○ Enabled timesharing features

Main Memory

MMU IOMMU

CPU Other
Devices

Virtual    Addresses Device    Addresses

Physical Addresses

https://www.computerhistory.org/timeline/1962/


Page
Fault

Virtual
Address

The Translation Lookaside Buffer

“A translation lookaside buffer (TLB) 
is a memory cache that is used to 
reduce the time taken to access a 
user memory location.
It is a part of the chip's memory 
management unit (MMU). The TLB 
stores the recent translations of 
virtual memory to physical memory 
and can be called an 
address-translation cache.”
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CPU
Core

TLB

MMU

Page Table
(Main Memory)

L1 L2

TLB miss

TLB hit

Physical
Address

Virtual to Physical Translation

Disk

https://en.wikipedia.org/wiki/Translation_lookaside_buffer

https://en.wikipedia.org/wiki/Translation_lookaside_buffer


● First dual core CPUs debut in 2004
○ Pentium D, based on Pentium 4
○ AMD Athlon X2

● Quickly evolved from 2 to 4 cores
○ Stagnated at 4 cores for several years

● Ryzen brought AMD back in the game
○ Offered more cores, forced Intel to do the same

● ARM finally begins move from phones to servers
○ Amazon Graviton, Fujitsu A64FX, Ampere Altra

● Innovations in packaging led to multi-chip CPUs
○ AMD EPYC, Intel Sapphire and Emerald Rapids

The Parallel Era

26

AMD EPYC Bergamo

Fujitsu A64FX

Intel Emerald Rapids
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Ampere Roadmap 2020 – 2026

Source: Ampere



Non-Uniform Memory Architecture (NUMA)
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CPU CPU

CPU CPU

I/O

Core 1 Core 2 Core 3 Core 4

L1/L2 L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3 Core 4

L1/L2 L1/L2 L1/L2 L1/L2

Shared L3

DRAM
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Source: AMD
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AMD Zen4 Architecture in detail

Source: AMD
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Source: Intel



SIMD Vectorization

Scalar 
processing

SIMD 
processing

Instructions
Data
Results
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● Intel® Pentium Processor (1993)
        32bit

● Multimedia Extensions (MMX in 1997)
              64bit integer support only

● Streaming SIMD Extensions (SSE in 1999 to SSE4.2 in 2008)
                         32bit/64bit integer and floating point, no masking

● Advanced Vector Extensions (AVX in 2011 and AVX2 in 2013)
                                            Fused multiply-add (FMA), HW gather support (AVX2)

● Many Integrated Core Architecture (Xeon Phi™ Knights Corner in 2013)
                                                                                      HW gather/scatter, exponential

● AVX512 on Knights Landing, Skylake Xeon, and Core X-series (2016/2017)
                                                                                      Conflict detection instructions

History of Intel® SIMD ISA Extensions

= 32 bit word

33



● AVX 10
○ Supported on both P-cores and E-cores
○ Brings benefits of AVX512 to smaller registers

● Advanced Matrix Extensions (AMX)
○ Targeted at AI applications
○ SIMD for small matrix operations
○ Available on 4th and 5th generation Xeon

● Advanced Performance Extensions (APX)
○ Adds new features that improve general-purpose performance
○ Expands x86 instruction set with more general-purpose registers (from 16 to 32)
○ New REX2 prefix provides uniform access to the new registers
○ Adds conditional forms of load, store, and compare/test instructions
○ New prefix increase average instruction length, but there are less instructions overall

Evolution of Intel® SIMD ISA Extensions

34
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Microarchitecture of 
a Modern Intel Core

Intel Golden Cove Core

● Front End
○ Instruction Fetch and Decode
○ Branch Predictor Unit (BPU)
○ L1 Instruction Cache
○ Instruction TLB

● Back End
○ Execution Engine

■ Scheduler
■ Register File
■ Execution Units (EUs)

○ Memory Subsystem
■ Load/Store Units (LSU)
■ L1 / L2 Data Cache
■ Data TLB

By Saneandsad - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=113727886

https://commons.wikimedia.org/w/index.php?curid=113727886


Meteor Lake Hybrid Architecture
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Ultra Mobile
Mobile Desktop

Meteor Lake Block Diagram

Source: Intel
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Source: Intel
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Source: Intel
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Source: Intel
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Source: Intel



● Modern machines have up to 8 sockets
● Trend towards reduction back to 2 onlySockets2

Modern Hardware
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● Has always been there
● Run copies of your code on each nodeSystems1

● Higher frequency no longer possible
● 128 cores in each socket now commonCores3
● Hardware has N physical cores
● OS sees 2N logical cores, shared exec.Threads4
● Superscalar execution
● Multiple instructions executed at oncePorts5
● Parallel instruction execution steps
● Fetch / Decode / Execute / Write BackPipelining6
● SSE4.2, AVX2, AVX512, AVX10
● PowerPC Altivec, ARM SVE, etcSIMD Vectors7

1

3

6

7

2

4

5



Summary
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● We’ve come a long way, modern hardware is quite complex
○ NUMA Architecture (multi socket)
○ High parallelism (multicore, superscalar)
○ Advanced Packaging (chiplets)
○ Hybrid Architectures (performance/efficiency)
○ Variable CPU frequency scaling (turbo boost, thermal throttling)
○ Accelerators and Heterogeneity (GPUs, NPUs, FPGAs, ASICs)

● Performance does not come for free, we needed to adapt our software
○ Concurrency and Parallelism (processes, threads, SIMD)
○ Memory alignment, access patterns, fragmentation
○ Code layout, compiler optimizations, data structures, software design
○ Need the right tools to guide us: profilers, static analysis, etc
○ Need the right methodology: identify causes of bottlenecks, address the right issue



Performance Analysis
on Modern CPUs



Performance is challenging

● Measuring Performance
○ Instrumentation and measurement has some overhead
○ Sophisticated hardware architecture (out of order, superscalar)
○ Variable CPU frequency scaling (turbo boost, thermal throttling)
○ Often missing symbols (JIT, interpreted languages, stripped binaries)
○ Unreliable stack unwinding (deep call stacks, inlining, missing frame pointers)

● Optimization and Tuning
○ Floating-point arithmetics is complicated (denormals)
○ Memory access patterns, fragmentation, (mis-)alignment
○ Concurrency issues (shared resources with hyperthreading, contention)
○ Reliance on compiler optimizations (exceptions vs vectorization, dead code)

44



Instrumentation-Based Profiling

● Use a timer and print out how long a section of code takes to run
○ Simplest form of instrumentation
○ Make changes and measure again

● Use an instrumentation-based profiler
○ May need to compile application with profiling information (-g -pg)
○ Run the application and analyze the output file
○ Examples: gprof, valgrind, uftrace
○ Yields number of calls for each function, unlike sampling
○ Usually suffers from high overhead
○ Cannot use in production systems

45

https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://valgrind.org/
https://uftrace.github.io/


Flat profile example using gprof
$ pack -f 0.5 examples/ellipsoids # compiled with -O2 -g -pg, simulates a packing of ellipsoids, as shown below
100.00% 0.5000 0.0000/min 2.1e-01 ev/s 4.9 s   
$ file gmon.out 
gmon.out: GNU prof performance data - version 1
$ gprof --no-graph pack | head -n 20
Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative   self               self     total           
 time   seconds   seconds     calls   s/call   s/call  name    
 34.05      0.95     0.95   7677145     0.00     0.00  HGrid::find_neighbors(Particle const*, std::vector<Particle*>&)
 24.73      1.64     0.69  66007037     0.00     0.00  intersect(Particle const&, Particle const&, float)
  7.89      1.86     0.22  31828514     0.00     0.00  Ellipsoid::support(Vector const&) const
  5.38      2.01     0.15   6685781     0.00     0.00  Particle::world_transform(float) const
  4.30      2.13     0.12 140620355     0.00     0.00  Ellipsoid::bounding_radius() const
  3.94      2.24     0.11  10459271     0.00     0.00  closest_point_triangle(Point&, Point&, Point&, result&)
  3.23      2.33     0.09  13858812     0.00     0.00  Simplex::add_vertex(Vector const&, Point const&, Point const&)
  2.15      2.39     0.06  13858812     0.00     0.00  Simplex::update()
  2.15      2.45     0.06   4288132     0.00     0.00  closest_point_tetrahedron(Point&, Point&, Point&, Point& result&)
  1.79      2.50     0.05  13732871     0.00     0.00  Simplex::reduce()
  1.79      2.55     0.05    481841     0.00     0.00  check_overlap(Particle&)
  1.79      2.60     0.05      1000     0.00     0.00  Ellipsoid::name() const
  1.43      2.64     0.04   6784500     0.00     0.00  time_of_impact(Particle const&, Particle const&, float, float)
  1.43      2.68     0.04   3342851     0.00     0.00  Simplex::reset()
  1.43      2.72     0.04                             _init
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Flat profile example using valgrind
$ valgrind --tool=callgrind -- pack -f 0.5 examples/ellipsoids # no need for -pg
==2140677== Callgrind, a call-graph generating cache profiler
==2140677== Copyright (C) 2002-2017, and GNU GPL'd, by Josef Weidendorfer et al.
==2140677== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2140677== Command: pack -f 0.5 examples/ellipsoids
==2140677== 
==2140677== For interactive control, run 'callgrind_control -h'.
100.00% 0.5000 0.0000/min 6.7e-03 ev/s 150.0 s 
==2140677== 
==2140677== Events    : Ir
==2140677== Collected : 29183525425
==2140677== 
==2140677== I   refs:      29,183,525,425
$ kcachegrind callgrind.out.2140677

47



● Official Linux profiler (source code is part of the kernel itself)
● Both hardware and software based performance monitoring
● Much lower overhead compared with instrumentation-based profiling
● Kernel and user space
● Counting and Sampling

○ Counting — count occurrences of a given event (e.g. cache misses)
○ Event-based Sampling — a sample is recorded when a threshold of events has occurred
○ Time-based Sampling — samples are recorded at a given fixed frequency
○ Instruction-based Sampling — processor follows instructions and samples events they create

● Static and Dynamic Tracing
○ Static — pre-defined tracepoints in software
○ Dynamic — tracepoints created using uprobes (user) or kprobes (kernel)

48

perf – Performance analysis tools for Linux

http://perf.wiki.kernel.org/


Sampling
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main() f() g()main() g() f() main()f()
no sampling

Time

main()

f()

g()

user space
syscall()

kernel

block interrupt

g()

f()

main()

end

off-cpuon-cpu on-cpu



Tracing
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Time

main()

f()

g()

user space
syscall()

kernel

block interrupt

g()

f()

main()

main() f() g() g() f()

end

main()

off-cpuon-cpu on-cpu



perf – subcommands
bash ~ $ perf

 usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

 The most commonly used perf commands are:
   annotate        Read perf.data (created by perf record) and display annotated code
   archive         Create archive with object files with build-ids found in perf.data file
   c2c             Shared Data C2C/HITM Analyzer.
   config          Get and set variables in a configuration file.
   data            Data file related processing
   diff            Read perf.data files and display the differential profile
   evlist          List the event names in a perf.data file
   list            List all symbolic event types
   mem             Profile memory accesses
   record          Run a command and record its profile into perf.data
   report          Read perf.data (created by perf record) and display the profile
   sched           Tool to trace/measure scheduler properties (latencies)
   script          Read perf.data (created by perf record) and display trace output
   stat            Run a command and gather performance counter statistics
   timechart       Tool to visualize total system behavior during a workload
   top             System profiling tool.
   version         display the version of perf binary
   probe           Define new dynamic tracepoints
   trace           strace inspired tool

 See 'perf help COMMAND' for more information on a specific command.
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Flat profile example using perf
$ pack -f 0.5 examples/ellipsoids # compiled with -O2 -g
100.00% 0.5000 0.0001/min 3.2e-01 ev/s 3.1 s   
$ perf record -F 1000 -e cycles -- pack -f 0.5 examples/ellipsoids 
perf record -F 1000 -e cycles -- pack -f 0.5 examples/ellipsoids 
100.00% 0.5000 0.0002/min 2.9e-01 ev/s 3.5 s   
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.138 MB perf.data (3431 samples) ]
$ perf report --stdio | sed -ne /Overhead/,25p
# Overhead  Command  Shared Object      Symbol                                 
# ........  .......  .................  .......................................
#
    34.07%  pack     pack               [.] HGrid::find_neighbors
    29.13%  pack     pack               [.] intersect
     8.23%  pack     pack               [.] Ellipsoid::support
     5.74%  pack     pack               [.] Particle::world_transform
     3.72%  pack     pack               [.] closest_point_tetrahedron
     3.65%  pack     pack               [.] closest_point_triangle
     2.42%  pack     pack               [.] Simplex::update
     2.27%  pack     pack               [.] Ellipsoid::bounding_radius
     2.25%  pack     pack               [.] Simplex::contains
     2.19%  pack     pack               [.] check_overlap
     0.95%  pack     libm.so.6          [.] __sincos
     0.61%  pack     pack               [.] HGrid::insert
     0.51%  pack     pack               [.] Simplex::reduce
     0.37%  pack     pack               [.] Simplex::closest
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CPU Features for Performance Analysis

53

● Performance Monitoring Unit (PMU)
○ Performance monitoring counters (PMC)

■ Hardware: cycles, instructions, branches, stalled cycles in frontend/backend, etc
■ PMUs have several slots (usually 4–6) for counting hardware events together
■ Core PMU (CPU related events) and Uncore PMUs (I/O, caches, memory, interconnect)
■ If more events need to be measured than fit in a PMU, this needs to be done via multiplexing

● Varies depending on hardware vendor/model
○ Basic events have equivalents in most hardware
○ More specific events may only be available on certain hardware models
○ Some events have the same name, but count different things (e.g. cache misses)

● Profilers make use of hardware/software events
○ Software events: page faults, context switches, migrations, etc

● Intel VTune, AMD µprof, macOS Instruments, Linux perf, etc



perf – hardware and software events
bash ~ $ perf list hw cache

List of pre-defined events (to be used in -e):

  branch-instructions OR branches                  [Hardware event]
  branch-misses                                    [Hardware event]
  cache-misses                                     [Hardware event]
  cache-references                                 [Hardware event]
  cpu-cycles OR cycles                             [Hardware event]
  instructions                                     [Hardware event]
  stalled-cycles-backend OR idle-cycles-backend    [Hardware event]
  stalled-cycles-frontend OR idle-cycles-frontend  [Hardware event]

  L1-dcache-load-misses                            [Hardware cache event]
  L1-dcache-loads                                  [Hardware cache event]
  L1-dcache-prefetches                             [Hardware cache event]
  L1-icache-load-misses                            [Hardware cache event]
  L1-icache-loads                                  [Hardware cache event]
  branch-load-misses                               [Hardware cache event]
  branch-loads                                     [Hardware cache event]
  dTLB-load-misses                                 [Hardware cache event]
  dTLB-loads                                       [Hardware cache event]
  iTLB-load-misses                                 [Hardware cache event]
  iTLB-loads                                       [Hardware cache event]
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bash ~ $ perf list sw

List of pre-defined events (to be used in -e):

  alignment-faults                                   [Software event]
  bpf-output                                         [Software event]
  context-switches OR cs                             [Software event]
  cpu-clock                                          [Software event]
  cpu-migrations OR migrations                       [Software event]
  dummy                                              [Software event]
  emulation-faults                                   [Software event]
  major-faults                                       [Software event]
  minor-faults                                       [Software event]
  page-faults OR faults                              [Software event]
  task-clock                                         [Software event]

  duration_time                                      [Tool event]



perf – Intel Skylake events
bash ~ $ perf list pipeline

List of pre-defined events (to be used in -e):

pipeline:
  arith.divider_active                              
       [Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations]
  baclears.any                                      
       [Counts the total number when the front end is resteered, mainly when the BPU cannot provide a correct prediction]
  br_inst_retired.all_branches                      
       [All (macro) branch instructions retired Spec update: SKL091]
  br_inst_retired.all_branches_pebs                 
       [All (macro) branch instructions retired Spec update: SKL091 (Must be precise)]
  br_inst_retired.conditional                       
       [Conditional branch instructions retired Spec update: SKL091 (Precise event)]
  br_inst_retired.far_branch                        
       [Counts the number of far branch instructions retired Spec update: SKL091 (Precise event)]
  br_inst_retired.near_call                         
       [Direct and indirect near call instructions retired Spec update: SKL091 (Precise event)]
  br_inst_retired.near_return                       
       [Return instructions retired Spec update: SKL091 (Precise event)]
  br_inst_retired.near_taken                        
       [Taken branch instructions retired Spec update: SKL091 (Precise event)]
  br_inst_retired.not_taken                         
       [Counts all not taken macro branch instructions retired Spec update: SKL091 (Precise event)]
  br_misp_retired.all_branches                      
       [All mispredicted macro branch instructions retired]
  ...
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perf – AMD Ryzen events
bash ~ $ perf list core

List of pre-defined events (to be used in -e):

core:
  ex_div_busy                                       
       [Div Cycles Busy count]
  ex_div_count                                      
       [Div Op Count]
  ex_ret_brn                                        
       [Retired Branch Instructions]
  ex_ret_brn_far                                    
       [Retired Far Control Transfers]
  ex_ret_brn_ind_misp                               
       [Retired Indirect Branch Instructions Mispredicted]
  ex_ret_brn_misp                                   
       [Retired Branch Instructions Mispredicted]
  ex_ret_brn_resync                                 
       [Retired Branch Resyncs]
  ex_ret_brn_tkn                                    
       [Retired Taken Branch Instructions]
  ex_ret_brn_tkn_misp                               
       [Retired Taken Branch Instructions Mispredicted]
  ex_ret_cond                                       
       [Retired Conditional Branch Instructions]
  ex_ret_cond_misp                                  
       [Retired Conditional Branch Instructions Mispredicted]
  ...
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perf – static tracepoint events
bash ~ $ sudo perf list 'sched:*'

List of pre-defined events (to be used in -e):

  sched:sched_kthread_stop                           [Tracepoint event]
  sched:sched_kthread_stop_ret                       [Tracepoint event]
  sched:sched_migrate_task                           [Tracepoint event]
  sched:sched_move_numa                              [Tracepoint event]
  sched:sched_pi_setprio                             [Tracepoint event]
  sched:sched_process_exec                           [Tracepoint event]
  sched:sched_process_exit                           [Tracepoint event]
  sched:sched_process_fork                           [Tracepoint event]
  sched:sched_process_free                           [Tracepoint event]
  sched:sched_process_wait                           [Tracepoint event]
  sched:sched_stat_runtime                           [Tracepoint event]
  sched:sched_stick_numa                             [Tracepoint event]
  sched:sched_swap_numa                              [Tracepoint event]
  sched:sched_switch                                 [Tracepoint event]
  sched:sched_wait_task                              [Tracepoint event]
  sched:sched_wake_idle_without_ipi                  [Tracepoint event]
  sched:sched_wakeup                                 [Tracepoint event]
  sched:sched_wakeup_new                             [Tracepoint event]
  sched:sched_waking                                 [Tracepoint event]
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Map of the
Linux Kernel
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https://makelinux.github.io/kernel/map/
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perf – event sources

Source: http://www.brendangregg.com/perf.html

http://www.brendangregg.com/perf.html


Linux Observability Tools
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Source: http://www.brendangregg.com/perf.html

http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/perf.html


Linux eBPF-based Observability Tools
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Source: http://www.brendangregg.com/perf.html

http://brendangregg.com/ebpf.html
http://www.brendangregg.com/perf.html


Flamegraphs
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● Visualization tool by Brendan Gregg
○ https://www.brendangregg.com/flamegraphs.html

● Call stacks on the vertical axis
● Number of samples as width
● Easy to identify where time is spent
● Not very good for in-depth analysis
● Built-in support now exists in perf
● Creates browseable HTML file

perf script flamegraph -- root.exe -l -q

https://www.brendangregg.com/flamegraphs.html


Avoid broken stack traces and missing symbols

● Compile code with debugging information (-g)
● Add -fno-omit-frame-pointer to compile options to keep frame pointer
● Install system packages with debugging info for the kernel and system libs

When recording data:

● Use --call-graph=fp/dwarf + DWARF debugging information
● Use precise events to avoid skidding (cycles:pp instead of just cycles)
● Adjust sampling rate to avoid large amounts of data and high overhead
● Sample events in a group if computing derived metrics (e.g. instr. per cycle)
● See man perf-list for more information on events and their modifiers
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Frame Pointer

64

0000000000000000 <square>:
   0: c5 fa 59 c0          vmulss %xmm0,%xmm0,%xmm0
   4: c3                   ret
   5: 66 66 2e 0f 1f 84 00 data16 cs nopw 0x0(%rax,%rax,1)
   c: 00 00 00 00 

0000000000000010 <cube>:
  10: c5 f8 28 c8          vmovaps %xmm0,%xmm1
  14: e8 00 00 00 00       call   19 <cube+0x9>
  19: c5 fa 59 c1          vmulss %xmm1,%xmm0,%xmm0
  1d: c3                   ret

● Saved/restored on each function call
● Lightweight and accurate backtraces
● DWARF backtraces not as accurate
● High overhead for very short functions

0000000000000000 <square>:
   0: c5 fa 59 c0          vmulss %xmm0,%xmm0,%xmm0
   4: c3                   ret
   5: 66 66 2e 0f 1f 84 00 data16 cs nopw 0x0(%rax,%rax,1)

0000000000000010 <cube>:
  10: 55                   push   %rbp
  11: c5 f8 28 c8          vmovaps %xmm0,%xmm1
  15: 48 89 e5             mov    %rsp,%rbp
  18: e8 00 00 00 00       call   1d <cube+0xd>
  1d: 5d                   pop    %rbp
  1e: c5 fa 59 c1          vmulss %xmm1,%xmm0,%xmm0
  22: c3                   ret

Without frame pointer

With frame pointer

float square(float x)
{
    return x * x;
}

float cube(float x)
{
    return x * square(x);
}

Simple square and cube functions
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ROOT startup flamegraph for various configurations

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)



66

ROOT startup flamegraph for various configurations

Missing symbols

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)
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ROOT startup flamegraph for various configurations

Broken stack unwinding

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)
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ROOT startup flamegraph for various configurations

Correctly merged stacks

perf record --call-graph=fp
(debugging info not available)

perf record --call-graph=dwarf
(frame pointer not available)

perf record --call-graph=fp
(frame pointer and debugging info)



perf stat – counting cycles vs instructions vs wall time
  # measure ROOT startup 20 times and print stats with averages and deviations

  $ perf stat -d -r 20 -- root.exe -l -q >/dev/null

   Performance counter stats for 'root.exe -l -q' (20 runs):

            119.72 msec task-clock                #    0.442 CPUs utilized           ( +-  0.76% )
               579      context-switches          #    0.005 M/sec                   ( +-  4.34% )
                13      cpu-migrations            #    0.109 K/sec                   ( +-  6.94% )
             11260      page-faults               #    0.094 M/sec                   ( +-  0.49% )
         493768274      cycles                    #    4.125 GHz                     ( +-  0.75% )  (66.72%)
          33420383      stalled-cycles-frontend   #    6.77% frontend cycles idle    ( +-  1.56% )  (75.75%)
         177325752      stalled-cycles-backend    #   35.91% backend cycles idle     ( +-  1.87% )  (79.76%)
         532310517      instructions              #    1.08  insn per cycle         
                                                  #    0.33  stalled cycles per insn ( +-  0.35% )  (82.16%)
         107905661      branches                  #  901.351 M/sec                   ( +-  0.26% )  (82.38%)
           2282743      branch-misses             #    2.12% of all branches         ( +-  0.77% )  (78.52%)
         246528817      L1-dcache-loads           # 2059.290 M/sec                   ( +-  1.12% )  (71.14%)
           5628008      L1-dcache-load-misses     #    2.28% of all L1-dcache hits   ( +-  1.30% )  (63.57%)
   <not supported>      LLC-loads                                                   
   <not supported>      LLC-load-misses                                             

            0.2709 +- 0.0205 seconds time elapsed  ( +-  7.58% )
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   # same measurements again, to show difference in noise for wall time, cycles, instructions

  $ perf stat -d -r 20 -- root.exe -l -q >/dev/null

   Performance counter stats for 'root.exe -l -q' (20 runs):

            118.38 msec task-clock                #    0.565 CPUs utilized           ( +-  0.73% )
               433      context-switches          #    0.004 M/sec                   ( +- 12.62% )
                12      cpu-migrations            #    0.103 K/sec                   ( +-  5.57% )
             11267      page-faults               #    0.095 M/sec                   ( +-  0.50% )
         488189557      cycles                    #    4.124 GHz                     ( +-  0.73% )  (60.32%)
          32509432      stalled-cycles-frontend   #    6.66% frontend cycles idle    ( +-  1.70% )  (78.43%)
         175081210      stalled-cycles-backend    #   35.86% backend cycles idle     ( +-  1.45% )  (83.54%)
         533538019      instructions              #    1.09  insn per cycle         
                                                  #    0.33  stalled cycles per insn ( +-  0.35% )  (84.97%)
         108436560      branches                  #  915.999 M/sec                   ( +-  0.29% )  (84.34%)
           2279445      branch-misses             #    2.10% of all branches         ( +-  1.05% )  (81.41%)
         244414949      L1-dcache-loads           # 2064.653 M/sec                   ( +-  0.94% )  (71.80%)
           5720566      L1-dcache-load-misses     #    2.34% of all L1-dcache hits   ( +-  1.35% )  (55.19%)
   <not supported>      LLC-loads                                                   
   <not supported>      LLC-load-misses                                             

            0.2093 +- 0.0220 seconds time elapsed  ( +- 10.53% )

  # (ratio of wall clock durations)
  $ bc -l <<< "0.2709 / 0.2093"
  1.29431438127090301003

  # (ratio of cycles measurements)
  $ bc -l <<< "493768274 / 488189557"
  1.01142735832835522944

  # (ratio of instructions measurements)
  $ bc -l <<< "532310517 / 533538019"
  0.99769931671917086006



Intel’s Last Branch Record
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● Useful when frame pointers are not available
● Use with perf record -b or perf record --call-graph=lbr
● Hardware registers on Intel CPUs that allow sampling branches
● Registers hold a ring buffer of the most recent branch decisions
● Useful to analyze branching behavior (branching probabilities, mispredictions)
● Available on AMD Zen4 or later CPUs

○ On older CPUs, some events provide similar functionality

● Articles describing LBR on LWN.net
○ An introduction to last branch records [LWN.net]
○ Advanced usage of last branch records [LWN.net]

https://lwn.net/Articles/680985/
https://lwn.net/Articles/680996/


Precise CPU Events for Sampling
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● PMU counts events on a per-core basis
○ Sample is taken when counter reaches threshold
○ Fixed frequency sampling achieved by predicting/adjusting the threshold
○ Instruction-level parallelism and speculative execution introduce noise and skidding

■ Only one base pointer per thread
■ Many instructions in flight on the core at the same time
■ Shared resources mean mixed counting when using hyperthreading

● Intel Processor Event-Based Sampling (PEBS)
○ Instruction pointer (and auxiliary information) stored in a designated area
○ No interrupts during sampling, reduced or no skidding

● AMD Instruction-Based Sampling (IBS)
○ Tracks instructions rather than events, marks every Nth instruction to be tracked
○ Two forms: IBS Fetch sampling (front-end) and IBS Op sampling (back-end)

“Precise Event Sampling on AMD Versus Intel: Quantitative and Qualitative Comparison” doi: 10.1109/TPDS.2023.3257105

https://easyperf.net/blog/2018/06/08/Advanced-profiling-topics-PEBS-and-LBR#processor-event-based-sampling-pebs
https://github.com/jlgreathouse/AMD_IBS_Toolkit?tab=readme-ov-file#background-on-instruction-based-sampling
https://dl.acm.org/doi/10.1109/TPDS.2023.3257105


Instructions vs Micro-operations (µops)

Instructions from a CISC instruction set are usually broken into one or more RISC-like 
operations in hardware. For example, an addition of two values from memory may be broken 
into memory loads into registers, the addition itself, then memory stores.
These operations are usually called micro-ops and abbreviated as µops. Some  PMUs have 
hardware events that allow counting separately µops issued, executed, and retired.

While instructions are usually split into simpler µops, the µops can instead be fused together 
when instructions are decoded in the front-end of the processor.  Microfusion is when µops 
from the same machine instruction are fused together, and macrofusion is when µops from 
distinct instructions are fused.
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Instructions Retired vs Executed

Instructions executed  refers to any instructions that have been processed by the CPU. For 
example, a multiplication of two numbers that has loaded the inputs, calculated the results 
and stored it somewhere. This metric includes speculatively executed instructions on 
branches that may have been discarded later on.

Instructions retired  refers to executed instructions that have actually contributed to the main 
line of execution of a program, that is, that has not been discarded as speculatively executed.

Instructions per cycle (IPC)  is a measure of the instruction-level parallelism, or how many 
instructions were retired on average in each CPU cycle. CPI (cycles per instruction) is also 
common. Typically up to 4 instructions per cycle can be executed on AMD/Intel CPUs.
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Top-Down Microarchitecture Analysis
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Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture," 2014 IEEE 
International Symposium on Performance Analysis of Systems and Software (ISPASS), Monterey, CA, 

2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459.

µops
Retired?

µops
Allocated?

Backend
Stalled?

Retiring Bad 
Speculation

Backend 
Bound

Front End 
Bound

Yes

Yes

Yes No

No

No

The Top-Down Characterization is a 
hierarchical organization of event-based 
metrics that identifies the dominant 
performance bottlenecks in an application.

Its aim is to show, on 
average, how well the CPU’s 
pipelines are being utilized 
while running an application.

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

https://doi.org/10.1109/ISPASS.2014.6844459
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
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Top-Down 
Microarchitecture 
Analysis

● Retiring
○ Useful Work

● Bad Speculation
○ Branching Issues

● Front End Bound
○ Instruction Fetch Issues

● Back End Bound
○ Core Bound
■ Port Utilization
■ Execution Latency

○ Memory Bound
■ Cache misses
■ Memory Bandwidth

Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture," 
2014 IEEE International Symposium on Performance Analysis of Systems and Software 

(ISPASS), Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459
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https://doi.org/10.1109/ISPASS.2014.6844459
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_CLEARS-RESTEERS
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/machine-clears.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/machine-clears.html


Expected Ranges of Pipeline Slots for Each Category
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Category
Client/Desktop 

Application
Server/Database

Distributed Application
High Performance Computing 

(HPC) Application

Retiring 20 – 50% 10 – 30% 30 – 70%

Back-End 
Bound

20 – 40% 20 – 60% 20 – 40%

Front-End 
Bound

5 – 10% 10 – 25% 5 – 10%

Bad 
Speculation

5 – 10% 5 – 10% 1 – 5%

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html


Roofline Performance Model
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https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html
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CPU Cap: Vector Add / Multiply

CPU Cap: Fused Multiply/Add (FMA)

Memory Bound Compute Bound

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html


perf – recording and reporting data
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bash ~ $ perf record -g -F max -- root.exe -l -q
info: Using a maximum frequency rate of 32500 Hz

[ perf record: Woken up 6 times to write data ]
[ perf record: Captured and wrote 2.003 MB perf.data (7035 samples) ]
bash ~ $ perf report -q --stdio -c root.exe | head -n 20
# comm: root.exe
    82.13%     0.00%  root.exe                 [.] _start
            |
            ---_start
               __libc_start_main@@GLIBC_2.34
               __libc_start_call_main
               main
               |          
               |--79.94%--TRint::TRint
               |          |          
               |          |--76.22%--TApplication::TApplication
               |          |          |          
               |          |           --76.14%--ROOT::Internal::GetROOT2
               |          |                     TROOT::InitInterpreter
               |          |                     |          
               |          |                     |--69.43%--CreateInterpreter
               |          |                     |          |          
               |          |                     |           --69.41%--TCling::TCling
               |          |                     |                     |          
               |          |                     |                     |--32.52%--RegisterCxxModules



perf – flat profile report
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bash ~ $ perf report -q --stdio --call-graph=none -c root.exe | head -n 25
# comm: root.exe
    82.13%     0.01%  root.exe                 [.] main
    82.13%     0.00%  libc.so.6                [.] __libc_start_call_main
    82.13%     0.00%  libc.so.6                [.] __libc_start_main@@GLIBC_2.34
    82.13%     0.00%  root.exe                 [.] _start
    79.94%     0.00%  libRint.so.6.30.06       [.] TRint::TRint
    76.22%     0.00%  libCore.so.6.30.06       [.] TApplication::TApplication
    76.14%     0.00%  libCore.so.6.30.06       [.] ROOT::Internal::GetROOT2
    76.14%     0.00%  libCore.so.6.30.06       [.] TROOT::InitInterpreter
    69.43%     0.00%  libCling.so.6.30.06      [.] CreateInterpreter
    69.41%     0.00%  libCling.so.6.30.06      [.] TCling::TCling
    38.76%     0.00%  libCling.so.6.30.06      [.] clang::CompilerInstance::loadModule
    38.52%     0.00%  libCling.so.6.30.06      [.] clang::CompilerInstance::findOrCompileModuleAndReadAST
    38.32%     0.21%  libCling.so.6.30.06      [.] clang::ASTReader::ReadAST
    32.52%     0.00%  libCling.so.6.30.06      [.] RegisterCxxModules
    32.26%     0.00%  libCling.so.6.30.06      [.] LoadModule
    31.87%     0.00%  libCling.so.6.30.06      [.] cling::Interpreter::loadModule
    31.75%     0.01%  libCling.so.6.30.06      [.] clang::Sema::ActOnModuleImport
    26.63%     0.00%  libCling.so.6.30.06      [.] cling::Interpreter::Interpreter
    22.80%     0.28%  [kernel.kallsyms]        [k] entry_SYSCALL_64
    22.51%     0.29%  [kernel.kallsyms]        [k] asm_exc_page_fault
    22.14%     0.36%  [kernel.kallsyms]        [k] do_syscall_64
    21.68%     0.31%  [kernel.kallsyms]        [k] exc_page_fault
    19.17%     0.38%  [kernel.kallsyms]        [k] do_user_addr_fault
    19.08%     0.00%  libCling.so.6.30.06      [.] cling::IncrementalParser::ParseInternal



perf – flat profile report by self-time
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bash ~ $ perf report -q --stdio --call-graph=none --no-children --percent-limit 0.75 -c root.exe
# comm: root.exe
     5.85%  libz.so.1.3.1           [.] inflate_fast
     4.11%  libCling.so.6.30.06     [.] llvm::SimpleBitstreamCursor::Read
     2.63%  [kernel.kallsyms]       [k] unmap_page_range
     2.27%  libCling.so.6.30.06     [.] llvm::BitstreamCursor::readRecord
     1.89%  [kernel.kallsyms]       [k] __mod_lruvec_state
     1.78%  [kernel.kallsyms]       [k] srso_untrain_ret
     1.77%  [kernel.kallsyms]       [k] srso_return_thunk
     1.53%  [kernel.kallsyms]       [k] trace_hardirqs_off
     1.43%  libz.so.1.3.1           [.] adler32_z
     1.32%  [kernel.kallsyms]       [k] __lruvec_stat_mod_folio
     1.31%  [kernel.kallsyms]       [k] clear_page_rep
     1.31%  ld-linux-x86-64.so.2    [.] _dl_lookup_symbol_x
     1.26%  libCling.so.6.30.06     [.] llvm::StringMapImpl::LookupBucketFor
     1.10%  [kernel.kallsyms]       [k] preempt_count_add
     1.04%  [kernel.kallsyms]       [k] __mod_memcg_lruvec_state
     0.97%  [kernel.kallsyms]       [k] link_path_walk
     0.94%  [kernel.kallsyms]       [k] preempt_count_sub
     0.92%  libz.so.1.3.1           [.] inflate_table
     0.85%  [kernel.kallsyms]       [k] percpu_counter_add_batch
     0.81%  libc.so.6               [.] _int_malloc
     0.79%  libz.so.1.3.1           [.] inflate
     0.76%  ld-linux-x86-64.so.2    [.] do_lookup_x



perf – hierarchical profile report
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bash ~ $ perf report -q --stdio --call-graph=none --hierarchy --percent-limit 1 --comm root.exe
# comm: root.exe
    92.93%        root.exe
       47.60%        [kernel.kallsyms]     
           2.63%        [k] unmap_page_range
           1.89%        [k] __mod_lruvec_state
           1.78%        [k] srso_untrain_ret
           1.77%        [k] srso_return_thunk
           1.53%        [k] trace_hardirqs_off
           1.32%        [k] __lruvec_stat_mod_folio
           1.31%        [k] clear_page_rep
           1.10%        [k] preempt_count_add
           1.04%        [k] __mod_memcg_lruvec_state
       26.75%        libCling.so.6.30.06   
           4.11%        [.] llvm::SimpleBitstreamCursor::Read
           2.27%        [.] llvm::BitstreamCursor::readRecord
           1.26%        [.] llvm::StringMapImpl::LookupBucketFor
        9.10%        libz.so.1.3.1         
           5.85%        [.] inflate_fast
           1.43%        [.] adler32_z
        4.56%        libc.so.6             
                        no entry >= 1.00%
        2.96%        ld-linux-x86-64.so.2  
           1.31%        [.] _dl_lookup_symbol_x
        1.12%        libCore.so.6.30.06    
                        no entry >= 1.00%



perf – pre-packaged metrics (Intel CPU)
bash ~ $ perf list metrics
 
Metrics:

  Backend_Bound
       [This category represents fraction of slots where no uops are delivered due to a lack of required resources for accepting new uops in the Backend]
  Bad_Speculation
       [This category represents fraction of slots wasted due to incorrect speculations]
  BpTB
       [Branch instructions per taken branch]
  CLKS
       [Per-Logical Processor actual clocks when the Logical Processor is active]
  CPI
       [Cycles Per Instruction (per Logical Processor)]
  CPU_Utilization
       [Average CPU Utilization]
  CoreIPC
       [Instructions Per Cycle (per physical core)]
  Frontend_Bound
       [This category represents fraction of slots where the processor's Frontend undersupplies its Backend]
  ILP
       [Instruction-Level-Parallelism (average number of uops executed when there is at least 1 uop executed)]
  IPC
       [Instructions Per Cycle (per Logical Processor)]
  Instructions
       [Total number of retired Instructions]
  IpB
       [Instructions per Branch (lower number means higher occurance rate)]
  IpCall
       [Instruction per (near) call (lower number means higher occurance rate)]
  IpL
       [Instructions per Load (lower number means higher occurance rate)]
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perf – pre-packaged metrics (Intel CPU)
bash ~ $ perf stat -M Frontend_Bound,Backend_Bound,Bad_Speculation,Retiring -- root -l -q

 Performance counter stats for 'root -l -q':

         535853293      cycles                                                      
                                                  #     0.32 Frontend_Bound           (50.07%)
         676507752      idq_uops_not_delivered.core                                   (50.07%)
         803157447      uops_issued.any           #     0.10 Bad_Speculation        
                                                  #     0.28 Backend_Bound            (49.93%)
         540449552      cycles                                                      
                                                  #     0.31 Retiring                 (49.93%)
         676523326      idq_uops_not_delivered.core                                   (49.93%)
          19393734      int_misc.recovery_cycles                                      (49.93%)
         667220596      uops_retired.retire_slots                                     (49.93%)

       0.243072802 seconds time elapsed

       0.158384000 seconds user
       0.088028000 seconds sys

bash ~ $
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Example – using perf + awk to get percent retiring
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Example – using perf + awk to get percent retiring
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Matrix Multiplication
#include <stdio.h>
#include <stdlib.h>

// This version has minor modifications applied, the
// original version is linked at the bottom of the slide

#define SIZE 1024 
#define LENGTH 32

int **mkmatrix(int rows, int cols);
void zeromatrix(int rows, int cols, int **m);
void freematrix(int rows, int **m);

int **mmult(int rows, int cols, 
            int **m1, int **m2, int **m3) {
    int i, j, k;
    
    for (i=0; i<rows; i++) {
        for (j=0; j<cols; j++) {
            m3[i][j] = 0;
            for (k=0; k<cols; k++)
                m3[i][j] += m1[i][k] * m2[k][j];
        }
    }
    return(m3);
}
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int main(int argc, char *argv[]) {

    int i, n = ((argc == 2) ? atoi(argv[1]) : LENGTH);

    int **m1 = mkmatrix(SIZE, SIZE);
    int **m2 = mkmatrix(SIZE, SIZE);
    int **mm = mkmatrix(SIZE, SIZE);

    zeromatrix(SIZE, SIZE, mm);

    for (i=0; i<n; i++)
mm = mmult(SIZE, SIZE, m1, m2, mm);

    printf("%d %d %d %d\n", 
           mm[0][0], mm[2][3], mm[3][2], mm[4][4]);

    freematrix(SIZE, m1);
    freematrix(SIZE, m2);
    freematrix(SIZE, mm);
    return(0);
}

https://github.com/llvm-mirror/test-suite/blob/master/SingleSource/Benchmarks/Shootout/matrix.c

https://github.com/llvm-mirror/test-suite/blob/master/SingleSource/Benchmarks/Shootout/matrix.c


Simple Top-Down Analysis with perf
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Annotated Source
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Load m1[i][k] and m2[k][j] into memory and multiply

Add result into m3[i][j]

Loading m2 matrix elements in column major order is causing backend stalls.



Top-Down Analysis with Intel VTune Profiler

89

As shown by the red arrows, the 
loop is being performed in column 
major order, which in C/C++ is not 
optimal, because the memory 
layout is row major. Therefore, we 
need to perform a loop inversion 
for the indices j and k to improve 
performance.



Loop inversion solves the problem
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Now we are no longer bound by the backend. The speedup obtained 
was ≈2x with this change. Can we improve this result?
We can parallelize the code with OpenMP, for example.



Parallel code with OpenMP gains more performance

91

The percentage of time spent retiring is too high. This is also 
indicative of a problem. Letʼs look again at the annotated source.



Annotated Source with perf annotate
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The loop is still using scalar instructions.
We can further improve performance with vectorization.



Vectorization significantly improves performance
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Weʼve improved performance from ~30s down to 0.54s, not bad!
Thatʼs a speedup of about 56.3x.



Comparison between initial and final versions
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Final performance summary in VTune (10x runtime)
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Matrix Multiplication Roofline Performance
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https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html

Arithmetic Intensity [FLOPs/Byte]
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Memory Cap: L1
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Memory Cap: L3

CPU Cap: Vector Add / Multiply

CPU Cap: Fused Multiply/Add (FMA)

Fix bad memory access pattern.
Performance improved, but many cores are still idle.

Parallelize the code, now limited 
only by scalar CPU performance.

Vectorize with SIMD instructions, 
now weʼre close to the roofline.
Job done.

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html


Low Level Performance 
Optimization Guidelines
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Top-Down 
Microarchitecture 
Analysis

● Bad Speculation
○ Unpredictable branches
○ Virtual Inheritance

● Front End Bound
○ Code Layout and Bloat
○ Loops with large body

● Core Bound
○ Loops with short body
○ Arithmetics/Data Dependencies
○ Divisions and Special Functions

● Memory Bound
○ Cache Misses
○ True and False Sharing
○ Bad Memory Access Patterns

Ahmad Yasin, "A Top-Down method for performance analysis and counters architecture," 
2014 IEEE International Symposium on Performance Analysis of Systems and Software 

(ISPASS), Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459
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https://doi.org/10.1109/ISPASS.2014.6844459
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_CLEARS-RESTEERS
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Bad Speculation Performance Tuning
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● Sources of unpredictable branches
○ Even distribution of choices
○ Loops over virtual objects
○ Stochastic processes

● Conditional code in loops
● Long conditional expressions

○ Latency until branch can be taken
○ Stronger penalty if predictor is wrong

● Function calls are also branches!
○ Worse if they are in another library

● Branchless code
○ Replace branches with arithmetics
○ Replace branches with predication
○ Replace branches with table lookup

● Annotate likely/unlikely branches
○ Improve branch prediction statistics
○ Helps with code layout optimization

● Ordering of branch conditionals
○ Most/Least likely first
○ Shortcircuit to decision early

● Loop splitting, statically linking

Main Causes of Bad Speculation Optimization Techniques



Example of Bad Speculation

100

Be careful with what you assume the compiler 
can optimize for you.



Example of Bad Speculation
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Be careful with what you assume the compiler 
can optimize for you.
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Effective Ordering of Conditionals

When a branching condition has several terms, order it 
from the most discriminant term to the least. Here, the 
energy is different much more frequently than material 
or particle type, so this order leads to more early 
decisions and better performance.

Probabilities:

mat == currentMaterial ⇒ 98.9%
matParticle == part->GetDefinition ⇒ 71.6%
matKinEnergy == part->GetKineticEnergy() ⇒ 32.1%

Note that these are independent. They are equal 
together only about 6.9% of the time.



Front-End Performance Tuning
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● Front-End Latency
○ Function inlining
○ Code bloat, duplication

■ More libraries ⇒ more pages to load

○ Frequent function calls
■ More instructions, call overhead

● Front-End Bandwidth
○ Loops with large body
○ Scalar-only arithmetics
○ Overloaded microop cache
○ Instructions need to be re-decoded

● Function inlining
● Basic block reordering
● Basic block placement (alignment)
● Reduce code size, duplication
● Enable link-time optimizations
● Use profile-guided optimization

○ Code layout matching control flow

● Optimize iTLB usage (huge pages)
● SIMD Vectorization (less instructions)

Sources of Front-End Performance Issues Optimization Techniques



SIMD Programming Models

● Auto-vectorization

● OpenMP 4.1

● Compiler Pragmas

● SIMD Library

● Compiler Intrinsics

● Assembly

float a[N], b[N], c[N];

for (int i = 0; i < N; i++)
  a[i] = b[i] * c[i];

float a[N], b[N], c[N];

#pragma omp simd
#pragma ivdep
for (int i = 0; i < N; i++)
  a[i] = b[i] * c[i];

#include <x86intrin.h>
__m256 a, b, c;

a = _mm256_mul_ps(b, c);

#include <Vc/Vc>
Vc::SimdArray<float, N> a, b, c;

a = b * c;

asm volatile(“vmulps %ymm1, %ymm0”);
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Vectorization of Linear Algebra

void cross(const double * __restrict__ a, const double * __restrict__ b, double *result)
{
    result[0] = a[1]*b[2] - a[2]*b[1];
    result[1] = a[2]*b[0] - a[0]*b[2];
    result[2] = a[0]*b[1] - a[1]*b[0];
    return;
}

void cross_avx2(const double * __restrict__ a, const double * __restrict__ b, double *result)
{
    __m256d a012 = _mm256_load_pd(a);
    __m256d b012 = _mm256_load_pd(b);
    __m256d a201 = _mm256_permute4x64_pd(a012, _MM_SHUFFLE(3,1,0,2));
    __m256d b201 = _mm256_permute4x64_pd(b012, _MM_SHUFFLE(3,1,0,2));
    __m256d  tmp = _mm256_fmsub_pd(b012, a201, _mm256_mul_pd(a012, b201));
    tmp = _mm256_permute4x64_pd(tmp, _MM_SHUFFLE(3,1,0,2));
    tmp = _mm256_blend_pd(_mm256_setzero_pd(), tmp, 0x7); // put zero on 4th position
    _mm256_store_pd(result, tmp);
    return;
}

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using 
these objects can be sped up by using internal and external vectorization. Simple arithmetics (+ – × ÷) can be auto-vectorized by the 
compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

Example: vector cross product (source)
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Vectorization of Linear Algebra

cross(double const*, double const*, double*):
 1 vmovsd 0x10(%rdi),%xmm0
 2 vmulsd 0x8(%rsi),%xmm0,%xmm0
 3 vmovsd 0x8(%rdi),%xmm1
 4 vfmsub231sd 0x10(%rsi),%xmm1,%xmm0
 5 vmovsd %xmm0,(%rdx)
 6 vmovsd (%rdi),%xmm0
 7 vmulsd 0x10(%rsi),%xmm0,%xmm0
 8 vmovsd 0x10(%rdi),%xmm2
 9 vfmsub231sd (%rsi),%xmm2,%xmm0
10 vmovsd %xmm0,0x8(%rdx)
11 vmovsd 0x8(%rdi),%xmm0
12 vmulsd (%rsi),%xmm0,%xmm0
13 vmovsd (%rdi),%xmm3
15 vfmsub231sd 0x8(%rsi),%xmm3,%xmm0
16 vmovsd %xmm0,0x10(%rdx)
17 retq

cross_avx2(double const*, double const*, double*):
  1 vmovapd (%rdi),%ymm2
  2 vmovapd (%rsi),%ymm0
  3 vpermpd $0xd2,%ymm2,%ymm1
  4 vpermpd $0xd2,%ymm0,%ymm3
  5 vmulpd %ymm3,%ymm2,%ymm2
  6 vfmsub132pd %ymm1,%ymm2,%ymm0
  7 vxorpd %xmm1,%xmm1,%xmm1
  8 vpermpd $0xd2,%ymm0,%ymm0
  9 vblendpd $0x7,%ymm0,%ymm1,%ymm0
 10 vmovapd %ymm0,(%rdx)
 11 retq

Advantages with AVX2: less memory moves, smaller number of instructions (therefore smaller cost to inline), 2.5x faster, and in this form
it is transparent to the caller (same interface as generic code). However, code is more complex, needs to care about memory alignment.

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using 
these objects can be sped up by using internal and external vectorization. Simple arithmetics (+ – × ÷) can be auto-vectorized by the 
compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

Example: vector cross product (assembly)
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Vectorization of Linear Algebra

cross(double const*, double const*, double*):
 1 vmovsd 0x10(%rdi),%xmm0
 2 vmulsd 0x8(%rsi),%xmm0,%xmm0
 3 vmovsd 0x8(%rdi),%xmm1
 4 vfmsub231sd 0x10(%rsi),%xmm1,%xmm0
 5 vmovsd %xmm0,(%rdx)
 6 vmovsd (%rdi),%xmm0
 7 vmulsd 0x10(%rsi),%xmm0,%xmm0
 8 vmovsd 0x10(%rdi),%xmm2
 9 vfmsub231sd (%rsi),%xmm2,%xmm0
10 vmovsd %xmm0,0x8(%rdx)
11 vmovsd 0x8(%rdi),%xmm0
12 vmulsd (%rsi),%xmm0,%xmm0
13 vmovsd (%rdi),%xmm3
15 vfmsub231sd 0x8(%rsi),%xmm3,%xmm0
16 vmovsd %xmm0,0x10(%rdx)
17 retq

cross_avx2(double const*, double const*, double*):
  1 vmovapd (%rdi),%ymm2
  2 vmovapd (%rsi),%ymm0
  3 vpermpd $0xd2,%ymm2,%ymm1
  4 vpermpd $0xd2,%ymm0,%ymm3
  5 vmulpd %ymm3,%ymm2,%ymm2
  6 vfmsub132pd %ymm1,%ymm2,%ymm0
  7 vxorpd %xmm1,%xmm1,%xmm1
  8 vpermpd $0xd2,%ymm0,%ymm0
  9 vblendpd $0x7,%ymm0,%ymm1,%ymm0
 10 vmovapd %ymm0,(%rdx)
 11 retq

Advantages with AVX2: less memory moves, smaller number of instructions (therefore smaller cost to inline), 2.5x faster, and in this form
it is transparent to the caller (same interface as generic code). However, code is more complex, needs to care about memory alignment.

Many computer simulation codes make extensive use of points, vectors, and affine coordinate transformations. Calculations using 
these objects can be sped up by using internal and external vectorization. Simple arithmetics (+ – × ÷) can be auto-vectorized by the 
compiler. Other operations, such as vector cross products and rotations are more complicated, but can still be vectorized manually.

Example: vector cross product (assembly)
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Core Bound Performance Tuning

● Function call overhead
○ Short, frequently called functions

● Virtual inheritance, prevents inlining
● Poor port utilization

○ Chains of load/store instructions

● Arithmetics with data dependencies
○ True dependency (read-after-write)
○ Anti-dependency (write-after-read)
○ Output dependency (write-after-write)

● Divisions and square roots

● Function inlining
● Loop unrolling
● Replace recursion with iteration
● Avoid data access indirections
● Regular data members vs pointers
● Split long loops with dependencies
● Use the parenthesis in arithmetics
● Factor out common expressions
● Hide latency from divisions
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Sources of Execution Bottlenecks Optimization Techniques



IEEE 754 Floating-Point Representation
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● Floating point numbers are represented with a base β and a precision p

● For β = 2 and p = 4, the number
¼ = 0.25 can be written exactly
as 1.000 × 2⁻²

● Not all numbers can be represented

● For example, 0.04 is approximated

● With base β = 2 and precision p = 24:
0.04 ≅ 1.01000111101011100001010₂ × 2⁻⁵ ≅ 0.039999999105930328369140625

● Float:                                          sign bit, 7 bit exponent, 23 bit mantissa

● Double:                                                                                  sign bit, 11 bit exponent, 52 bit mantissa

● Note: mantissa is stored as 1.NNNNN…N₂ such that effectively we have 24 and 53 bit 
mantissas

$ root -l

root [0] float x = 0.04;

root [1] printf("%.28f\n", x);

0.0399999991059303283691406250

root [2] *reinterpret_cast<int*>(&x)

(int) 1025758986

root [3] .q



IEEE 754 Floating-Point Representation
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● Floating point numbers are represented with a base β and a precision p

● For β = 2 and p = 4, the number
¼ = 0.25 can be written exactly
as 1.000 × 2⁻²

● Not all numbers can be represented

● For example, 0.04 is approximated

● With base β = 2 and precision p = 24:
0.04 ≅ 1.01000111101011100001010₂ × 2⁻⁵ ≅ 0.039999999105930328369140625

● Float:                                          sign bit, 7 bit exponent, 23 bit mantissa

● Double:                                                                                  sign bit, 11 bit exponent, 52 bit mantissa

● Note: mantissa is stored as 1.NNNNN…N₂ such that effectively we have 24 and 53 bit 
mantissas

$ python

Python 3.12.3 (main, Apr 10 2024, 10:27:02) on linux

>>> bin(1025758986)

'0b111101001000111101011100001010'

>>> 2 * 0b101000111101011100001010 / 2**24 * 2**-5

0.03999999910593033



Often Source of Amusing Bugs
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● In Minecraft boats normally protect 
passengers from fall damage
○ But not when falling from some heights

● In Minecraft, g = 0.04 blocks / tick²
○ Well, almost!

● Hn = (1 + 2 + 3 + ...) x 0.04 = 0.04 n(n+1)/2 
● So when k(k+1) is a multiple of 1/0.04=25, 

something interesting happens
○ status = IN_AIR → status = ON_LAND
○ Code that checks fall damage is tricked,

fails to update status to onGround = true

● Deciphered by Matt Parker (linked video)

https://bugs.mojang.com/browse/MC-119369
https://bugs.mojang.com/browse/MC-119369
https://www.youtube.com/watch?v=ei58gGM9Z8k
https://www.youtube.com/watch?v=ei58gGM9Z8k


Often Source of Amusing Bugs
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● In Minecraft boats normally protect 
passengers from fall damage
○ But not when falling from some heights

● In Minecraft, g = 0.04 blocks / tick²
○ Well, almost!

● Hn = (1 + 2 + 3 + ...) x 0.04 = 0.04 n(n+1)/2 
● So when k(k+1) is a multiple of 1/0.04=25, 

something interesting happens
○ status = IN_AIR → status = ON_LAND
○ Code that checks fall damage is tricked,

fails to update status to onGround = true

● Deciphered by Matt Parker (linked video)

https://bugs.mojang.com/browse/MC-119369
https://bugs.mojang.com/browse/MC-119369
https://www.youtube.com/watch?v=ei58gGM9Z8k
https://www.youtube.com/watch?v=ei58gGM9Z8k


Floating-Point Numbers are Denser Towards Zero 
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$ root -l
root [0] printf("%.16f\n", 0.1f);
0.1000000014901161
root [1] printf("%.16f\n", 0.1); /* double, not float */
0.1000000000000000
root [2] FLT_EPSILON
(float) 1.19209e-07f
root [3] printf("%.16f\n", 1.0f + 0.75f * FLT_EPSILON);
1.0000001192092896
root [4] printf("%.16f\n", 1.0f + 1.00f * FLT_EPSILON);
1.0000001192092896
root [5] printf("%.16f\n", 1.0f + 1.25f * FLT_EPSILON);
1.0000001192092896

root [6] printf("%.16f\n", 1.0f + 1.50f * FLT_EPSILON);
1.0000002384185791
root [7] printf("%.16f\n", 1.0f + 1.75f * FLT_EPSILON);
1.0000002384185791
root [8] printf("%.16f\n", 1.0f + 2.00f * FLT_EPSILON);
1.0000002384185791
root [9] printf("%.16f\n", 1.0f + 2.50f * FLT_EPSILON);
1.0000002384185791

0
1 2 3 4 5 6 7 8-8 -7 -6 -5 -4 -3 -2 -1 ……

One important aspect of floating-point 
numbers is that they are denser near the 
origin. Therefore, one needs to be careful 
when choosing units for physical quantities 
such that numerical calculations do not 
stray too far from 1.0.  When numbers 
become too big, the rounding errors can 
become quite significant. On the right, we 
demonstrate that rounding when crossing a 
density boundary at a power of 2.



Examples
0 01111111111 0000000000000000000000000000000000000000000000000000 ≙ 3FF0 0000 0000 0000 ≙ +20 × 1 = 1

0 10000000000 0000000000000000000000000000000000000000000000000000 ≙ 4000 0000 0000 0000 ≙ +21 × 1 = 2

1 10000000000 0000000000000000000000000000000000000000000000000000 ≙ C000 0000 0000 0000 ≙ −21 × 1 = −2

0 00000000000 0000000000000000000000000000000000000000000000000000 ≙ 0000 0000 0000 0000 ≙ +0

1 00000000000 0000000000000000000000000000000000000000000000000000 ≙ 8000 0000 0000 0000 ≙ −0

0 11111111111 0000000000000000000000000000000000000000000000000000 ≙ 7FF0 0000 0000 0000 ≙ +∞ (positive infinity)

1 11111111111 0000000000000000000000000000000000000000000000000000 ≙ FFF0 0000 0000 0000 ≙ −∞ (negative infinity)

0 11111111111 0000000000000000000000000000000000000000000000000001 ≙ 7FF0 0000 0000 0001 ≙ NaN (sNaN on most processors)

0 11111111111 1000000000000000000000000000000000000000000000000001 ≙ 7FF8 0000 0000 0001 ≙ NaN (qNaN on most processors)

0 11111111111 1111111111111111111111111111111111111111111111111111 ≙ 7FFF FFFF FFFF FFFF ≙ NaN (alternative encoding)

0 01111111111 0000000000000000000000000000000000000000000000000001 ≙ 3FF0 0000 0000 0001

                                                                   ≙ +20 × (1 + 2−52) ≈ 1.0000000000000002
Try it in https://www.h-schmidt.net/FloatConverter/IEEE754.html
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https://www.h-schmidt.net/FloatConverter/IEEE754.html


G4PhysicsVector::Interpolation()
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Arithmetics: Instruction Level Parallelism

Refactoring terms saves some multiplications, but note also 
the parenthesis. Floating point arithmetics is not associative. 
Parenthesizing ensures that each of the independent 
multiplications can be performed in parallel. This alone 
reduces estimated execution from 60 to 51 cycles (llvm-mca).

Without parenthesis With parenthesis

same register ⇒ sequential different registers ⇒ parallel
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Arithmetics: Instruction Level Parallelism

Legend
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Arithmetics: Instruction Level Parallelism

Legend



Top 20 classes in Geant4 Before Optimizations
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Top 20 classes in Geant4 After Optimizations
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Floating-Point Performance Tips

121

● Keep numbers small for better accuracy
● Be careful with direct comparisons
● If you can, use integer arithmetics instead
● Divisons are very slow, use them only when necessary
● Beware of unwanted conversions between single and double precision
● You can optimize for speed or accuracy, but rarely both at the same time
● Forget -Ofast, it will often break your code by assuming associativity
● Avoid long double at all costs, it uses the FP87 unit and is very slow
● Watch out for denormals and NaNs, they can significantly affect performance



Memory Bound Performance Tuning

● Bad cache locality
○ Spatial locality
○ Temporal locality

● Bad cache coherence
○ Cache invalidation
○ True and false sharing

● Bad data structures
○ Padding
○ Low information density

● Low information density

● Avoid data access indirections
○ Chains of loads rarely satisfy locality

● Group reads/writes to same struct
● Regular data members vs pointers
● Avoid contiguous per-thread data
● Try to pack holes in data structures
● Replace bools with bit flags
● Use smaller data types (int, float)
● Optimize dTLB usage (huge pages)
● Minimize number of heap allocations
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Sources of Memory Issues Optimization Techniques
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Data Access Patterns: Avoid Indirections

Chained accessors via pointers require several memory 
accesses to retrieve a single piece of data, with similar cost 
to traversing a linked list. Here we can avoid 3 access 
indirections by reusing the value of fCurrentVolume.
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Data Access Patterns: Avoid Indirections

Not good! Traverses pointer 
chains multiple times, and 
G4TouchableHandle is actually 
reference counted, so this has 
branches and is incrementing 
and decrementing counters 
multiple times too!

These actually return fDynamicParticle->Get...()!
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Data Access Patterns: Avoid Indirections
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Avoid Distant Data Accesses

Finding the field manager is expensive. It requires accessing 
distant pieces of data like the fFieldPropagator class member 
to call its method, and the track’s current volume. However, 
we can avoid checking the field for neutral and/or massless 
particles, as the field has no effect on them.
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Data Access Patterns: Group Nearby Reads & Writes

If a class member needs to be accessed multiple times 
inside a function or method, prefer keeping these accesses 
close together to avoid unnecessary cache misses.



128

Unnecessary Work: Caching Data

This method is always called with each element of 
each material in a loop, so the element is never the 
same, and the cache was missed 100% of the time.



Loop Optimizations:
Invariant Expressions

for (int i = 0; i < N; ++i) {

  for (int j = 0; j < N; ++j)

    a[j] = b[j] * c[i];

}
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Expressions that do not change with the 
loop iteration are called loop invariants.

Loop invariants should be hoisted out of the 
loop to avoid unnecessary computations.

for (int i = 0; i < N; ++i) {

  auto ci = c[i];

  for (int j = 0; j < N; ++j)

    a[j] = b[j] * c[i];

}



Loop Optimizations:
Invariant Conditionals for (int i = 0; i < N; ++i) {

  a[i] += b[i];  

  if (reset)

     b[i] = 0.0;

}
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The body of a loop may contain conditional 
expressions that may cause poor 
performance due to branch mispredictions.

The solution is to write two versions of the 
loop body, and move the condition outside.

for (int i = 0; i < N; i++)

    a[i] += b[i];

if (reset)

  for (int i = 0; i<N; i++)

    b[i] = 0.0;

Loops with if statements inside

…can sometimes be replaced with separate loops



Loop Optimizations:
Loop Unrolling

for (int i = 0; i < N; ++i)

    a[i] = b[i] * c[i];
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Loop unrolling can improve performance by 
reducing the trip count (how many times the 
body of the loop is run).

Loop unrolling can also help with SIMD 
vectorization. When it is also vectorized, the 
unrolled loop puts less pressure in the 
instruction cache, as there are less 
instructions overall in the body of the loop.

auto n = N/2;

for (int i = 0; i < n; i += 2) {

  a[ i ] = b[ i ] * c[ i ];

  a[i+1] = b[i+1] * c[i+1];

}

No loop unrolling

Loop unrolled once



Loop Optimizations:
Strength Reduction

for (int i = 0; i < N; ++i) {

    a[i] = b[3 * i] * c[i];

    d[i] = f[3 * i] * g[i];

}
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The body of a loop may contain expensive 
operations or similar operations that can be 
replaced with cheaper ones.

Here, we replace a multiplication with 
additions, and avoid computing it twice.

Modern compilers likely already optimize 
this specific example, however, by 
computing 3*i only once and reusing it.

int j = 0;

for (int i = 0; i<N; i++,j+=3) {

    a[i] = b[j] * c[i];

    d[i] = f[j] * g[i];

}

Multiplication in index 

…can be replaced with additions



Geant4 Simulation Timeline
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perf stat -d – overview of Geant4 initialization
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Whoa, that’s a lot of backend cycles idle!



Record Geant4 initialization for further analysis
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G4{h,Mu}PairProd. account for ~40% of initialization
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Top 3 models account for ~60% of backend stalls
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How to improve performance?

● Look for pair production model in Geant4 Physics Manual
○ Rework expressions for cross sections with pencil/paper to reduce arithmetic operations

● Avoid unnecessary calls to G4Log function when calculating zeta
● Remove data dependencies

○ Break up large for loop into several smaller for loops
■ Compute together things that don’t depend on each other
■ Hide latency from divisions
■ When calling G4Log, input is already available

○ Move common expressions out of for loop all together

● Remove code duplication from the two classes with essentially the same version of this 
function by inheriting the base version in the derived class

138

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/electromagnetic/muon_incident/pair.html
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http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/electromagnetic/muon_incident/pair.html
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Return early to avoid unnecessary divisions

Moving the early return up reduces unnecessary divisions.
Also a3 <= 0 is harder to understand than the new form.



Result of expensive call to G4Log not always used
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this call to G4Log
can be avoided when
zeta1 <= 0.0

result of division used right away

this if statement for treating hydrogen 
differently can be replaced by branchless 

code (index based on boolean result)



Avoid calling G4Log by replacing condition
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We can avoid calling G4Log by replacing 
the condition with an equivalent one for the 
input argument of G4Log.



Big loop with many data dependencies (cont.)
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hottest source lines 
shown by perf annotate

Observations:

● Big for loop with fixed iteration count, but no vectorization
○ Loop has common expressions that can be moved out

● Variable names make code hard to understand
● Many data dependencies reduce parallelism
○ Results of divisions and sqrt used immediately
■ Result of tmn = G4Log(tmnexp) used immediately
■ Results of divisions and sqrt used inside call to G4Log
○ G4Log is called (and inlined!) 4 times just here
■ G4Log inlined 10 times just in this function!



Use perf annotate to find hottest parts of the code
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hottest instructions
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Big loop with many data dependencies

Data dependencies between arithmetic operations can 
create execution latency even without cache misses.
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Split it into two loops to hide latency from divisions

Data dependencies between arithmetic operations can 
create execution latency even without cache misses.

Breaking up long loops into smaller parts makes it 
possible to hide some of the latency from divisions and 
math function calls with instruction level parallelism. 
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Reduce Code Duplication

This was a copy of
G4MuPairProductionModel::ComputeDMicroscopicCrossSection.
We can keep only the copy from the base class.



From ~40% of initialization to ~27%, not bad!
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Revisiting overview of Geant4 initialization (before)
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Revisiting overview of Geant4 initialization (after)
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DWARF can show time spent in inlined functions
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DWARF also allows to sort by source line

152

Physics models call G4Log and G4Exp many times during 
initialization, so the results on the left are expected.
However, this is also an indication that there may be room for 
optimization in G4Log and G4Exp as well, since we see backend stall 
cycles without many L1 cache misses.
G4Log at least is also called many times in the event loop to fetch 
cross section data with energy interpolated as log(E).



DWARF also allows to sort by source line (2)

153

Same as before, but sampled in the event loop.



Data dependencies seem to be the culprit again
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Looking at the code for G4Log, we see 
that the line with most stalls 
(G4Log.hh:250 in previous slide) is a 
line immediately using the result of a 
division after it is computed.



G4Log inlined many times, maybe that’s a problem?
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G4Log inlined at least 932 times in physics processes.
Makes libG4processes.so 1–2% larger because of this.

(release ~300K larger / debug 10MB larger)
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G4Log function inlined G4Log function not inlined

No big difference, so problem is not due to code bloat

G4Log inlined many times, but it’s not a problem (yet)



What happens if we use std::log and std::exp?
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Extra ~10% speedup! Could make sense to use std::log at initialization only.



A pinch of UNIX wisdom – on handling complexity
Rule 1  You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places,
so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

Rule 2  Measure. Don't tune for speed until you've measured, and even then don't unless one part of the code 
overwhelms the rest.

Rule 3  Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have big constants. Until 
you know that n is frequently going to be big, don't get fancy. (Even if n does get big, use Rule 2 first.)

Rule 4  Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms 
as well as simple data structures.

Rule 5  Data dominates. If you've chosen the right data structures and organized things well, the algorithms will 
almost always be self-evident. Data structures, not algorithms, are central to programming.

Rule 6  There is no Rule 6.

158

from “Notes on C Programming”, by Rob Pike
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Geant4 Microarchitecture Usage on Haswell Server
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Front-End Bound

Memory Bound

Retiring

Bad Speculation

11.9%

53.8%

37.9%

2.8%

Mostly memory bound on Haswell



Geant4 Microarchitecture Usage on Skylake Desktop
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Front-End Bound

Memory Bound

Retiring

Bad Speculation

21.5%

39.7%

22.8%

9.1%

Mostly frontend and core bound on Skylake, quite different than Haswell

Core Bound

7.0%



Conclusions and lessons learned

● Problems don’t always happen where we expect
○ Always measure to make sure your hypothesis for the cause is correct

● The fastest thing you can do is to not do anything
○ Avoid unnecessary work in your code (e.g. checking field manager for neutral particles)

● Beware of data dependencies
○ Reoder computations to take advantage of instruction level parallelism
○ Strong dependencies can make your code slow even if L1 misses are low

● Beware of indirect accesses via pointers and calls to other shared objects
○ Patterns like obj->GetFoo()->GetBar()->GetBaz() are too common in C++
○ Accessing Baz becomes as expensive as traversing a list every time, bad for locality
○ Frequent calls across shared objects are expensive, it’s better to merge into a single library
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Data-Oriented Design



What is Data-Oriented Design?

● CppCon 2014 talk by Mike Acton

● Reminder of first principles on how data 
structures influence final performance

● A program is something that transforms 
input data from one form to another

● If you don’t understand the data,
you don’t understand the problem

● Different data ⇒ different problem

● Where there’s one, there are many, 
optimize for the many

● You need to understand the hardware 
your software is running on
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https://www.youtube.com/watch?v=rX0ItVEVjHc
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B


CPU vs Memory 
Performance Gap

● CPU performance has grown much 
faster than memory performance

● Memory access latency is often the 
main performance issue

● L3 cache has grown significantly, but 
L1 and L2 remain relatively small

● L2 cache misses are still expensive

● Ultimately, speed of light limits peak 
performance (c ≈ 30cm / ns)
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memory latency

Memory advances have not kept up with Moore’s Law
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    Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html 

Latency Numbers Every Programmer Should Know

(~5 CPU cycles)

https://colin-scott.github.io/personal_website/research/interactive_latency.html


Object-Oriented vs Data-Oriented Design
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Object-Oriented

● Polymorphism, abstract interfaces
○ Defer implementation to concrete types

● Classes, Inheritance, Encapsulation
○ Data available only via exposed interface

● Data and operations/behavior together
○ Extend data and behavior
○ Reuse code from parent classes
○ Less chance to optimize data layout
○ Higher demand on instruction cache

■ Many methods per object type

Data-Oriented

● Optimize memory access pattern
○ Make use of full cachelines
○ Use all available memory bandwidth
○ Spatial and temporal cache locality

● Data structures separate from code
○ Improves also front-end metrics
○ Move all movable objects together
○ Single function rather than methods
○ Commonly implemented as an 

Entity-Component-System in games



A pinch of UNIX wisdom – on handling complexity
Rule 1  You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places,
so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

Rule 2  Measure. Don't tune for speed until you've measured, and even then don't unless one part of the code 
overwhelms the rest.

Rule 3  Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have big constants. Until 
you know that n is frequently going to be big, don't get fancy. (Even if n does get big, use Rule 2 first.)

Rule 4  Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms 
as well as simple data structures.
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Rule 6  There is no Rule 6.
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from “Notes on C Programming”, by Rob Pike



Entity Component System Concepts

What they do it in computer games
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Entity Component System Concepts

x
y
z

Particle Electron Photon Neutrino

m m
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x
y
z

x
y
z

What they do it in computer games

x
y
z

…could also be applied to detector simulation



Array of Structure vs Structure of Array Data Layouts

struct track {
/* event structure */
int32_t id;
int32_t parent;

/* geometry data */
float x;
float y;
float z;

int32_t geometry_id;

/* physics data */
float vx;
float vy;
float vz;
float E;

       ...
};

template<unsigned int N>
struct TrackBlock {
  static constexpr unsigned int nElem = N;

  /* event structure */
  std::array<int32_t, nElem> id;
  std::array<int32_t, nElem> parent;

  /* geometry data */
  std::array<float, nElem> x;
  std::array<float, nElem> y;
  std::array<float, nElem> z;
  
  static constexpr mass = 0.511f;
  ...
};

AoS Structure SoA Structure
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Performance numbers for simple kinetic energy kernel

Performance counter stats for 'AoS' (average of 20 runs):

            483.46 msec task-clock                #    0.999 CPUs utilized
                 1      context-switches          #    0.001 K/sec
                 0      cpu-migrations            #    0.000 K/sec                 
              1138      page-faults               #    0.002 M/sec
        1687395641      cycles                    #    3.490 GHz
         106037669      stalled-cycles-frontend   #    6.28% frontend cycles idle
        1283753418      stalled-cycles-backend    #   76.08% backend cycles idle
        1996927212      instructions              #    1.18  insn per cycle         
                                                  #    0.64  stalled cycles per insn
          19497066      branches                  #   40.328 M/sec
             40196      branch-misses             #    0.21% of all branches
         622021303      L1-dcache-loads           # 1286.609 M/sec
         123124358      L1-dcache-load-misses     #   19.79% of all L1-dcache accesses
          42493039      L1-icache-loads           #   87.894 M/sec
            149328      L1-icache-load-misses     #    0.35% of all L1-icache accesses
             31003      dTLB-loads                #    0.064 M/sec
              8598      dTLB-load-misses          #   27.73% of all dTLB cache accesses
                26      iTLB-loads                #    0.055 K/sec
                19      iTLB-load-misses          #   72.30% of all iTLB cache accesses

          0.484160 +- 0.000367 seconds time elapsed

Performance counter stats for 'SoA' (average of 20 runs): 

            118.78 msec task-clock                #    0.994 CPUs utilized            
                 1      context-switches          #    0.010 K/sec                    
                 0      cpu-migrations            #    0.000 K/sec                  
              1138      page-faults               #    0.010 M/sec                    
         414521761      cycles                    #    3.490 GHz                      
         131647110      stalled-cycles-frontend   #   31.76% frontend cycles idle     
         182606710      stalled-cycles-backend    #   44.05% backend cycles idle      
         122945544      instructions              #    0.30  insn per cycle         
                                                  #    1.49  stalled cycles per insn  
          17639259      branches                  #  148.508 M/sec                    
             38941      branch-misses             #    0.22% of all branches          
          81264204      L1-dcache-loads           #  684.179 M/sec                    
          42555034      L1-dcache-load-misses     #   52.37% of all L1-dcache accesses  
           8799361      L1-icache-loads           #   74.083 M/sec                    
             38984      L1-icache-load-misses     #    0.44% of all L1-icache accesses  
             13098      dTLB-loads                #    0.110 M/sec                    
              6723      dTLB-load-misses          #   51.33% of all dTLB cache accesses  
                 5      iTLB-loads                #    0.040 K/sec                    
               112      iTLB-load-misses          # 2363.16% of all iTLB cache accesses  

          0.119446 +- 0.000115 seconds time elapsed  

AoS Data Layout SoA Data Layout

About 4x faster for SoA. Much lower number of cycles, L1 loads, and TLB loads, easily auto-vectorized. 
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pahole – inspect layout of data structures
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bash $ pahole -M -C G4LogicalVolume /usr/lib64/libG4geometry.so
class G4LogicalVolume {
public:

int ()(void) * *           _vptr.G4LogicalVolume; /*     0     8 */
static G4LVManager                subInstanceManager; /*     0     0 */
G4PhysicalVolumeList       fDaughters;           /*     8    24 */
class G4String            fName;                 /*    32    32 */
/* --- cacheline 1 boundary (64 bytes) --- */
class G4UserLimits *       fUserLimits;          /*    64     8 */
class G4SmartVoxelHeader * fVoxel;               /*    72     8 */
G4double                   fSmartless;           /*    80     8 */
class G4Region *           fRegion;              /*    88     8 */
G4double                   fBiasWeight;          /*    96     8 */
class shared_ptr<const G4VisAttributes> fVisAttributes; /*   104    16 */
class G4VSolid *           fSolid;               /*   120     8 */
/* --- cacheline 2 boundary (128 bytes) --- */
class G4VSensitiveDetector * fSensitiveDetector; /*   128     8 */
class G4FieldManager *     fFieldManager;        /*   136     8 */
class G4LVData *           lvdata;               /*   144     8 */
G4int                      instanceID;           /*   152     4 */
enum EVolume               fDaughtersVolumeType; /*   156     4 */
G4bool                     fOptimise;            /*   160     1 */
G4bool                     fRootRegion;          /*   161     1 */
G4bool                     fLock;                /*   162     1 */

/* size: 168, cachelines: 3, members: 18, static members: 1 */
/* padding: 5 */
/* last cacheline: 40 bytes */

};

Members which are accessed most 
often are in 3 different cachelines.

Must load fName whenever checking 
fDaughters. Inefficient use of memory 
hierarchy due to mix of hot and cold 
data on each cacheline. 



perf – memory access analysis: loads and stores
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perf – memory access analysis: ROOT RDataFrame
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See also: https://community.intel.com/t5/Intel-Moderncode-for-Parallel/What-is-the-aim-of-the-line-fill-buffer/td-p/1180777

Line Fill Buffer (sits between L1 and L2)

  Red flag, too many remote cache accesses  

https://community.intel.com/t5/Intel-Moderncode-for-Parallel/What-is-the-aim-of-the-line-fill-buffer/td-p/1180777


Using perf to measure average load latency
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 in CPU cycles

Avg. load latency = L1 miss pending cycles / (L1 misses + LFB hits)



perf mem report -s mem
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perf mem report -s dso,symbol

178

~46% of high latency loads happen in 
functions related to RDF filters...



perf mem report – symbol annotation
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per-thread values in contiguous memory



perf mem report -s phys_daddr
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high load latency happens in nearby addresses



perf c2c – cache to cache analysis
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See also: https://hpc-wiki.info/hpc/FalseSharing

https://hpc-wiki.info/hpc/FalseSharing


perf c2c report
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https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://joemario.github.io/blog/2016/09/01/c2c-blog/


perf c2c report
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perf c2c report – cacheline details (press ‘d’)
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perf c2c report – cacheline details, more columns
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perf c2c report – cacheline details, expanded stack



Data-Type Profiling
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linux $ perf mem record --ldlat=50 -- git fsck # collect loads with latency > 50 cycles
Checking objects: 100% (10271178/10271178), done.
Checking connectivity: 10223233, done.
[ perf record: Woken up 395 times to write data ]
[ perf record: Captured and wrote 99.888 MB perf.data (1629334 samples) ]
linux $ perf mem report --stdio -s type,typeoff --percent-limit 1
# Overhead       Samples  Data Type  Data Type Offset
# ........  ............  .........  ................
    83.88%       1450665  (unknown)  (unknown) +0 (no field)
     4.30%        100109  (stack operation)  (stack operation) +0 (no field)
     3.79%          3712  struct malloc_chunk  struct malloc_chunk +8 (mchunk_size)
     1.40%          2336  struct object  struct object +0 (parsed)
     1.08%           842  struct malloc_chunk  struct malloc_chunk +32 (fd_nextsize)
linux $ perf annotate --data-type=object
Annotate type: 'struct object' in /usr/libexec/git-core/git (3282 samples):
============================================================================
    samples     offset       size  field
        104          0         40  struct object         {
          0          0          4      unsigned int     parsed;
          0          0          4      unsigned int     type;
          0          0          4      unsigned int     flags;
        104          4         36      struct object_id oid {
        104          4         32          unsigned char*       hash;
          0         36          4          int  algo;
                                       };
                                   };

● Introduced in latest versions of perf
○ First available in perf 6.8
○ Better with perf 6.10 and later

● Data recorded with perf mem record
● Attributes sample addresses back to the 

data-type associated with that address
● Two methods to make use of it

○ perf mem report -s type,typeoff
○ perf annotate --data-type=<type>

● Still needs some help for pointer types
○ Part of LLVM’s -fdebug-info-for-profiling

Data profiling of git fsck on Linux kernel repository

See also: https://lwn.net/Articles/955709/

https://github.com/llvm/llvm-project/pull/81545
https://lwn.net/Articles/955709/


Packing Simulation Revisited
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$ perf record -e cycles -F 1000 -- pack -f 0.6 ellipsoids
100.00% 0.6000 0.0000/min 2.6e-02 ev/s 38.2 s   
[ perf record: Woken up 5 times to write data ]
[ perf record: Captured 1.457 MB perf.data (38005 samples) ]
$ perf report --stdio --percent-limit 0.25
# Overhead  Command  Shared Object Symbol
# ........  .......  ............. .........................
#
    39.53%  pack     pack          intersect
    32.60%  pack     pack          HGrid::find_neighbors
     7.62%  pack     pack          Ellipsoid::support
     3.76%  pack     pack          closest_point_tetrahedron
     3.37%  pack     pack          closest_point_triangle
     2.77%  pack     pack          Simplex::closest
     2.46%  pack     pack          Ellipsoid::bounding_radius
     2.07%  pack     pack          check_overlap
     1.94%  pack     pack          Simplex::contains
     1.15%  pack     libm.so.6     __sincos
     0.37%  pack     pack          HGrid::make_hash
     0.36%  pack     pack          HGrid::insert

void HGrid::find_neighbors(const Particle* p, std::vector<Particle*>& neighbors) {
  hash_t hash; unsigned int mask = occupied_level_mask;
  Vector x = p->position();

  for (unsigned int level = 0; level <= MAX_LEVEL; mask >>=1, level++) {
    if (mask == 0) return; /* no more occupied levels to check */
    if ((mask & 1) == 0) continue; /* level is not occupied */

    float cell_size = MAX_CELL_SIZE / (1 << level);
    float inv_cell_size = 1.0f / cell_size;
    float delta = p->bounding_radius(t_curr) + cell_size/2.0 + EPSILON;

    hash.data.level = level;
    short int imin = (short int) floor((x[0] - delta) * inv_cell_size);
    short int jmin = (short int) floor((x[1] - delta) * inv_cell_size);
    short int kmin = (short int) floor((x[2] - delta) * inv_cell_size);
    short int imax = (short int)  ceil((x[0] + delta) * inv_cell_size);
    short int jmax = (short int)  ceil((x[1] + delta) * inv_cell_size);
    short int kmax = (short int)  ceil((x[2] + delta) * inv_cell_size);

    for (short int i = imin; i < imax; i++) {
      hash.data.x = i;
      for (short int j = jmin; j < jmax; j++) {
        hash.data.y = j;
        for (short int k = kmin; k < kmax; k++) {
          hash.data.z = k;
          if (grid.find(hash.value) != grid.end()) {
            Particle *neighbor = grid[hash.value];
            while(neighbor != NULL) {
              if (neighbor != p)
                neighbors.push_back(neighbor);
              neighbor = neighbor->next();
            }
          }
        }
      }
    }
  }
}

grid is an instance of std::map<hash, Particle*>, but this class 
stores data as an array of red-black tree nodes, with the value 
contiguously in memory in each node. This means that it 
loads all values along with the keys when traversing it.
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$ perf record -e cycles -F 1000 -- pack -f 0.6 ellipsoids
100.00% 0.6000 0.0000/min 2.6e-02 ev/s 38.2 s   
[ perf record: Woken up 5 times to write data ]
[ perf record: Captured 1.457 MB perf.data (38005 samples) ]
$ perf report --stdio --percent-limit 0.25
# Overhead  Command  Shared Object Symbol
# ........  .......  ............. .........................
#
    39.53%  pack     pack          intersect
    32.60%  pack     pack          HGrid::find_neighbors
     7.62%  pack     pack          Ellipsoid::support
     3.76%  pack     pack          closest_point_tetrahedron
     3.37%  pack     pack          closest_point_triangle
     2.77%  pack     pack          Simplex::closest
     2.46%  pack     pack          Ellipsoid::bounding_radius
     2.07%  pack     pack          check_overlap
     1.94%  pack     pack          Simplex::contains
     1.15%  pack     libm.so.6     __sincos
     0.37%  pack     pack          HGrid::make_hash
     0.36%  pack     pack          HGrid::insert

  
  enum _Rb_tree_color { _S_red = false, _S_black = true };

  _Rb_tree_node_base
  {
    typedef _Rb_tree_node_base* _Base_ptr;
    typedef const _Rb_tree_node_base* _Const_Base_ptr;

    _Rb_tree_color      _M_color;
    _Base_ptr           _M_parent;
    _Base_ptr           _M_left;
    _Base_ptr           _M_right;
  };

 template<typename _Val>
    struct _Rb_tree_node : public _Rb_tree_node_base
    {
      typedef _Rb_tree_node<_Val>* _Link_type;
    
      _Val _M_value_field;
    
      _Val*
      _M_valptr()
      { return _M_storage._M_ptr(); }

      const _Val*
      _M_valptr() const
      { return _M_storage._M_ptr(); }
  };

Value contiguous in memory
after enum and 3 pointers.

enum = int = 4 bytes
4 pointers = 4 x 8 = 32 bytes
node = 36 bytes, misaligned 
with cachelines



Traversing the map to find key is expensive
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bash $ perf mem record -C 0 -t load --ldlat=20 -- taskset -c 0 ./pack --seed 17 -f 0.45 bench2.in
100.00% 0.4500 0.0000/min 1.8e-02 ev/s 54.1 s   
[ perf record: Woken up 64 times to write data ]
[ perf record: Captured and wrote 16.013 MB perf.data (208040 samples) ]
bash $ perf mem report --stdio -s mem
# To display the perf.data header info, please use --header/--header-only options.
#
#
# Total Lost Samples: 0
#
# Samples: 208K of event 'cpu/mem-loads,ldlat=20/P'
# Total weight : 9857968
# Sort order   : mem
#
# Overhead       Samples  Memory access                          
# ........  ............  .......................................
#
    90.65%        178426  L1 hit                                 
     4.36%         12798  LFB/MAB hit                            
     3.95%         15602  L2 hit                                 
     0.98%          1203  L3 hit                                 
     0.04%             7  Remote Any cache hit                   
     0.01%             3  RAM hit                                
     0.00%             1  L3 miss                                



perf mem report -s mem,sym --hierarchy
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New data profiling can show which structures are hit
bash $ perf annotate --data-type=Particle

Annotate type: 'Particle' in pack (7940 samples):
============================================================================
    samples     offset       size  field
       7940          0        160  Particle      {
          5         80          8      Shape*   m_shape;
          0         88          4      float    m_growth_rate;
          0         92          4      float    m_mass;
          0         96          4      float    m_inv_mass;
          0        100          4      unsigned int     m_tag;
          0        104          4      unsigned int     m_event_id;
          2        112          8      long unsigned int        m_hash;
          1        120          8      long unsigned int        m_collisions;
          1        128          8      Particle*        m_prev;
       7931        136          8      Particle*        m_next;
          0        144         16      union     {
          0        144         16          __m128       m_color;
          0        144         16          struct        {
          0        144          4              float    r;
          0        148          4              float    g;
          0        152          4              float    b;
          0        156          4              float    a;
                                           };
                                       };
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When looking for adjacent particles to 
check for intersections, we build the 
list of neighbors and iterate through a 
list, so m_next is a hot field for slow 
loads (>20 cycles).

Color not used during simulation, can 
make it compile-time optional for 
better performance, and reorder hot 
field into the first cache line.
 



After optimization, less samples on hot member
bash $ perf annotate --data-type=Particle

Annotate type: 'Particle' in pack (7541 samples):
============================================================================
    samples     offset       size  field
       7541          0        128  Particle      {
       7530          0          8      Particle*        m_next;
          0          8          8      Particle*        m_prev;
          2         16          8      long unsigned int        m_hash;
          2         24          8      Shape*   m_shape;
          0         32         16      Point    m_position;
          0         48         16      Quaternion       m_orientation;
          0         64         16      Vector   m_velocity;
          0         80         16      Vector   m_ang_velocity;
          0         96          4      float    m_time;
          0        100          4      float    m_growth_rate;
          0        104          4      float    m_mass;
          0        108          4      float    m_inv_mass;
          6        112          8      long unsigned int        m_collisions;
          0        120          4      unsigned int     m_tag;
          1        124          4      unsigned int     m_event_id;
                                   };
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L1 cache hit rate also improved after optimization
bash $ perf mem record -C 0 -t load --ldlat=20 -- taskset -c 0 ./pack --seed 17 -f 0.45 bench2.in
100.00% 0.4500 0.0000/min 1.9e-02 ev/s 53.4 s   
[ perf record: Woken up 63 times to write data ]
[ perf record: Captured and wrote 15.887 MB perf.data (205679 samples) ]
bash $ perf mem report --stdio -s mem
# To display the perf.data header info, please use --header/--header-only options.
#
#
# Total Lost Samples: 0
#
# Samples: 205K of event 'cpu/mem-loads,ldlat=20/P'
# Total weight : 9887519
# Sort order   : mem
#
# Overhead       Samples  Memory access                          
# ........  ............  .......................................
#
    93.01%        183502  L1 hit                                 
     3.12%         12339  L2 hit                                 
     3.11%          9010  LFB/MAB hit                            
     0.68%           813  L3 hit                                 
     0.07%            12  Remote RAM hit                         
     0.01%             2  L3 miss                                
     0.00%             1  RAM hit                                
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Summary and Conclusions

● Compiler can help with optimizing computations, not so much with memory access
● Many tools are available to inspect and optimize memory access patterns

○ pahole, perf mem, perf c2c, VTune memory access analysis

● Data-Oriented design collects key concepts to design memory efficient software
○ Separate data structures and operations on data
○ Focus on avoiding high latency and wasting memory bandwidth

● Many other indicators of bad memory access patterns
○ Backend Bound - stalled cycles at backend are a good indicator of inefficiencies

■ Core Bound - data dependencies in arithmetics, chains of high latency instructions
■ Memory Bound - not only read, but also write, some codes can be store bound

○ Cache Misses - main indicator of memory access issues
■ Need to watch for problem size: hit rate high for small workloads, inevitably higher on larger workloads
■ Cache associativity and locality can lead to complex issues, avoid loops with power of 2 trip length
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“Programmers waste enormous amounts of time thinking about, or worrying 

about, the speed of noncritical parts of their programs, and these attempts at 

efficiency actually have a strong negative impact when debugging and 

maintenance are considered. We should forget about small efficiencies, say 

about 97% of the time: premature optimization is the root of all evil. Yet we 

should not pass up our opportunities in that critical 3%”

— Donald Knuth
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