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Price to Pay for Memory

As you already know, memory is a key item to consider when optimizing a program.
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Data Locality

Space locality - Neighbouring memory locations are likely going to be accessed.

Temporal locality - The same memory location is likely going to be accessed again.

Accessing X, will load into cache all x elements.

DRAM is read into cache memory — each read brings a group of items onto cache memory.
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Burst section

DRAM Burst Sections
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In fact, DRAM is organized in burst sections. Let's take a simplified example:

Each cell represents a byte.

We have a 16-byte address space, with 4-byte burst sections.

Note that nowadays the address spaces are in the GBs, and a typical burst section is 128 bytes.
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When threads make a memory request and the request falls under the same burst, the access is

coalesced.

Coalesced Memory Accesses

Coalesced loads

Coalesced loads

to U T T to U T 13
O 123 8 9 10111213/ 14]15
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Non-coalesced Memory Accesses

Uncoalesced loads

Uncoalesced loads

to L L t3 to t 13
O 2 4 @ 10[ 111213 14|15

However, if threads request a block of memory and the accesses do not fall under the same burst,
the access is non-coalesced.

Several access patterns can yield this undesired behaviour, which impacts performance.
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Is an Access Coalesced?

As a general rule, look for the following conditions:
Base address should be a multiple of burst size.

threadIdx should be used as a free term.

Eg. coalesced access of array A

A[ (expression independent of threadIdx) + threadIdx.x]
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Quickbit: Linear Representation of a Matrix

IS actually stored as

AO,O

Ao,

Ao,z

AO,B

Ao

A],]

Aiz

Aia

Az

Az

A2,2

Az3

AB,O

Az

Asz

A3,3

Tip: Always store higher order arrays as 1-dimensional arrays!
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Matrix-matrix Multiplication

Suppose we want to multiply two arrays:
- Aofsizem X n
- Bofsizen x kK

- ResultisCofsizem x k

__device__ void multiply_arrays(float* A, float* B, float* C, int m, int n, int k)
for (int row = threadIdx.x; row < m; row += blockDim.x)
for (int col = threadIdx.y; col < k; col += blockDim.y) {
float element = 0.f;
for (int 1 = 0; 1 < n; ++i) |
element += A[row * m + i] * B[i * k + col];
}

Clrow * k + col]

}

element;

}
}
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Accesses to B are coalesced:

Load iteration O

Access Patterns

L oad iteration 1

t0,0 tO,I tO,Z t0,3 t0,0 tO,I tO,Z t0,3
BO,O BO,] BO,2 BO,B B],O B1,1 B1,2 B],B BZ,O BZ,] BZ,Z BZ,B BB,O B3,1 BB,Z BB,B
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Access Patterns

Accesses to B are coalesced:

Load iteration O L oad iteration 1

t0,0 tO,I tO,Z t0,3 t0,0 tO,I tO,Z t0,3

LT T LT T

BO,O BO,] BO,2 BO,B B],O B],] B],Z B],B BZ,O BZ,] BZ,Z BZ,B BB,O B3,1 BB,Z BB,B

However, accesses to A are non-coalesced:

Load iteration 1

t0,0 t 1,0 t2,0 t3,0

Load iteration O

AO,O AO,] AO,Z AO,B A],O A],] A],Z A],B AZ,O A2,1 A2,2 A2,3 AB,O AB,] A3,2 A3,3
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A Step Further: Shared Memory

Going back to the types of memories available in a GPU:
Grid

Block (0, 0) Block (1, 0)

y X y X

Shared memory is a low-latency memory that reides on L1 cache.
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How to Use Shared Memory

Shared memory can be defined by using the keyword __shared__

Any variable declared like this will be accessible by all threads in a block.

__global__ void shared_memory_example(float* dev_array) {
__shared__ float array [256];

for (int 1
array|i]

threadIdx.x; i < 256; i += blockDim.x) A
dev_array|i];

}

__syncthreads();

// Now all threads can access array, which is initialized with
// the first 256 elements of dev_array.

}
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Things to Consider about Shared Memory

Shared memory is a scarce resource that should be used carefully.
It is [imited Iin size, the maximum varies

It is a limiting resource that is used to determine maximum number of blocks in flight in a
Streaming Multiprocessor (SM).

The amount of memory reserved for L1-cache / shared memory is configurable (in CUDA, it can be
configured with cudaDeviceSetCacheConfig).

At the same time, a good use of shared memory can lead to juicy performance gains!
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Matrix Multiplication With Shared Memory

With a small enough matrix, we could use shared memory:
Preload all elements of A and B onto shared memory.

Perform matrix multiplication reading from shared memory and store the result in C.

Bonus point: We can use coalesced accesses to populate the shared memory buffers!
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Small Matrix Multiplication Example

Load A and B onto shared memory:

shared A:

shared B:

Load iteration O

Lo

T

L

T

L

T

&

T

AO,O

Ao,

Ao,z

AO,B
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Small Matrix Multiplication Example

Load A and B onto shared memory:

shared A:

shared B:

L oad iteration 1

to U T 13
AO,O AO,] AO,Z AO,B A],O A],] A],Z A],B AZ,O AZ,] A2,2 A2,3 AB,O A3,1 A3,2 A3,3
AO,O AO,] AO,Z AO,B A],O A],] A],Z A],B

Daniel Cdmpora - dcampora@nvidia.com

18

NVIDIA



Small Matrix Multiplication Example

Load A and B onto shared memory:

shared A:

shared B:

Load iteration 2

to 4 T 13
AO,O AO,] AO,Z AO,B A],O A],] A],Z A],B AZ,O A2,1 A2,2 A2,3 AB,O A3,1 A3,2 A3,3
AO,O AO, 1 AO,Z AO,B A] 0 A] , 1 A] ,2 A] 3 AZ,O A2, ] A2,2 A2,3
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Small Matrix Multiplication Example

Load A and B onto shared memory:

shared A:

shared B:

Load iteration 3

t, t, t, ts
AO,O AO,] AO,Z AO,B A],O A] | A] 2 A] 3 AZ,O A2 ] A2 2 A2,3 AB,O A3,1 A3,2 A3,3
AO,O AO,] AO,Z AO,B A],O A] | A] 2 A] 3 AZ,O A2 ] A2 2 A2,3 AB,O AB,] A3,2 A3,3
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Small Matrix Multiplication Example

Load A and B onto shared memory:

shared A:

shared B:

Load iteration 4

t, t, t, ts
T T]
BO,O BO,] BO,2 BO,B B],O B]] B]Z B13 BZ,O BZ] BZZ BZ,B BB,O BB,] BB,Z BB,B
AO,O AO,] AO,Z AO,B A],O A]] A]Z A]B AZ,O AZ] A22 A2,3 AB,O AB,] A3,2 A3,3
BO,O BO, | BO,2 BO,B

Daniel Cdmpora - dcampora@nvidia.com

21

NVIDIA



Small Matrix Multiplication Example

Load A and B onto shared memory:

shared A:

shared B:

Load iteration 5

t, t, t, ts
LT 1

BO,O BO,] BO,2 BO,B B],O B],] B],Z B],B BZ,O BZ,] BZ,Z BZ,B BB,O BB,] BB,Z BB,B

AO,O AO,] AO,Z AO,B A],O A],] A],Z A],B AZ,O AZ,] A2,2 A2,3 AB,O AB,] A3,2 A3,3

BO,O BO,] BO,Z BO,B B],O B],] B],Z B],B
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Small Matrix Multiplication Example

Load A and B onto shared memory:

shared A:

shared B:

Load iteration 6

to U T 13
BO,O BO,] BO,2 BO,B B],O B],] B1,2 B],B BZ,O BZ,] BZ,Z BZ,B BB,O BB,] BB,Z BB,B
AO,O AO,] AO,Z AO,B A],O A],] A],Z A],B AZ,O AZ,] A2,2 A2,3 AB,O AB,] A3,2 A3,3
BO,O BO,] BO,2 BO,B B],O B],] B1,2 B],B BZ,O BZ,] BZ,Z BZ,B
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Small Matrix Multiplication Example

Load A and B onto shared memory:

shared A:

shared B:

Load iteration 7

t, t, t, ts
LT 1T
BO,O BO,] BO,2 BO,B B],O B] | B] 2 B] 3 BZ,O BZ | BZ 2 BZ,B BB,O BB,] BB,Z BB,B
AO,O AO,] AO,Z AO,B A],O A] | A] 2 A] 3 AZ,O A2 ] A2 2 A2,3 AB,O AB,] A3,2 A3,3
BO,O BO,] BO,2 BO,B B],O B] | B] 2 B] 3 BZ,O BZ | BZ 2 BZ,B BB,O BB,] BB,Z BB,B
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Small Matrix Multiplication Example (2)

shared A: Aoco | Aot [ Aoz [ Aoz | Ao Ay A A1 Aso | Asq | Asn | Ass | A | Asy | A, | Ass

SharEd B: BO,O BO,] BO,2 BO,B B],O B1,1 B1,2 B1,3 BZ,O BZ,] BZ,Z BZ,B BB,O BB,] BB,Z BB,B

And finally do the matrix-matrix multiplication from shared memory buffers shared A and shared
B, storing it in C.

__global__ void shared_matrix_multiply_16_16(float* A, float* B, float* C) {

__shared__ float shared_A [256]:
__shared__ float shared_B [256]:

// Coalesced loads

for (int i = threadIdx.x; i < 256; i += blockDim.x)
shared_A[i] = Al[i];

for (int i = threadIdx.x; i < 256; i += blockDim.x)
shared_B[i] = B[i];

__syncthreads() ;

// Now shared_A and shared_B are populated and can be used

// instead of the original arrays to perform the multiplication
multiply_arrays(shared_A , shared_B , C, 16, 16, 16);
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Tiling

Tiled data processing or just tiling consists in dividing a big chunk of data into many tiles which
are processed one at a time.

Global Memory

Thread 1 Thread 2

Daniel Campora - dcampora@nvidia.com 26 < NVIDIA I



Tiling

Tiled data processing or just tiling consists in dividing a big chunk of data into many tiles which
are processed one at a time.

Global Memory

I~
On-chip Memory

e

Thread 1 Thread 2
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Tiling

Tiled data processing or just tiling consists in dividing a big chunk of data into many tiles which
are processed one at a time.

Global Memory

A4

On-chip Memory

e

Thread 1 Thread 2
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The basic concept is similar to carpooling:
- Drivers [ Passengers - threads accessing memory.

- Cars — memory access requests.

Image from NVIDIA DLI course “Fundamentals of
Accelerated Computing with CUDA C/C++”
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Schedule Is Important!

It works well when people have similar schedules

Worker A sleep work dinner
Time —
Worker B sleep work dinner

But it goes really wrong otherwise!

Worker A party sleep work

Time —

Worker B sleep work dinner
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A Generic Tiling Algorithm

Follow the next steps:
ldentify an access pattern where threads access global memory in a tiled manner.
Load the tile from global into shared memory in a coalesced manner.
Synchronize.
Have multiple threads access the data from the shared buffer.
Synchronize.

Move on to the next tile.
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Tiled Matrix Multiplication

Using this techniqgue we can multiply two arrays of any given size by dividing it into tiles.

At every step, we will load the data into shared memory and perform the multiplication.
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Streams

A stream is a sequence of commands that execute in order.
A stream can execute various types of commands. For instance:
Kernel invocations
Memory transmissions.
Memory (de)allocations.
Memsets.

Synchronizations.
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kernel 1

The Default Stream

DEFAULT STREAM

kernel 2

kernel 3

kernel 4

Time

A CUDA stream is a sequence of operations executed in issue order.

CUDA has a default stream.

By default, CUDA kernels run in the default stream.

kernel 5

Any instruction run in a stream must complete before the next instruction can be issued.

Daniel Cdmpora - dcampora@nvidia.com
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kernel 3

kernel 1

—————————————————————————

Non-default streams can also be created in a CUDA application.

Non-default streams

NON-DEFAULT STREAM 2

kernel 4

kernel 5

kernel 2

NON-DEFAULT STREAM 1

kernel o

DEFAULT STREAM

Time

Commands running on a non-default stream must still complete before the next can be issued.

However, commands in different, non-default streams can run concurrently.

Daniel Cdmpora - dcampora@nvidia.com
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The default stream is special: it acquires exclusive access preventing other streams from

running.

The Default Stream is Blocking

kernel 3

NON

kernel 4

kernel 1

kernel 2

Daniel Cdmpora - dcampora@nvidia.com
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DEFAULT STREAM 2

DEFAULT STREAM 1

EFAULT STREAM

kernel ©

kernel 7

kernel 5

Time
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Pipelines

If we were to use a single stream to perform all calculations and transfer all data, GPUs would be
hopelessly slow.

Thankfully, GPUs can perform data transmissions while executing kernels.

Given that a GPU is sitting on a PCl-express slot, we can even exploit the full-duplex capability of
the link It we so desire. Typically at least three streams are needed to achieve a full pipeline:

Use SMs to perform some computation.
Transfer data host-to-device.

Transfer data device-to-host.
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Pipeline Example

cudaMallocHost () cudaMemcpyAsync (HtoD)

Time

Main memory (host) must be pinned in order for asynchronicity to work.

cudaMemcpyAsync can transfer data asynchronously in a non-default stream.

Daniel Campora - dcampora@nvidia.com 39 NVIDIA



Pipeline Example (2)

Time

This allows overlapping memory copies and computation.

Daniel Campora - dcampora@nvidia.com 40 NVIDIA



Full Pipeline

Serial:

host to device (h2d) kernel execution device to host (d2h)

Time

Pipelined:

h2d [kernel d2h
h2d [kernel d2h

h2d 'kernel d2h

h2d [kernel d2h

Time
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Full Pipeline (2)

Pipelined:

h2d kernel

kernel

kernel

Time
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Streaming Multiprocessor

The processor that performs computations in NVIDIA Onpatch Uit 32 resdcy

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
architectures is the Streaming Multiprocessor. It consists of: o w2 oo i e oo
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
. Arithmetic (green) e -
g mmms o~
FP32 FP32 FP64 4"‘ GENERATION FP32 FP32 FP64 4"‘ GENERATION
FP32 FP32 FP64 FP32 FP32 FP64
e ——
® Loa d Sto re red FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
e m O r e 8 LDV LDy LDV LDy LDy LDV LDV SFU LDy LDV LD LDy LDl LE;I L?i SFU
. M y (b | u ) | ST ST ST ST ST ST ST ST ST ST ST ST S S
L0 Instruction Cache ~ LOmstruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
o C O nt r O I u n It S ( O r a n g e) Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
INT32 FP32 FP32 FP64 INT32 FP32 FP3I2 FP&4
INT32 FP32 FPI2 FP64 INT32 FP32 FP32 FP64
There are many SMs on a GPU, current models have up to W W F e

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
132 SMs and thousands of CUDA cores. e R

INT32 FP32 FP32 FP64 4™ GENERATION INT32 FP32 FP32 FP64 4™ GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84

INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FPB4 INT32 FP32 FP32 FP64

LoV LDV Loy LoV LDy LDV LoV LoV SFU Loy LDV LDV LDy Loy LDV LD/ LDJ
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memofy Accelerator
- 256 KB L1 Data Cache / Shared Memory

Tex Tex Tex
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Recap

Programming model Underlying hardware
Kernel: __global__ functions. The CUDA scheduler.
Blocks: Subdivision of work into groups. Streaming multiprocessors.
Thread: Unit of work. Warp of 32 threads.
Local variables. Registers.
Shared memory: Small and fast memory. Cache (L1, L2).

Global memory: Large and slow memory. DRAM memory.
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The Warp

The SM creates, manages, schedules, and executes threads in groups of 32 parallel threads called
warps.

Threads inside a warp:
- start at the same program address.
- have their own program counter (instruction address counter).

- have their own register state.
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Does Warp Size Matter?

Warp size affects what block size configurations fully occupy SMs. It affects occupancy:
Occupancy is the ratio of active warps to maximum supported active warps in a SM.

Example: On a GPU that supports 64 active warps per SM, full occupancy on a SM can be

achieved with:

Varying Block Si 0
8 active blocks with 256 threads per block. arying block size

64

16 active blocks with 128 threads per block.

&N
0

32 active blocks with 64 threads per block.

threads:él

Warps per SM
ho

(-
o

Is 100% occupancy the best?

256 512 768 1024

Threads Per Block
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Latency vs Throughput

» Full occupancy may not be desirable in scenarios where latency is the relevant metric.

- Efficiently using the GPU resources sometimes means going for lower configurations.

- Profilers in particular will always suggest methods to improve latency, not throughput.

- See this presentation for more on this topic.

- Toasting — do you want the best time-to-toast or the best toasts-per-second?

done in 41 minutes done in 31 minutes

Optimized for individual toast latency. Optimized for overall throughput.
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Lockstep

Older architectures executed in lockstep, they shared program counter and register state.
However, this warp-synchronous assumption is not valid anymore.

Threads can now branch and execute independently.

Pre-Volta
Program

VLR R T

32 thread warp

Counter (PC)
and Stack (5)

QOLOOOOLOOLOOLODOLOOOLOO0OLO0OLODOLOO0O0LO0OLOOLODOLODOLOOLOO0LO0LODOLODOLOO0OLVO0OLO0LVOO

05 050500550305055935503535503586

32 thread warp with independent scheduling
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https://developer.nvidia.com/blog/inside-volta/

What Happens With Branches?

If you are working on a GPU that runs in lockstep, if there is at least one thread running the
branch then the whole warp will go through the branch.

For this reason, it is commonly said that one should avoid branches when writing GPU code:

1T (threadIdx.x < 4) {

. %

’ S

} else { -
X: O

: )

Y =

¥
Z
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Branchless Code

As compilers get smarter and GPUs do not execute in lockstep, it is not the case anymore that
one should avoid branches at any cost. In most cases, branches are oK.

In recent models, threads within a warp are scheduled independently:

- Execution of statements can be interleaved.

- At one clock cycle, one single same instruction is executed for all threads in a warp (SIMT).

X5 Y; Z;
1T (threadIdx.x < 4) {
Aj
B;
} else {
X;
Y;

¥
Z;

Time
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Are Branches Relevant?

When branches lead to homogeneous code then it is worth removing the branch. Especially if the

code behind the branch is a hot section and complex for the compiler. In essence:
Avoid long sequences of diverged execution by threads within the same warp.

For instance, given a seed of a particle trajectory find compatible hits in other sensors:

---~---~-----
W —

N —
-
-
-
~--
.
--—-- r
---
--
— —
—
e
b
- -
b B

-
-
-
-~__~
- -
——
-.

—
-
-—-—
——
—_
™
-
-
_——
-~
- .
i
—
-
-~
- -
~~

~-~
~‘
-
- —
‘...~-
-~~
-—

Daniel Cdmpora - dcampora@nvidia.com

52

<A NVIDIA. I



Table of Contents

Dealing with memory efficiently

Streams

Under the hood
Debugging and profiling

Summary

Daniel Campora - dcampora@nvidia.com 53 NVIDIA



Debugging

GPU code can be debugged in a similar way to how CPU code is debugged.
There are several tools that can be used for debugging GPU program’s execution:

cuda-gdb - Command line debugger that is based off the popular gdb. It can be used to debug
CUDA applications, set watchpoints, step into execution of any thread and so on.

NVIDIA Nsight — Nsight is both an extension to Visual Studio and an extension to the Eclipse
environment that adds CUDA support. The Visual Studio version is the better of the two, and it

contains a built-in debugger and profiler. It is fully integrated with the IDE, so breakpoints can
be set, values can be expanded, just like with the CPU debugger.
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Profiling

Similarly, for profiling there are various tools to check out:

nsys — Command line profiler that replaces the previous nvprof. It is highly configurable and can
produce analytics that can be analyzed with the visual profiler.

Nsight Systems, Nsight Compute - These tools provide complementary analytics and
functionalities to optimize your application. It is also possible to connect remotely to a server
where the application is run, results are collected and presented in the local profiler instance.
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Nsight Compute Profile

Profile with CLI example

S ncu -o kernel_prof \ # Output filename
-\ # Overwrite file if exists
-c 1 \ # Kernel name to profile
-s 100 \ # Launch count
--set-full \ # Launches to skip with match kernel filter (name)
./executable # Execution command

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
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File Debug Profile Tools Window Help
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rcentage of utilization with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-
sources of the GPU presented as a roofline chart.

High-level overview of the throughput folicompute and memory resources of the GPU. For eac
metric of Compute and Memory to clearly identify the highest contributor. High-level overview ¢

Compute (SM) Throughput [%] 8.90  Duration [msecond] 1.42
Memory Throughput [%)] 88.51 Elapsed Cycles [cycle] 1693633
L1/TEX Cache Throughput [%] 23.62 SM Active Cycles [cycle] 1682002.62
L2 Cache Throughput [%] 33.15 SM Frequency [cycle/nsecond] 1.19
DRAM Throughput [%] 88.51 DRAM Frequency [cycle/usecond] 846.78

@ Hiah Throuahout The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device. To further improve performance, work will likely need to be shifted from the most utilized to another unit. Start by
g ghp analyzing DRAMiinthe '~ o oo oo0 S0 section.

The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 0% of this device's fp32 peak performance and 0% of its fp64 peak performance. Seethe = = 1 = for mode

@ Roofline Analysis details on rooflinefanalysis.

= ¥

Detailed analysis of the compute resources o&the strpz ions per clock (IPC) and the utilization of each available pipeline. Pipelines with very high utilization might limit the overall performance.
Executed Ipc Elapsed [inst/cycle] 0.59 SM Busy [%] 14.87
Sections/Rules Info Executed Ipc Active [inst/cycle] 0.59 Issue Slots Busy [%] 14.87
[, Issued Ipc Active [inst/cycle] 0.59
Section Sets
Enter filter A Low Utilization  All compute pipé¢ are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the ~and . sections for further details. | @ |
Name Sections
<custom> See Sections/Rules \ Al | D
default LaunchStats,0ccupa Detailed analysis of the memory resources of fne GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication bandwidth between those units
(Max Bandwidth), or by reaching the maximugh throughput of issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memory unit.
KusilLs el LS Memory Throughput [Gbyte/second] 575.62 Mem Busy [%] 33.15
source SourceCounters L1/TEX Hit Rate [%] 0 Max Bandwidth [%] 88.51
L2 Hit Rate [%] 50.00 Mem Pipes Busy [%] 18.90
detailed ComputeWorkloadAt
v full ComputeWorkloadAr D
Summary of the activity of the schedulers issuing instructions. Each scheduler maintains a pool of warps that it can issue instructions for. The upper bound of warps in the pool (Theoretical Warps) is limited by the launch configuration. On every cycle each
scheduler checks the state of the allocated warps in the pool (Active Warps). Active warps that are not stalled (Eligible Warps) are ready to issue their next instruction. From the set of eligible warps the scheduler selects a single warp from which to issue one or
< | N more instructions (Issued Warp). On cycles with no eligible warps, the issue slot is skipped and no instruction is issued. Having many skipped issue slots indicates poor latency hiding.
Sections/Rules Info AP Statistics NVTX T "T ‘T\l Active Warps Per Scheduler [warp] 14.52 No Eligible [%] 85.07

\pplied rule "Thread Divergence" (0 new results) * & demo [
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SOL Section

Start here

v GPU Speed Of Light Throughput

High-level overview of the throughput for compute and memory resources of the G For each unit, the throughput reports the achieved percentage of wilzation with respect 10 the theoretical maximu reakdowns
1 EiTel ™ .-

- Speed Of Light (SOL) chart presents a high-level
overview of compute and memory Utilization Of |t

Memory Throughput %) 657 apsed Cycles [cycle) 140859586
" u " O L1/TEX Cache Throughput %) 46.67 SM Active Cycles [cycle) 140488981 94
the GPU. For each unit, it reports the achieved % i -
. p | DRAM Throughput |%) 6.83 DRAM Frequency [cycle/usecond;
f " I n n u u n High Compute Throughput Cormpute is more heavily utikized than Memory: Look at the section 10 see what the compute pipelines are spending their time doing. Also, consider whether any «

The ravo of peak float (fp32) to double (1p64) performance on this device is 2.1, The kernel achieved 0% of this device's 1p32 peak performance and 0% of its 1p64 peak ¢ W man
sotails on roofline analysis

. oofline Amalysis Sana)
I I IaXI I I I u I I l " GPU Throughput
Compute (SM) IR

- -+ -
. » .
50 0 700 2800 200 D0 .0

Floating Point Operations Roofline

- Roofline chart shows your achieved FLOPS with
respect to the theoretical maximum single-
precision or double-precision FLOPS.

poiﬂt
Peak FP32 Performance Boundary

(1=1e+13)

Peak FP64 Terformance Boundrry

Performance [FLOP/s]

- Double Precision Achieved Value

Arithmetic Intensity [FLOP/byte]: 126.92

F L O P S / Byt e Performance [FLOP/s]: 3,721,763,301,669.27

100
Arithmetic Intensity [FLOP/byte]

Arithmetic Intensity = Compute / Memory

Daniel Campora - dcampora@nvidia.com 60 <ZNVIDIA




Memory Workload Analysis

Logical Units vs Physical Units

by the stride between threads, results in

A L1TEX Global Store Access Pattem 320 sectors per request, or 32.0%32 = 1024.0 bytes of cache data tranafers per reguest. The optimal thread address pattern for 4.0 byte accesses would result in 4.0%32 = 128.0 bytes data transfers per requast, 1o maximize

L1TEX cache performance.Check the gaction for uncoalesced global stores.

L2 Store Access Patte Ihe memory access pattern for stores from L1 TEX to L2 is not optimal. The granulanity of an L1TEX reguest to L2 is a 128 byte cache line. That is 4 consecutive 32-byte sectors per L2 request. Howewver, this kernel only accesses an average of 1.0
£\ 2 Store ACcess {30y : - -

- Gac

sectors out of the possible 4 sectors per cache line. Check the section for uncoalesced stores and try to minimize how many cache lines need to be accessed per memory request.

No. executed instructions No. requests to Amount/throughput
to each memory space that memory Memory Chart of data moved Show As: | Transfer Size

Toggle between
amount and
throughput

L1/1EX
Cache
L2 Cache

Hit Kate
RE 05 "%

Hit KKata:
BE.89 %

) ) A B
(*57.78%)

Device Memory
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Summary

Prefer coalesced memory accesses.
Shared memory is a valuable resource. Use it, don't abuse it.

Tiling Is a techniqgue that helps optimize memory performance.

Use streams to optimize GPU usage.

Pipelines with three or more strems yield best results.

Warp size is a hardware detail that affects efficient block sizes.
Avoid branches but don't go paranoid.

Profile, profile, profile.
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Resources Used In the Talk

GPU Teaching Kit on Accelerated Computing.
NVIDIA Deep Learning Institute materials.
Talk on NVIDIA Profiling Tools by Jeff Larkin.

GPU Profiling for Inference by William Raveane.
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