
Optimizing existing large codebase

1 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Optimizing existing large codebase

Sébastien Ponce
sebastien.ponce@cern.ch

CERN

Thematic CERN School of Computing 2024

Optimizing existing large codebase

2 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Outline

1 Measuring Performance
What is performance ?
Tools available
Finding bottlenecks

2 Code modernization
3 Improving Memory Handling

Context
Containers and memory
Container reservation
Detecting offending code

4 The nightmare of thread safety
Context and constraints
Identifying problems
Solving problems
Thread contention

5 Low level optimizations
Scope and target
How to measure ?
Improving

6 Conclusion

Optimizing existing large codebase

3 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Goal of this course

make the theory explained so far more concrete

and adapt it to the special case of

dealing with large projects
dealing with legacy code

I’ll only talk of C++ projects

Optimizing existing large codebase

4 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Specificity of the exercise

Dealing with large code base (Mloc)

most of them unknown to you
and (usually) not supported by anyone

Dealing with old code

using old fashion coding style (e.g. FORTRAN like)
modified n times, grew organically

Target latest hardware

many cores
hyperthreading / superscalar
vectorization

Optimizing existing large codebase

5 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Overall strategy

First measure !

understand where time is spent

understand the main limitations

Then attack these limitations

modernize the code

optimizing memory handling

optimizing parallelism

optimizing low level code

Optimizing existing large codebase

6 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Measuring Performance

1 Measuring Performance
What is performance ?
Tools available
Finding bottlenecks

2 Code modernization

3 Improving Memory Handling

4 The nightmare of thread safety

5 Low level optimizations

6 Conclusion

Optimizing existing large codebase

7 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Defining our performance

Key question is : what is performance

simply going faster ?

not at all costs (money, physics results)

making better use of the hardware

most of the time hardware is cheaper than people !

you need to define your “Key Performance Indicators”

e.g. nb Evts / s / $ with constant man power for a trigger

and get a clear idea of your different costs
flops/$ of your machines

including network, cabling, cooling, buildings, ...

human costs
cost of transition
...

Optimizing existing large codebase

7 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Defining our performance

Key question is : what is performance

simply going faster ?

not at all costs (money, physics results)

making better use of the hardware

most of the time hardware is cheaper than people !

you need to define your “Key Performance Indicators”

e.g. nb Evts / s / $ with constant man power for a trigger

and get a clear idea of your different costs
flops/$ of your machines

including network, cabling, cooling, buildings, ...

human costs
cost of transition
...

Optimizing existing large codebase

7 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Defining our performance

Key question is : what is performance

simply going faster ?

not at all costs (money, physics results)

making better use of the hardware

most of the time hardware is cheaper than people !

you need to define your “Key Performance Indicators”

e.g. nb Evts / s / $ with constant man power for a trigger

and get a clear idea of your different costs
flops/$ of your machines

including network, cabling, cooling, buildings, ...

human costs
cost of transition
...

Optimizing existing large codebase

7 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Defining our performance

Key question is : what is performance

simply going faster ?

not at all costs (money, physics results)

making better use of the hardware

most of the time hardware is cheaper than people !

you need to define your “Key Performance Indicators”

e.g. nb Evts / s / $ with constant man power for a trigger

and get a clear idea of your different costs
flops/$ of your machines

including network, cabling, cooling, buildings, ...

human costs
cost of transition
...

Optimizing existing large codebase

7 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Defining our performance

Key question is : what is performance

simply going faster ?

not at all costs (money, physics results)

making better use of the hardware

most of the time hardware is cheaper than people !

you need to define your “Key Performance Indicators”

e.g. nb Evts / s / $ with constant man power for a trigger

and get a clear idea of your different costs
flops/$ of your machines

including network, cabling, cooling, buildings, ...

human costs
cost of transition
...

Optimizing existing large codebase

8 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Measuring our software

Many parameters can be measured

overall timing

memory usage and cache efficiency

CPU efficiency (Cycles per instructions, vectorization level)

level of parallelism, usage of the different cores

I/O limitations if any

For each of them, you need

both overall data and detailed split per code unit

per item, per core and full machine measurement

Optimizing existing large codebase

9 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

How to measure

The counters approach

use CPU counters to find out what happened during actual execution

do not slow down execution, so only do sampling

The software instrumentation

run your code in a “virtual” environment

measure everything precisely

at the cost of speed

Optimizing existing large codebase

10 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Counters approach in practice

give precise timing of a realistic execution on your CPU

using real cache prediction, actual vectorization, ...
using real CPU behavior (e.g. downclocking when overheating...)

allows to measure CPI (Cycles Per Instruction) and low level
behavior in general (caching, pipelining)

but data is only statistical

so you need sufficient statistics
also not always reproducible, so hard to compare

e.g. first test on cold processor, second on warm one

Main tools available : perf and variants, Intel VTune

Optimizing existing large codebase

11 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Software instrumentation in practice

give precise measurements of where you spend instructions

including many details
reproducible, so your can compare stuff

but not always realistic

no real timing, only instructions count
memory caching is only simulated, often far from real case
no clue on low level efficiency (CPI in particular)
and gives no clue on hardware / OS behavior

Main tool available : valgrind family

Optimizing existing large codebase

12 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

perf tools bottlenecks

Finding bottlenecks

Understand where we can improve

analyze each part of the software

in order to find out where most time is spent

and understand whether it can be improved

Most usual bottlenecks

From biggest to lowest impact (usually)

IO

Memory

Parallelization

Low level behavior : vectorization, cache behavior, high CPI

Optimizing existing large codebase

13 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Code modernization

1 Measuring Performance

2 Code modernization

3 Improving Memory Handling

4 The nightmare of thread safety

5 Low level optimizations

6 Conclusion

Optimizing existing large codebase

14 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Make use of latest C++features

C++has evolved dramatically between 2010 and now

five new versions : C++11, C++14, C++17, C++20, C++23

a LOT of new features targeting performance

move semantic
threading library
variadic templates
vectorization coming ?

converting existing code may already bring speed

see previous courses for technical details

see HSF C++course if you’re not at ease with the language

https://raw.githubusercontent.com/hsf-training/cpluspluscourse/download/talk/C++Course_full.pdf

Optimizing existing large codebase

15 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Cleanup your code

While reviewing the code for converting to latest C++:

drop unused code
drop unnecessary code

e.g. do I really need to sort by hits here ?

drop too generic APIs if they are finally not needed
replace virtual inheritance with templating when possible
consider dropping use of unmaintained libraries

It is very often surprising how much you gain there

Optimizing existing large codebase

16 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Improving Memory Handling

1 Measuring Performance

2 Code modernization

3 Improving Memory Handling
Context
Containers and memory
Container reservation
Detecting offending code

4 The nightmare of thread safety

5 Low level optimizations

6 Conclusion

Optimizing existing large codebase

17 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Evolution of memory in the past decades

Due to Moore’s law in
the 80s and 90s, there
is a gap between CPU
and memory
performances

Consequences :

access to memory is now extremely slow (relatively)

level of caches have been introduced to mitigate

good usage of caches has become a key parameter

Optimizing existing large codebase

18 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Typical cache structure

L1 data
L1

instruction

L2 Cache

L3 Cache

DRAM

size latency

64 kB 4 cycles

256 kB 10 cycles

10 MB 40 cycles

64 GB 400 cycles

400 cycles

Typical data, on an Haswell architecture

Optimizing existing large codebase

18 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Typical cache structure

L1 data
L1

instruction

L2 Cache

L3 Cache

DRAM

size latency

64 kB 4 cycles

256 kB 10 cycles

10 MB 40 cycles

64 GB 400 cycles400 cycles

Typical data, on an Haswell architecture

Optimizing existing large codebase

19 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Practical consequence in C++

Guidelines

we want as few heap memory allocations as possible

stack usage is much better !

we want continuous memory blocks, specially for containers

that means containers of objects, no pointers involved
e.g. vector<Obj*> or array<vector<Obj>> are banned !

2 main rules

use container of objects, not of pointers

use (const) references everywhere
avoid any unnecessary copy of data

including implicit ones

use container reservation

Optimizing existing large codebase

20 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container of objects in memory

Simple vector case

std::vector<int> v;

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ...

Vector of objects

struct A { float x, y, z; };

std::vector<A> v;

x0 y0 z0

A0

x1 y1 z1

A1

x2 y2 z2

A2

x2 ...

Optimizing existing large codebase

21 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container of pointers in memory
Näıve view

struct A { float x, y, z; };

std::vector<A*> v;

ptr0 ptr1 ptr2 ptr3 ptr4 ptr5 ptr6 ptr7 ptr8 ptr9 ...

Realistic view

ptr0 ptr1 ptr2 ptr3 ptr4 ptr5 ptr6 ptr7 ptr8 ptr9 ...x0 y0 z0

x1 y1 z1

x2 y2 z2

x3 y3 z3 x4 y4 z4

x5 y5 z5

x6 y6 z6
x7 y7 z7

x8 y8 z8

x9 y9 z9

Optimizing existing large codebase

21 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container of pointers in memory
Näıve view

struct A { float x, y, z; };

std::vector<A*> v;

ptr0 ptr1 ptr2 ptr3 ptr4 ptr5 ptr6 ptr7 ptr8 ptr9 ...

Realistic view

ptr0 ptr1 ptr2 ptr3 ptr4 ptr5 ptr6 ptr7 ptr8 ptr9 ...x0 y0 z0

x1 y1 z1

x2 y2 z2

x3 y3 z3 x4 y4 z4

x5 y5 z5

x6 y6 z6
x7 y7 z7

x8 y8 z8

x9 y9 z9

Optimizing existing large codebase

22 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container of objects in cache

Memory view for vector<A>

Each line corresponds to a cache line (64 bytes, 16 floats)

0x0000
0x0040
0x0080
0x00C0

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5
y5 z5 x6 y6 z6 x7 y7 z7 x8 y8 z8 x9 y9 z9 . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

All data are nicely collocated in cache

Optimizing existing large codebase

23 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container of pointers in cache

Memory view for vector<A*>

Each line corresponds to a cache line (64 bytes, 16 floats)

0x0000
0x0040
0x0080
0x00C0
0x0100
0x0140
0x0180
0x01C0
0x0200
0x0240

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

x0 x1

x2

x3 x4

x5 x6

x7

x8 x9

y0 y1

y2

y3 y4

y5 y6

y7

y8 y9

z0 z1

z2

z3 z4

z5 z6

z7

z8 z9

Cache nightmare : data is completely sparse

Note from Andrzej : this is already optimistic

Optimizing existing large codebase

24 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

struct A { float x, y, z; };

std::vector<A> v;

Construction

Default constructor creates and empty vector, with no storage

end of storage
finish

start

0x0

0x0

0x0

First push

allocates storage for the first element only !

0x1234

0x1240

0x1240

x0 y0 z0

Optimizing existing large codebase

24 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

struct A { float x, y, z; };

std::vector<A> v;

Construction

Default constructor creates and empty vector, with no storage

end of storage
finish

start

0x0

0x0

0x0

First push

allocates storage for the first element only !

0x1234

0x1240

0x1240

x0 y0 z0

Optimizing existing large codebase

24 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

struct A { float x, y, z; };

std::vector<A> v;

Construction

Default constructor creates and empty vector, with no storage

end of storage
finish

start

0x0

0x0

0x0

First push

allocates storage for the first element only !

0x1234

0x1240

0x1240

x0 y0 z0

Optimizing existing large codebase

25 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Second push

0x1234

0x1240

0x1240

x0 y0 z0

x0 y0 z0 x1 y1 z1

1 allocate new piece of memory for 2 items

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

25 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Second push

0x1234

0x1240

0x1240

x0 y0 z0

x0 y0 z0 x1 y1 z1

1 allocate new piece of memory for 2 items

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

25 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Second push

0x1234

0x1240

0x1240

x0 y0 z0 x0 y0 z0

x1 y1 z1

1 allocate new piece of memory for 2 items

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

25 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Second push

0x1234

0x1240

0x1240

x0 y0 z0 x0 y0 z0 x1 y1 z1

1 allocate new piece of memory for 2 items

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

25 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Second push

0x1234

0x1240

0x1240

x0 y0 z0 x0 y0 z0 x1 y1 z1
0x5678

0x5684

0x5684

1 allocate new piece of memory for 2 items

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

25 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Second push

0x1234

0x1240

0x1240

x0 y0 z0

x0 y0 z0 x1 y1 z1
0x5678

0x5684

0x5684

1 allocate new piece of memory for 2 items

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

26 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Third push

0x5678

0x5684

0x5684

x0 y0 z0 x1 y1 z1

x0 y0 z0 x1 y1 z1 x2 y2 z2
0x9ABC

0x9AC8

0x9ACC

1 allocate new piece of memory for 4 items

double size at each iteration

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

26 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Third push

0x5678

0x5684

0x5684

x0 y0 z0 x1 y1 z1

x0 y0 z0 x1 y1 z1 x2 y2 z2
0x9ABC

0x9AC8

0x9ACC

1 allocate new piece of memory for 4 items

double size at each iteration

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

26 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Third push

0x5678

0x5684

0x5684

x0 y0 z0 x1 y1 z1 x0 y0 z0 x1 y1 z1

x2 y2 z2
0x9ABC

0x9AC8

0x9ACC

1 allocate new piece of memory for 4 items

double size at each iteration

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

26 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Third push

0x5678

0x5684

0x5684

x0 y0 z0 x1 y1 z1 x0 y0 z0 x1 y1 z1 x2 y2 z2

0x9ABC

0x9AC8

0x9ACC

1 allocate new piece of memory for 4 items

double size at each iteration

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

26 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Third push

0x5678

0x5684

0x5684

x0 y0 z0 x1 y1 z1 x0 y0 z0 x1 y1 z1 x2 y2 z2
0x9ABC

0x9AC8

0x9ACC

1 allocate new piece of memory for 4 items

double size at each iteration

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

26 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with no reservation

Third push

0x5678

0x5684

0x5684

x0 y0 z0 x1 y1 z1

x0 y0 z0 x1 y1 z1 x2 y2 z2
0x9ABC

0x9AC8

0x9ACC

1 allocate new piece of memory for 4 items

double size at each iteration

2 copy existing content

3 write new content

4 update pointers

5 Deallocate original piece of memory

Optimizing existing large codebase

27 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Container with proper reservation

Construction and reservation

you can avoid all that thanks to reserve

std::vector<int> v;

v.reserve(1000);

ensures single allocation, no copies, no reallocation

0x1234

0x1234

0x1dec

...

Without second line

first item would have be copied 10 times !

1023 items would have been copied in total

11 pieces of memory allocated, 10 released

Optimizing existing large codebase

28 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Avoiding copy when filling container

What should be avoided

1 std::vector<A> v;

2 v.reserve(10);

3 A tmp{args};

4 v.push_back(tmp);

What actually happens :

allocate space in the vector (line 2)

allocate space for the temporary A object (line 3)

call A constructor (line 3)

call copy constructor for A (line 4)

deallocate temporary A (end of scope)

using std::move(tmp) on last line not necessarily better

Optimizing existing large codebase

28 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Avoiding copy when filling container

What should be avoided

1 std::vector<A> v;

2 v.reserve(10);

3 A tmp{args};

4 v.push_back(tmp);

What actually happens :

allocate space in the vector (line 2)

allocate space for the temporary A object (line 3)

call A constructor (line 3)

call copy constructor for A (line 4)

deallocate temporary A (end of scope)

using std::move(tmp) on last line not necessarily better

Optimizing existing large codebase

29 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Proper solution for vectors

In place construction

1 std::vector<A> v;

2 v.reserve(10);

3 v.emplace_back(args);

What actually happens :

allocate space in the vector

call constructor for A

using args as the constructor arguments
using the space allocated in the vector

For the record, this is using variadic templates, new in C++11

Optimizing existing large codebase

30 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Proper solution for maps

In place construction + piecewise construct + forward as tuple

1 std::map<int,A> m;

2 m.emplace(piecewise_construct,

3 make_tuple(5),

4 forward_as_tuple(args));

emplace back now creates an std::pair

piecewise construct constructs the 2 items of the pair in place

forward as tuple prevents a copy of args

by using a tuple of references

Optimizing existing large codebase

31 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Detecting memory offending code

Look at your measurements !

how much time do you spend in malloc/new/free/delete/... ?

more than a few % ? Room for improvement !

what is your last level cache miss rate ?

1 % or more ? Room for improvement !

drill down to the method where the numbers are bad

find the responsible container / data structure

Optimizing existing large codebase

31 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context containers reserving findBadCode

Detecting memory offending code

Look at your measurements !

how much time do you spend in malloc/new/free/delete/... ?

more than a few % ? Room for improvement !

what is your last level cache miss rate ?

1 % or more ? Room for improvement !

drill down to the method where the numbers are bad

find the responsible container / data structure

Optimizing existing large codebase

32 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

The nightmare of thread safety

1 Measuring Performance

2 Code modernization

3 Improving Memory Handling

4 The nightmare of thread safety
Context and constraints
Identifying problems
Solving problems
Thread contention

5 Low level optimizations

6 Conclusion

Optimizing existing large codebase

33 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Evolution of CPUs in the past decades

source : https://github.com/karlrupp/microprocessor-trend-data

clock speed is now fixed

flops come now from parallel processing

and especially from many cores

https://github.com/karlrupp/microprocessor-trend-data

Optimizing existing large codebase

34 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Adapting existing software : multiprocessing

Cheap and easy approach

works when you can split your data

just process the pieces in parallel

launching your original application n times

where n is roughly the number of cores

and glue the results together

Main problem

the memory usage (amount and cache efficiency)

Optimizing existing large codebase

35 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Adapting existing software : multithreading

Less easy but rewarding approach

remember threads share their heap

your memory is mainly “read only” during processing

all code and libraries
detector geometry, conditions

threads share this common memory

40 threads instead of 40 jobs means memory usage divided by 40 !

Main problem

race conditions on non read-only memory parts

Optimizing existing large codebase

36 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Timing of ++ operation

Code

1 eax = a // memory to register copy

2 increase eax // increase (atomic CPU instruction)

3 a = eax // copy back to memory

For 2 threads

read
0

read

0

incr incr

write 1write 1

Thread 1:eax Memory:a Thread 2:eax

time

Optimizing existing large codebase

37 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

What is not thread/safe ?

Everything ! unless explicitely stated

Non thread-safe code

heap

STL constainers

they use the heap !
some functions may be thread safe though

global (non const) variables

any member of a C++class modified in a non const method

the method may be called concurrently by two threads

constcast, singletons, caches, ...

many C library calls (e.g. strtok, ctime, ...)

external libearies

random number generators (most of them)

Optimizing existing large codebase

38 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Converting to multithreading

Identify all shared state
and secure them

Optimizing existing large codebase

39 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Identifying problematic shared states

A very hard topic !

Level 0 : use gdb and debug crashes

but race conditions do not happen at every run

and crashes is the lucky case, wrong results is the other

Level 0.5 : helgrind

detects race conditions that did not happen

but only in code that ran (coverage issue)

and is very slow

Optimizing existing large codebase

39 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Identifying problematic shared states

A very hard topic !

Level 0 : use gdb and debug crashes

but race conditions do not happen at every run

and crashes is the lucky case, wrong results is the other

Level 0.5 : helgrind

detects race conditions that did not happen

but only in code that ran (coverage issue)

and is very slow

Optimizing existing large codebase

39 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Identifying problematic shared states

A very hard topic !

Level 0 : use gdb and debug crashes

but race conditions do not happen at every run

and crashes is the lucky case, wrong results is the other

Level 0.5 : helgrind

detects race conditions that did not happen

but only in code that ran (coverage issue)

and is very slow

Optimizing existing large codebase

40 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Identifying problematic shared states

Actual (partial) solution : use the language

C++11 constness is different from original one

it now means “visibly const and race condition free”

that is the “visible” state is not modified

and internally thread safety is guaranteed if any thing changes

Bottom line : proper use of constness can save us !

especially constness of member functions

it ensures they are reentrant

it will tell us at compile time if not :-)

Optimizing existing large codebase

40 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Identifying problematic shared states

Actual (partial) solution : use the language

C++11 constness is different from original one

it now means “visibly const and race condition free”

that is the “visible” state is not modified

and internally thread safety is guaranteed if any thing changes

Bottom line : proper use of constness can save us !

especially constness of member functions

it ensures they are reentrant

it will tell us at compile time if not :-)

Optimizing existing large codebase

41 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Practically identifying shared state

introduce constness everywhere

look at compiler errors

and look for globals, const does not apply here

and do not forget special cases where constness is not respected...

mutables
const cast, C casts

better be fluent with grep...

Optimizing existing large codebase

41 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Practically identifying shared state

introduce constness everywhere

look at compiler errors

and look for globals, const does not apply here

and do not forget special cases where constness is not respected...

mutables
const cast, C casts

better be fluent with grep...

Optimizing existing large codebase

41 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Practically identifying shared state

introduce constness everywhere

look at compiler errors

and look for globals, const does not apply here

and do not forget special cases where constness is not respected...

mutables
const cast, C casts

better be fluent with grep...

Optimizing existing large codebase

41 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Practically identifying shared state

introduce constness everywhere

look at compiler errors

and look for globals, const does not apply here

and do not forget special cases where constness is not respected...

mutables
const cast, C casts

better be fluent with grep...

Optimizing existing large codebase

42 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Typical legacy code

1 /// hack to allow for tools with non-const interfaces

2 template <typename IFace>

3 IFace* fixup(const ToolHandle<IFace>& iface) {

4 return &const_cast<IFace&>(*iface);

5 }

6

7 void CaloHypoNtp::operator()(...) const {

8 ...

9 if(m_checker)

10 fixup(m_2MC)->from(hypo)->descriptor();

11 ...

12 }

Optimizing existing large codebase

43 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Securing a shared state

non optimal way : locks and mutexes

serializes access to given piece of code

fine under low pressure

but costly and leads to contention under high pressure

see later

Better way

analyze the data race, extract the state

can it be replicated/moved to higher level ?

Optimizing existing large codebase

44 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

State replication option

When to use it

when the state can be replicated

so not used as a synchronization point

for heavily used, small state

Example : random number generator

state is small, does not need to be shared

so you can have one generator per thread

or modify the random generator

and use thread local storage for the state
although may be more costful

Optimizing existing large codebase

45 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Moving state to higher level

When to use it

when the state can be replicated

so not used as a synchronization point

fine with small and large states

typically for caches, when the state is data reused between calls

Principle

simply make the state visible to the caller

and initialize it one level higher on the stack

so that you have local states per thread

Think of the state as hidden data passed magically to your calls, just
make it explicit

Optimizing existing large codebase

46 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

State moving option example

Original class

1 class CachedAccessor {

2 mutable CachedObject m_myCache;

3 Item get(const KeyObject& key) const {

4 ...

5 m_myCache.update(...);

6 ...

7 }

8 };

Usage

1 CachedAccessor accessor{dataSource};

2 for(const auto& key: keyList) {

3 auto item = accessor.get(key);

4 ...

5 }

Optimizing existing large codebase

47 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

State extraction to higher level

Thread safe version of the class

1 class CachedAccessor {

2 Item get (const KeyObject& key, CachedObject& cache) const {

3 cache.update(... key ...);

4 ...

5 }

6 };

thread safe usage

1 CachedAccessor accessor{dataSource};

2 CachedObject cache;

3 for(const auto& key: keyList) {

4 auto item = accessor.get(key, cache);

5 ...

6 }

Optimizing existing large codebase

48 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

What do we call contention ?

a situation where all hardware resources cannot be used efficiently

because of one bottleneck in the chain

called point of contention

can be anything

hardware : network, I/O, ...
lines of code, typically with a lock
architectural : one producer not fast enough blocking many consumers

actually can be anything shared between threads

Optimizing existing large codebase

49 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

How to detect contention ?

benchmark the code

look at scalability

look at thread usage

Example output of 40 threads on 20 physical cores’ system

Optimizing existing large codebase

49 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

How to detect contention ?

benchmark the code

look at scalability

look at thread usage

Example output of 40 threads on 20 physical cores’ system

Optimizing existing large codebase

50 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Where is the contention ?

Much more difficult question !

you need to find the hotspot

without any clue of its type

look for

high CPU in a single thread
lengths of your queues (too full, too empty ?)
global state of your machine (I/O, network)

Optimizing existing large codebase

51 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Example of memory based contention

Figure: Table of the main CPU consumers in the application

What was happening :

too many small memory allocations across threads

new has an internal locking for thread safety

and cannot cope !

Another good reason to care about memory allocation !

Optimizing existing large codebase

51 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Example of memory based contention

Figure: Table of the main CPU consumers in the application

What was happening :

too many small memory allocations across threads

new has an internal locking for thread safety

and cannot cope !

Another good reason to care about memory allocation !

Optimizing existing large codebase

51 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

context identify fix contention

Example of memory based contention

Figure: Table of the main CPU consumers in the application

What was happening :

too many small memory allocations across threads

new has an internal locking for thread safety

and cannot cope !

Another good reason to care about memory allocation !

Optimizing existing large codebase

52 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

scope measure improve

Low level optimizations

1 Measuring Performance

2 Code modernization

3 Improving Memory Handling

4 The nightmare of thread safety

5 Low level optimizations
Scope and target
How to measure ?
Improving

6 Conclusion

Optimizing existing large codebase

53 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

scope measure improve

Scope and target

improve usage of the hardware for a given code

that includes in particular

better caching of memory accesses
better usage of pipelining and superscalar features
better vectorization

in principle, the compiler does all that for you

but you have better high level knowledge of the code !

Optimizing existing large codebase

54 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

scope measure improve

Measuring low level efficiency

CPI

Cycles Per Instruction

should be smaller when pipelining and superscalar features are used

but typical values highly depend on the type of code

Cache misses

should be really low (<1%)

remember Andrzej’s slide : “5% is catastrophic”

Vectorization

look at specific counters in vtune/valgrind (extension)

check the assembly code directly looking for SIMD instruction codes

Optimizing existing large codebase

55 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

scope measure improve

How to improve

By acting mainly on 2 constraints that the compiler has to obey

your data dependencies

you need close-by operations to be independent

compiler code reordering is limited

and pipelining/superscalar need that

your data structure

especially true for caching and vectorization

your data structures should group together what goes together

Called SoA (Structure of Arrays) approach

In both cases : work more in parallel !

Optimizing existing large codebase

56 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Conclusion

1 Measuring Performance

2 Code modernization

3 Improving Memory Handling

4 The nightmare of thread safety

5 Low level optimizations

6 Conclusion

Optimizing existing large codebase

57 / 57 S. Ponce - CERN

Measure Modernize Mem threads low level c/c

Conclusion

Key messages of the day

typical large old code can benefit a lot of optimizations

typically speedup of > 2 !

main lines of optimizations is reworking the data structures

for optimizing memory allocation
for allowing more parallelism/vectorization

handling multicores typically goes through threading

huge effort to be made to ensure thread safety
constness can greatly help

	Measuring Performance
	What is performance ?
	Tools available
	Finding bottlenecks

	Code modernization
	Improving Memory Handling
	Context
	Containers and memory
	Container reservation
	Detecting offending code

	The nightmare of thread safety
	Context and constraints
	Identifying problems
	Solving problems
	Thread contention

	Low level optimizations
	Scope and target
	How to measure ?
	Improving

	Conclusion

