
1

Design Patterns and Best Practices
Daniel Cámpora | thematic CERN School of Computing

2Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Precision for computing

• Good practices

• Other standards: OpenCL, HIP, SYCL

• Middleware libraries: Alpaka, Kokkos

• Parallel design patterns

• Summary

3Daniel Cámpora – dcampora@nvidia.com

Precision for Computing

When using decimal numbers, one typically uses floating point numbers.

The IEEE 754 standard defines single precision, double precision, and half precision:

Still, how much precision is enough?

• Depends on your use case.

• Use the least you need.

Precision of IEEE754 Floating Point Values

IEEE754 Single Precision (32-bit)
IEEE754 Double-Precision (64-bit)

Floating Point Value
10-12 10-10 10-8 10-6 10-4 10-2 100 102 104 106 108 1010 1012

Fl
oa

tin
g

Po
in

t
Pr

ec
is

io
n

1010

108

106

104

102

100

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

10-18

10-20

10-22

10-24

10-26

10-28

4Daniel Cámpora – dcampora@nvidia.com

What Precision Does Your Algorithm Need?

The answer may not be as simple as one-precision-fits-all. You should consider what precision you
need for storage and arithmetic!

Arithmetic Storage
Double precision Double precision
Double precision Single precision
Single precision Single precision
Single precision Half precision
Half precision Half precision

Speed Precision

5Daniel Cámpora – dcampora@nvidia.com

Precision Matters (a Lot) in GPUs

This is especially true for GPUs, where you would have to go for scientific cards to be able to get
good performance with double precision.

Theoretical
performance

FP16 (TFLOPS) FP32 (TFLOPS) FP64 (TFLOPS)

RTX 4090
(consumer)

82.58 82.58 1.29

RTX 6000 ADA
(professional)

91.06 91.06 1.42

H100
(scientific)

204.9 51.22 25.61

6Daniel Cámpora – dcampora@nvidia.com

Floating Point Rounding

The standard describes four rounding modes:

• round to nearest (typically the default)

• round down

• round up

• round towards zero

In addition, Fused Multiply-Add (FMA) units add precision and performance when doing floating
point operations... which changes slightly the result!

With no optimization flags, GPU compilers have FMAs turned on as opposed to CPU compilers.
However, as a general rule one should not expect FP bit-level precision across different
architectures or compilers, even if they run under the same standard!

7Daniel Cámpora – dcampora@nvidia.com

Floating Point Rounding – An Example

Consider the dot product example:

8Daniel Cámpora – dcampora@nvidia.com

Dot Product – Serial Approach

In the serial approach, every element is calculated sequentially.

9Daniel Cámpora – dcampora@nvidia.com

Dot Product – FMA Method

Using FMAs, each subsequent multiplication and addition is done in one instruction.

10Daniel Cámpora – dcampora@nvidia.com

Dot Product – Parallel Method

The parallel method divides the problem such that each multiplication is done, followed by the
additions, in a Divide and Conquer approach.

11Daniel Cámpora – dcampora@nvidia.com

Results

The results for vectors:

a = [1.907607, −0.7862027, 1.147311, 0.9604002]

b = [−0.9355000, −0.6915108, 1.724470, −0.7097529]

is

method result float value
exact .0559587528435... 0x3D65350158...
serial .0559588074 0x3D653510
FMA .0559587515 0x3D653501

parallel .0559587478 0x3D653500

12Daniel Cámpora – dcampora@nvidia.com

Compiler Flags

Last, you have some control over how your computation is done. You may want to consider fast
math, which can impact performance and results quite substantially.

Bear in mind with fast mode:

• Denormals are flushed to zero.

• Division and square root are not computed to the nearest FP value.

mode flags

IEEE 754 mode
(default)

-ftz=false
-prec-div=true
-prec-sqrt=true

fast mode
-ftz=true
-prec-div=false
-prec-sqrt=false

13Daniel Cámpora – dcampora@nvidia.com

A Practical Example

What is wrong with the following code?

__global__ void shared_memory_example(float* dev_array) {
 for (int i = threadIdx.x; i < 256; i += blockDim.x) {
 dev_array[i] = 1 / std::sqrt(2. + dev_array[i]);
 }
}

14Daniel Cámpora – dcampora@nvidia.com

A Practical Example

What is wrong with the following code?

__global__ void shared_memory_example(float* dev_array) {
 for (int i = threadIdx.x; i < 256; i += blockDim.x) {
 dev_array[i] = 1 / std::sqrt(2. + dev_array[i]);
 }
}

Use compiler flag –Wdouble-promotion to avoid surprises!

15Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Precision for computing

• Good practices

• Other standards: OpenCL, HIP, SYCL

• Middleware libraries: Alpaka, Kokkos

• Parallel design patterns

• Summary

16Daniel Cámpora – dcampora@nvidia.com

Register Spilling

Every thread has a maximum number of registers it can use:

• In GPUs, this limit is configurable (typically between 63 and 255).

• If this limit is surpassed, the kernel will use local memory as swap space.

It is “local” because each thread has its own private area. It is actually stored in global memory
(yes, the slow one).

17Daniel Cámpora – dcampora@nvidia.com

Register Spilling (2)

Developers have no control over the spilling process:

• Address of global memory where memory is swapped is resolved by compiler.

• Stores are cached in L1 memory.

18Daniel Cámpora – dcampora@nvidia.com

Register Spilling (3)

Developers have no control over the spilling process:

• Address of global memory where memory is swapped is resolved by compiler.

• Stores are cached in L1 memory.

Spilling could hurt performance:

• Increases memory traffic.

• Increases instruction count.

19Daniel Cámpora – dcampora@nvidia.com

Register Spilling (4)

Developers have no control over the spilling process:

• Address of global memory where memory is swapped is resolved by compiler.

• Stores are cached in L1 memory.

Spilling could hurt performance:

• Increases memory traffic.

• Increases instruction count.

But it is not always bad:

• If accesses are cached.

• If your code is not instruction-throughput limited.

20Daniel Cámpora – dcampora@nvidia.com

How to Deal With Register Spilling

One can evaluate the impact of register spilling through profiling.

The developer has several tools to impact register spilling:

• Increase globally the amount of registers per kernel.

• Increase the amount of configurable L1 cache.

• Some compilers allow to specify non-caching loads for global memory.

• __launch_bounds__ (HIP, CUDA) – Controls maximum threads per block and minimum blocks per
SM. These two impact the number of registers in a kernel.

21Daniel Cámpora – dcampora@nvidia.com

Write Single-Source Kernels

It is possible to organize the code with several header files, containing definitions, and source
files, containing implementations.

However, doing so in GPU code heavily affects performance. The reason is that the compiler
optimizes functions to use a number of registers, shared memory and threads, and it cannot
perform that optimization if the compilation unit cannot see all code involved.

In other words, if your __global__ function calls __device__ functions either free standing or
within structs, those should be defined in either:

• The same source file.

• A header file, either templated or inlined.

22Daniel Cámpora – dcampora@nvidia.com

A Practical Use-case: The Velo Pixel Subdetector of LHCb

23Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Precision for computing

• Good practices

• Other standards: OpenCL, HIP, SYCL

• Middleware libraries: Alpaka, Kokkos

• Parallel design patterns

• Summary

24Daniel Cámpora – dcampora@nvidia.com

OpenCL

OpenCLTM (Open Computing Language) is a multi-vendor open standard for general-purpose parallel
programming of heterogeneous systems that include CPUs, GPUs, and other devices.

OpenCL 3.0 was released in September 2020:

• It has increased the flexibility by making every functionality from OpenCL 1.2 onwards optional
and queryable.

• C++ for OpenCL adopts C++17.

• Unified specification.

25Daniel Cámpora – dcampora@nvidia.com

OpenCL Compilation

OpenCL can either be compiled offline or online:

• Offline compilation: Kernel is pre-built with an OpenCL compiler. Pro: It runs with low invocation
latency. Con: It is compiled for a specific architecture.

• Online compilation: Kernel source code is distributed instead. Pro: It can run on various
architectures. Con: It needs to be JIT-compiled.

Offline compilation is supported through the clang compiler:

https://clang.llvm.org/docs/OpenCLSupport.html

26Daniel Cámpora – dcampora@nvidia.com

C++ for OpenCL

C++17 arrived with the release of C++ for OpenCL. The C++ support has some caveats:

27Daniel Cámpora – dcampora@nvidia.com

Status of OpenCL as of 2024

• OpenCL hasn’t changed since 2020.

• It gained back an implementation by NVIDIA.

• At the same time, Apple stopped supporting OpenCL (in favor of Metal), and so did AMD (in
favor of ROCm).

For more information on OpenCL check out:

• Khronos website on OpenCL

• IWOCL 2021 presentation

https://developer.nvidia.com/blog/nvidia-is-now-opencl-3-0-conformant/
https://www.khronos.org/opencl/
https://www.iwocl.org/wp-content/uploads/k03-iwocl-syclcon-2021-trevett-updated.mp4.pdf

28Daniel Cámpora – dcampora@nvidia.com

ROCm

ROCm is a platform that has appeared in recent years and is quickly evolving and adapting. It
includes:

• Support of frameworks (Tensorflow / Pytorch)

• Libraries (MIOpen / Blas / RCCL)

• Programming model (HIP)

• Inter-connect (OCD)

29Daniel Cámpora – dcampora@nvidia.com

HIP

HIP is a high performance, CUDA-like programming model that is built on an open and portable
framework.

• It supports C++17.

• It is almost a 1:1 copy of CUDA – most of the time changes required are very minimal and non-
intrusive.

• It supports AMD and NVIDIA targets.

30Daniel Cámpora – dcampora@nvidia.com

Differences Between HIP and CUDA

• Library call prefix is hip instead of cuda.

• Warp size depends on GPU: 64 on AMD and 32 on NVIDIA.

• Profiling / debugging is not as advanced.

• Low-level calls are different, newer CUDA features are ahead of HIP support.

• Specialized hardware (tensor cores) is naturally not there.

For more information: ROCm docs.

https://rocmdocs.amd.com/en/latest/

31Daniel Cámpora – dcampora@nvidia.com

SYCL

SYCL 2020’s primary goal is to achieve closer convergence with ISO C++, furthering our work to bring
parallel heterogeneous programming to modern C++ through open standards.

• It supports C++20, its intent is to become part of the standard.

• It attempts to support everything (CPUs, AMD GPUs, NVIDIA GPUs, Intel GPUs, Intel FPGAs).

• SYCL is built on top of OpenCL and SPIR– (the low-level representation shared by eg. Vulkan or
OpenGL).

32Daniel Cámpora – dcampora@nvidia.com

From the Creators of...

It is another standard developed by the Khronos group (same as OpenCL).

From XKCD comic Standards (https://xkcd.com/927/)

https://xkcd.com/927/

33Daniel Cámpora – dcampora@nvidia.com

SYCL to Everything

34Daniel Cámpora – dcampora@nvidia.com

Status of SYCL

SYCL released and updated the SYCL 2020 specification.

• Intel supports SYCL as a first-class citizen through its release of OneAPI.

• Intel GPUs are supported.

• Syntax is not easily translatable from CUDA / HIP. Adapting requires work.

• There is no one-size-fits-all and there will never be.

• Given that CUDA is a low-level language, adapting to a higher level one may not be in your best
interest if performance is your goal.

In spite of all that SYCL looks very interesting, the next few years will determine whether the
language has wide adoption.

https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://nazavode.github.io/blog/sycl/
https://www.youtube.com/watch?v=KHa-OSrZPGo

35Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Precision for computing

• Good practices

• Other standards: OpenCL, HIP, SYCL

• Middleware libraries: Alpaka, Kokkos

• Parallel design patterns

• Summary

36Daniel Cámpora – dcampora@nvidia.com

Alpaka

The alpaka library is a header-only C++14 abstraction library for accelerator development.

• It acts as a middle layer that can target CPU, NVIDIA GPUs or AMD GPUs through a variety of
backends.

• C++-style API which is optimized away by the compiler.

37Daniel Cámpora – dcampora@nvidia.com

Alpaka Backends

38Daniel Cámpora – dcampora@nvidia.com

Alpaka Hello World Kernel

#include <alpaka/alpaka.hpp>
//! Prints "[x, y, z][gtid] Hello World" where tid is the global thread number.
struct HelloWorldKernel
{
 template<typename TAcc>
 ALPAKA_FN_ACC auto operator()(TAcc const& acc) const -> void
 {
 using Dim = alpaka::Dim<TAcc>;
 using Idx = alpaka::Idx<TAcc>;
 using Vec = alpaka::Vec<Dim, Idx>;
 using Vec1 = alpaka::Vec<alpaka::DimInt<1u>, Idx>;

 Vec const globalThreadIdx = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc);
 Vec const globalThreadExtent = alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc);
 Vec1 const linearizedGlobalThreadIdx = alpaka::mapIdx<1u>(globalThreadIdx, globalThreadExtent);
 printf(
 "[z:%u, y:%u, x:%u][linear:%u] Hello World\n",
 static_cast<unsigned>(globalThreadIdx[0u]),
 static_cast<unsigned>(globalThreadIdx[1u]),
 static_cast<unsigned>(globalThreadIdx[2u]),
 static_cast<unsigned>(linearizedGlobalThreadIdx[0u]));
 }
};

39Daniel Cámpora – dcampora@nvidia.com

Should You Use Alpaka?

It depends on the priorities of your project:

• It provides portability across different platforms.

• Easier to maintain.

• There is a delay between appeareance of new features and Alpaka support.

• It remains a thin library, but doesn’t give you the same control and flexibility as a low-level
language (CUDA, HIP).

• Requires learning a different language extension which is not so widely adopted and departs
from others (learning curve).

Materials on Alpaka:

• Repository, documentation, online tutorial.

https://github.com/alpaka-group/alpaka
https://alpaka.readthedocs.io/en/latest/basic/intro.html
https://indico.cern.ch/event/912156/

40Daniel Cámpora – dcampora@nvidia.com

Kokkos

Kokkos Core implements a programming model in C++ for writing performance portable applications
targeting all major HPC platforms.

• Very similar to Alpaka conceptually, also a header-only library.

• C++ middle layer that targets CPU, NVIDIA, AMD platforms.

41Daniel Cámpora – dcampora@nvidia.com

Kokkos Core Capabilities

42Daniel Cámpora – dcampora@nvidia.com

Kokkos Reduction Kernel

struct squaresum {
 using value_type = int;
 KOKKOS_INLINE_FUNCTION
 void operator()(const int i, int& lsum) const {
 lsum += i * i; // compute the sum of squares
 }
};

int n = 10, sum = 0;
Kokkos::parallel_reduce(n, squaresum(), sum);

43Daniel Cámpora – dcampora@nvidia.com

Should You Use Kokkos?

• It provides portability and maintainability.

• It provides some higher level functionality (eg. parallel reduction, execution policies).

• Documentation is scarce, learning curve.

• It provides a subset of low-level functionality of vendor-driven languages (CUDA, HIP, SYCL).

Materials on Kokkos:

• Repository.

• GTC presentation, video.

https://github.com/kokkos/kokkos
https://on-demand.gputechconf.com/gtc/2015/presentation/S5166-H-Carter-Edwards.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5166.html

44Daniel Cámpora – dcampora@nvidia.com

Bonus: Portability in CUDA / HIP?

• CUDA and HIP are very similar standards.

• Kernel language is practically the same for most use-cases.

• For hardware-specific optimizations (eg. tensor cores), you would have to implement a portable version by
hand for portability.

• Utility functions (memcpy, memset, malloc, kernel invocation...) can be defined with macros or a hand-made
middle language.

• In practice, making your own middleware just for utility functions is very little work.

• It is therefore possible to have one codabease with a low-maintainance self-developed wrapper just covering
your utility / kernel needs.

• If targeting performance, it is always better to use the native solution.

• What about CPU execution?

45Daniel Cámpora – dcampora@nvidia.com

Bonus: CUDA / HIP Running on CPU?

If the CUDA code satisfies that it produces the same result when invoked with a block dimension
of {1, 1, 1} – or in other words:

• for-loops over threads are block-dimension strided.

• if-statements for a single thread refer to threads of index 0.

Then, with some macros and function definitions it is possible to compile the code for CPUs.

See the following presentation for details.

https://indico.cern.ch/event/962110/contributions/4047365/attachments/2141233/3607966/dcampora_dovombru_acc_forum.pdf

46Daniel Cámpora – dcampora@nvidia.com

So, Standard or Middleware?

• Standards offer the best performance for their native platform.

• Middlewares offer portability.

• It is possible to obtain good performance on a middleware.

• Low-level functions not supported by the middleware will require your own implementation across vendors
(high effort).

• It is possible to achieve portability between CUDA / HIP / CPU.

• You may want to focus on a single CPU backend if you do this (as opposed to the many variants offered by
Alpaka for instance).

• You will maintain the portability layer.

What is your application’s main target?

47Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Precision for computing

• Good practices

• Other standards: OpenCL, HIP, SYCL

• Middleware libraries: Alpaka, Kokkos

• Parallel design patterns

• Summary

48Daniel Cámpora – dcampora@nvidia.com

Data Parallel vs Streaming Patterns

Data parallel patterns

• Map

• Farm

• Reduction

• Stencil

Streaming patterns

• Farm

• Pipeline

49Daniel Cámpora – dcampora@nvidia.com

Data Parallel vs Streaming Parallel Patterns

• Size of the input + dependencies between items define which patterns to use.

• Data parallel patterns may not be efficient in streaming scenarios, and the other way around.

• For streaming patterns, there is usually one (or more) input items that distribute the input
elements to working items as they come.

50Daniel Cámpora – dcampora@nvidia.com

Map (parallel)

• Used on embarrassingly parallel collections of
items.

• Same function applied to every item, all at the
same “time”.

• Applicable if all items are independent.

• Usually good candidate for SIMD abstractions.

Used in

Ray tracing, Monte Carlo simulations

51Daniel Cámpora – dcampora@nvidia.com

Stencil (parallel)

• When for every item of a collection, we need
data from the neighbourhood items.

• Usually a fixed number of neighbourhood is
accessed.

• Boundary conditions have to be taken into
account.

• Data reuse in the implementation (cache).

Used in

Convolutional neural networks, signal
filtering, image processing, grid methods.

52Daniel Cámpora – dcampora@nvidia.com

Stencil (parallel)

• When for every item of a collection, we need
data from the neighbourhood items.

• Usually a fixed number of neighbourhood is
accessed.

• Boundary conditions have to be taken into
account.

• Data reuse in the implementation (cache).

Used in

Convolutional neural networks, signal
filtering, image processing, grid methods.

53Daniel Cámpora – dcampora@nvidia.com

Farm (Parallel Streaming)

• Similar to map, but size of collection is not
known in advance.

• Used for embarrassingly parallel computations
in stream computations.

• There is at least one producer item.

Used in

HEP online trigger software.

54Daniel Cámpora – dcampora@nvidia.com

Pipeline (Streaming)

• Size of collection not needed in advance.

• Different steps run in parallel, but others may
not be able to run in parallel.

• Different functions are applied in different
steps, where the order is important.

Used in

Image filtering, signal processing, game
engines.

55Daniel Cámpora – dcampora@nvidia.com

Pipeline (Streaming)

• Size of collection not needed in advance.

• Different steps run in parallel, but others may
not be able to run in parallel.

• Different functions are applied in different
steps, where the order is important.

Used in

Image filtering, signal processing, game
engines.

56Daniel Cámpora – dcampora@nvidia.com

Pipeline (Streaming)

• Size of collection not needed in advance.

• Different steps run in parallel, but others may
not be able to run in parallel.

• Different functions are applied in different
steps, where the order is important.

Used in

Image filtering, signal processing, game
engines.

57Daniel Cámpora – dcampora@nvidia.com

Pipeline (Streaming)

• Size of collection not needed in advance.

• Different steps run in parallel, but others may
not be able to run in parallel.

• Different functions are applied in different
steps, where the order is important.

Used in

Image filtering, signal processing, game
engines.

58Daniel Cámpora – dcampora@nvidia.com

Pipeline (Streaming)

• Size of collection not needed in advance.

• Different steps run in parallel, but others may
not be able to run in parallel.

• Different functions are applied in different
steps, where the order is important.

Used in

Image filtering, signal processing, game
engines.

59Daniel Cámpora – dcampora@nvidia.com

Reduction (Sequential)

• Combines a collection of items into one, with a
defined operation.

• Many different partition options.

• Elements depend on each other, but are
associative.

Used in

Matrix operations, computing of statistics on
datasets.

60Daniel Cámpora – dcampora@nvidia.com

Reduction (Parallel)

• Combines a collection of items into one, with a
defined operation.

• Many different partition options.

• Elements depend on each other, but are
associative.

Used in

Matrix operations, computing of statistics on
datasets.

61Daniel Cámpora – dcampora@nvidia.com

Prefix Sum Example

The prefix sum is a problem that consists in calculating the accumulated sum at every element of
an array. For example:

• Number of tracks per event: [10, 15, 32, 45, 24]

• Prefix sum: A = [0, 10, 25, 57, 102, 126]

The prefix sum of an array of numbers is extremely useful. It provides:

• The accumulated sum of the entire array (last element).

• The offset of each element (on element A[i]).

• The size of each element (A[i+1] - A[i]).

62Daniel Cámpora – dcampora@nvidia.com

Efficient GPU Prefix Sum: Blelloch Scan

The Blelloch scan consists in performing two sweeps of the data.

• up-sweep – the tree is traversed from leaves to root computing partial sums (reduction).

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

63Daniel Cámpora – dcampora@nvidia.com

Efficient GPU Prefix Sum: Blelloch Scan (2)

The Blelloch scan consists in performing two sweeps of the data.

• up-sweep – the tree is traversed from leaves to root computing partial sums (reduction).

• down-sweep – the tree is traversed from root to leaves. Each node of the current level passes its
values to the element on the left, and the sum of the former and current value on the right.

64Daniel Cámpora – dcampora@nvidia.com

LHCb HLT1

The prefix sum is an essential tool of the LHCb HLT1 reconstruction.

65Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Precision for computing

• Good practices

• Other standards: OpenCL, HIP, SYCL

• Middleware libraries: Alpaka, Kokkos

• Parallel design patterns

• Summary

66Daniel Cámpora – dcampora@nvidia.com

Summary

• Precision affects performance, especially in GPUs.

• GPUs implement the IEEE754 standard, deviations are expected from compiler / architecture variability.

• Be mindful about register spilling.

• Prefer single-source kernels.

• Choose your standard wisely if targeting best performance.

• Consider middlewares if targeting best performance.

• It is possible to obtain portability with a standard, and to obtain performance with a middleware.

• Design patterns are a powerful high-level design tool.

• Know your patterns, design algorithms better.

67Daniel Cámpora – dcampora@nvidia.com

Resources Used in the Talk

• GPU Teaching Kit on Accelerated Computing.

• Local Memory and Register Spilling by Paulius Micikevicius.

• Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs, white
paper.

• From sequential to parallel programming with patterns by Placido Fernandez .

68Daniel Cámpora – dcampora@nvidia.com

Resources: Where to Go From Here

• If you’re interested in AI, I suggest the course:

• TinyML and Efficient Deep Learning Computing by Song Han

• To learn more about GPU Computing, join the NVIDIA dev program to get a free DLI course:

• https://developer.nvidia.com/join-nvidia-developer-program

https://efficientml.ai/
https://developer.nvidia.com/join-nvidia-developer-program

69

