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- NIKHEF (2020) - Particle physics reconstruction

- Postdoc, LHCb > Online

: : : - Reconstruction (decoding, tracking, etc.
- Maastricht University (2021 - 2023) ( J J )
- Assistant Professor (LHCb)

- NVIDIA (2023 +)

- Senior Devtech Engineer

« Framework

- Al inference
 TensorRT-LLM
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GPUs: Parallel Processors

- GPUs are historically processors specialized to perform graphic-oriented workloads.
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Dedicated GPU Card

Daniel Campora - dcampora@nvidia.com 5 <NVIDIA I



Dedicated GPU Card - Detall

High-speed network to other GPUs
(NVLINK)
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Making Toast Fast
https://www.youtube.com/watch?v=gVPK81rI390

done in 4 minutes

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

Daniel Campora - dcampora@nvidia.com 7 < NVIDIA I
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Making Toast Fast
https://www.youtube.com/watch?v=gVPK81rI390
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CUDA Cores

How many pans does it have? =,
LO Instruction Cache LO Instruction Cache

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
A GPU is made up of Streaming Multiprocessors, 100s of them
, . INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
u u INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

Arithmetic takes up most of the processor space

u INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
. . . INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
Applications may use one or more SMs simultaneously.

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

GPU applications have thousands of threads in flight. —_— -

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32  FP64 INT32 INT32 FP32 FP32  FP64
INT32 INT32 FP32 FP32  FP64 INT32 INT32 FP32 FP32  FP64
4.0 Host Interface INT32 INT32 FP32 FP32  FP64 INT32 INT32 FP32 FP32  FP64
TENSOR CORE TENSOR CORE
INT32 INT32 FP32 FP32  FP64 INT32 INT32 FP32 FP32  FP64
- INT32 INT32 FP32 FP32  FP64 INT32 INT32 FP32 FP32  FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
c ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

3 192KB L1 Data Cache / Shared Memory

Tex Tex Tex Tex
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Simplified Execution Model =

How to operate the pans?

- N Kernels are executed in parallel by N different CUDA

threads.
. . . . i s "\ \‘\_
- Threads are arranged a one-dimensional, two-dimensional, e AN
s Fi . o
or three-dimensional block of threads, called a thread block. . Bock(L1)

A set of thread blocks are launched to execute a function.

- [t i1s usually better the overcommit w.r.t. the number of
threads to facilitate instruction latency (“prepare toast while
other getting fried”).

- When a multiprocessor is given one or more thread blocks to
execute, it partitions them into warps and each warp gets time
scheduled by a warp scheduler for execution. A

- It is important to avoid warp divergence (“frying toasts with
different cooking times in the same pan”) whenever
possiblel

SM

e
\.
('
-

- A set of thread blocks running concurrently is called a wave. -
The more waves, the better to minimize tail effects. wave 0 wave 1 (tail)

<
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CPUs and GPUs are Designed Very Differently

CPU - Latency oriented cores.

Finish quickly a series of instructions.

GPU - Throughput oriented cores.

Perform as many instructions per second as possible.

Daniel Campora - dcampora@nvidia.com 12 NVIDIA



CPU Highlights

- Powerful ALU

- Reduced operation latency

- Large caches

- Convert long latency memory accesses to short Gore Core

latency cache accesses
L1 Cache L1 Cache

- Sophisticated control
:
- Branch prediction for reduced branch latency

- Data forwarding for reduced data latency

L3 Cache

CPU

Daniel Campora - dcampora@nvidia.com 13 < NVIDIA I



GPU Highlights

» Small caches

» To boost memory throughput

- Simple control
- Simplistic branch prediction

- No data forwarding

- Energy efficient ALUs
- Many

- Long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate
- Threading logic
GPU

 Thread state

Daniel Campora - dcampora@nvidia.com 14 < NVIDIA I



CPU vs GPU

Core Core

L1 Cache L1 Cache

L3 Cache

L2 Cache
DRAM
GPU

Daniel Campora - dcampora@nvidia.com 15 < NVIDIA I
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Demanding Applications Use Both in Tandem

- NPC interactions - Rendering

Water as a Component to Trigger "Unique Interactions”

» Physics simulation - Shaders

- Character animations. .. . - [ighting, reflections
- Path finding - Normal mapping

- Game logic - Level of detall

» Texture prefetching - Filtering

Buoyancy

From presentation [unes of the Kingdom: Evolving Physics and Sounds for
C P U The Legend of Zelda: Tears of the Kingdom GP U

Daniel Campora - dcampora@nvidia.com 16 < NVIDIA I


https://gdcvault.com/play/1034667/Tunes-of-the-Kingdom-Evolving
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In Scientific Computing This Is Also the Case

- CPUs excel at sequential problems where latency matters.

- GPUs excel at parallel problems where throughput matters.

SN
:

72 =l
F7 A\ | 14
LA :
” ¢

| ‘ ¥
7.6 l YR

Image by freepik

Constructing a tower is faster on a sequential processor: Calculating an image filter is faster on a parallel processor:
each level requires the previous onel each pixel only requires the neighbouring ones!

Daniel Campora - dcampora@nvidia.com 17  <ANVIDIA I
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SIMD and SIMT

Modern CPUs are SIMD (single instruction multiple data)

A thread can mutate several pieces of data owned by the same thread.

GPUs are SIMT (single instruction multiple thread)

Multiple threads are executing, each with its own data.

Daniel Campora - dcampora@nvidia.com 19 NVIDIA



SIMD Example

- SIMD expands the set of instructions (ISA) with extensions:
- SSE, SSE2, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AVX512-F, ...

- These extensions provide instructions that can run over several data simultaneously.

void sum(__m128 a, __m128 b) A
thread return

“on_add_psa, b);

new instruction (SSE)

Daniel Campora - dcampora@nvidia.com 20 <A NVIDIA I



SIMT Example

- In SIMT, one uses the same set of instructions as for single threads.

- They are executed by a gang of threads (in CUDA terminology a warp, more details in Performant
programming for GPUS).
- Each thread has its own:

- Program Counter — Pointer indicating executing instruction.

- Registers

» The ISA Is extended with special instructions like barriers, atomics, etc.
Thread O g Thread 1 } Thread 2 § Thread 3

« Most code remains familiar.

void sum(float* a, float* b, int i) {
return a[i] + b[i];

}

Daniel Campora - dcampora@nvidia.com 21 < NVIDIA I



Array of
scalar threads

Many Scalar C++ Threads

C++

1393505685650685688

Scalar compiler

Scalar ISA
Thread virtualization

Vector pops

Daniel Cdmpora - dcampora@nvidia.com

CUDA exposes a scalar set of
instructions (ISA). Each thread will
run the same code.

This choice eases syntax for the
user.

The hardware manages the
complexity of many alive threads
(100k+ threads possible).

The performance hit of managing
this complexity is negligible.

22 <ANVIDIA I



Single Instruction Multiple Thread

» SIMT stems from Render Man, language developed by Pixar in the 80's.

- C-like language where one would write what each color channel should do.

- Program is run by a gang of 4 threads.

- Programmable pixel shaders became supported with GeForce 3 (2001).

- Pixel shaders calculate effects on a per-pixel basis: pixels are rendered, lit, shaded and colored.

- Shortly after, geometry shaders were introduced, which allow transtformations such as tessellations.

Vertex set

|

Tesselator:
Catmull-Clark

Pixel shader:
ormals and shading

Image from wikipedia

Daniel Campora - dcampora@nvidia.com 23 <A NVIDIA I



https://en.wikipedia.org/wiki/Tessellation_(computer_graphics)

General Purpose GPU

- Shaders were programmed at a low-level.

- A portable, higher level language for programming the GPU
was created: Cg (C for graphics; aka HLSL).

» Cg outputs DirectX or OpenGL, standard APIs for graphics.

- Other similar languages exist, such as GLSL.

[l | I~

: A screenshot from Far Cry, programmed in Cq.

[l | _ L

» Scientists started using GPUs through shader languages.

N - Adapting the use-cases to the available 4-way vector APIs.

: « GPU Gems 2 has some fun examples.

 Significant speedups were observed for a few applications.

Vector representation in shaders (GPU Gems 2)
Daniel Campora - dcampora@nvidia.com 24  <ANVIDIA I


https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms

- GPU architecture evolved to be more homogeneous.

- Compute Unified Device Architecture (CUDA) was
cppcon | 2017

Created Iﬂ 2006. | EEa——— ’E..BELLEV‘UE, NNNNNNNNNN
- It hid the complexity of shaders behind a SIMT language R — A 4
eXtenSIOn to C- thread of execution thread of execution  thread of execution thread of execution
O Shortly after, ma ny pa pers Were DUb“Shed reportlng thread std:: / main thread  Volta thread / pool GPU / SIMD lane

"OLIVIER GIROUX.

Volta Other =
o GPU .
5120-163840 Designing (New)

- -
speedups in many fields.

Clarification in C++17

C++ Hardware

» Successive iterations of GPUs are now created as

| — — - = — -

hardware optimized for C++. - -

- Impacting future versions of the C++ standard as well.

From talk Designing (New) C++ Hardware

- CUDA keeps up with the latest C++ standard support
(C++20 at the moment).

Daniel Campora - dcampora@nvidia.com 25 <A NVIDIA I
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Artificial Intelligence

- Today, GPUs are widely used as processors for Al.

- Both learning and inference.

- All major Al-oriented libraries support GPUs.

- GPUs are the preferred platform to run Al:

- Hardware support specific to speedup matrix-matrix TENSOR CORE
multiplication and addition.

4™ GENERATION

- Software support.

- CUDA provides access to these low-level optimizations.

» This trend is likely to continue and drive hardware design

n the future. Tensor Cores take up about a third

of arithmetic space on the die.

Daniel Campora - dcampora@nvidia.com 26 < NVIDIA I



So, What Are GPUs Useful For?

- Parallelizable problems.

IntDe?\?ve Medical Financial Scientific 200
: Imagin Analysis Simulation
Analytics 49ing y
: . Electronic L. . o .
Biomedical Design Digital Audio Digital Video g
Informatics : ' '
Automation Processing Processing
Engineering Statistical Numerical
Simulation Modeling Methods

PEZY-S5C

100 ..
l'll NVIDIA
Computer Ray Tracing Interactive =
Vision Rendering Physics = e T T

Systems

ATI

- Most data centers have GPUs today.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

- Making a successful GPU application Accelerators in the top500
requires a good understanding of the
hardware, software, and a lot of hard work!

Daniel Campora - dcampora@nvidia.com 27 < NVIDIA I
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The LHCb U1 Upgrade

Upgraded calo front-
end electronics,

Software-only trigger

New tracking
stations

Magnet SciFi RICH?2
—__Tracker

remove SPD/PS

\C B l | Upgraded
>k e muon
A : ; frOnt-end
Al I | electronics,
LLocator “ S ’\: ‘ |
= remove M1

CH PMTs +
upgraded electronics

The LHCb detector at CERN: The U1 upgrade:

- Single-arm forward spectrometer for high-precision

flavour physics

- Major upgrade in all sub-detectors to handle increased

- High precision tracking and vertexing. rates.

- Complemented with excellent Particle Identification. - Software-only trigger!

Daniel Cdmpora - dcampora@nvidia.com

- Instantaneous luminosity increased by 5x.

29 <ANVIDIA I



Someone Had to Pull the (Hardware) Trigger

LHCb Run 2 Trigger Diagram LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate
(full rate event building)

40 MHz bunch crossing rate

LO Hardware Trigger : 1 MHz 'Software High Level Trigger
readout, high Etr/Pr sighatures

Full event reconstruction, inclusive and
exclusive kinematic/geometric selections

N h b . Buffer events to disk, perform online
SOSSWErY TRpn Lewes Trigoer detector calibration and alignment

Partial event reconstruction, select
displaced tracks/vertices and dimuons

L

Buffer events to disk, perform online
detector calibration and alignment

w

Full offline-like event selection, mixture
of inclusive and exclusive triggers

Add offline precision particle identification
and track quality information to selections

Output full event information for inclusive
triggers, trigger candidates and related
primary vertices for exclusive triggers

12.5 kHz (0.6 GB/s) to storage

10 GB/s to storage

Daniel Campora - dcampora@nvidia.com 30 <NVIDIA I



The LHCb Data-flow

ooooooo
...................
. .
..........
. .
.......
" ol
* .
.

REAL-TIME  CEEEECETTNNN

ALIGNMENT &
FULL DETECTOR
RECONSTRUCTION 1 26% PLX
& SELECTIONS To’ J FULL YA
(CPU HLT2) j EVENTS §
GB/s

.
o
*
.
ot
.

CALIBRATION

5 TB/s &
30 MHz non-empty pp

S
PARTIAL DETECTOR
FULL TB/s
DETECTOR . RECONSTRUCTION

& SELECTIONS
(GPU HLT1)

READOUT

All numbers related to the dataflow are

taken from the LHCb 68% ANALYSIS
. : ommm od PRODUCTIONS &
r Tri r nline TDR g\t/]::% 25 USER YSIS
Upgrade Computing Model TDR ;

- Detector data recieved by ~500 FPGAs and built into events in the event building (EB) farm
servers.

- 2-stage software trigger: HLT1 and HLT?2.
- Real-time alignment and calibration.

- After HLT2: 10 GB/s of data for offline processing.

Daniel Campora - dcampora@nvidia.com 31  <NVIDIA I



The LHCDb First Level Trigger

PARTIAL DETECTOR
RECONSTRUCTION

& SELECTIONS
(GPU HLT1)

The goal of HLT1:
Be able to intake the entirety of the LHCb raw data (5 TB/s) at 30 MHz.
Perform partial event reconstruction and coarse selection of broad LHCb physics cases.
Reduce the input rate by a factor of 30 (~1 MHz).

Store selected events in intermediate buffer for real-time alignment and calibration.

Daniel Campora - dcampora@nvidia.com 32 NVIDIA



[Massive] Parallelism in HLT1

In LHCb alone, 32 Tbits per second are being processed in Run 3.
These data are structured as follows:

30 million independent collision events per second, 100 kB each.
For each event:

Four tracking problems - 100s of tracks per event each.

Vertex finders — 10s of vertices per event.

Kalman filter - 100s of instances per event.

Looks like a problem where massively parallel architectures can make a difference!

Daniel Campora - dcampora@nvidia.com 33 NVIDIA
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Into This...
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At a High Rate!
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Allen

The Allen framework is a modular, scalable and flexible
framework for physics reconstruction on accelerators.

QPU ng o Lol T@&ggm

Features:

- Supports CPU, CUDA.

» Uses C++17.

- Multi-threaded, pipelined, configurable framework.
- Multi-event scheduler, event batches support.

- Custom memory manager, no dynamic allocations,
flexible datatypes.

Technical Design Report
’ BUIIt—In Valldathﬂ. Generatlon Of graphs Wlth ROOT http://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
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Parallelization

We parallelize at three levels:

Sequences

SciFi decoding

l

SciFi tracking

Parameterised

Kalman Filter

Events

Sequences Events Intra-Algorithms

Threads

Intra-algorithms

Vectorisation

Streams Blocks

Threads

Daniel Cdmpora - dcampora@nvidia.com
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Track Reconstruction at LHCb HLT1

Velo tracking: Journal of Computational Science, vol. 54, 2021

VELO+UT Track
» 52 silicon pixel modules with o, , ~ 5 um Extrapolations

e Parallel local tracking algorithm: Search by Triplet T =
* Tracks fitted with simple Kalman filter assuming straight line model | ”HHHHHH” I‘ 1]]
VELO

Velo-UT tracking: IEEE Access, vol. 7, pp. 91612-91626, 2019
e 4 layers of silicon strips

e Velo tracks extrapolated to UT taking into account fringe B-field
» Parallelized tracklet finding inside search windows requiring at least 3 hits

L. UT

Comput Softw Big Sci 4, 7 (2020)

* 3 stations with 4 layers of Scintillating Fibres

i | ‘ I * Velo-UT tracks extrapolated using parametrization
....... {_ R * Parallelized Forward algorithm to reconstruct long
- - tracks:
‘ ‘ * Search windows from on Velo-UT momentum
J 0 1 2 o3 i 5 6 7 s 5 10 1 estimate
ST T * Form triplets and extend to remaining layers

Max Combinatoric : 32 X 32 X 32

Daniel Cdmpora - dcampora@nvidia.com
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With State-of-the-Art Efficiencies

 Run 2 efficiency maintained at x5 instantaneous luminosity
 Excellent track reconstruction efficiency (> 99% for VELO, 95% for high-p forward tracks)

« Good momentum resolution and fake rejection

5 1 I 3‘ 1 ] — T
- ] - o ®eoat® .. o @ ".’ .5
E) - LHCb simulation - E) - .oo"’“' e e +. f% ¢
2 i i S _ o LHCb simulation -
i 0.8~ Velo tracks B - 0.8~ g Forward tracks |
=T ; B A :
0.6 — e— Allen, not electron — 0.6 — . e— Allen, not electron B
- n - - L n —
04 - p distribution, not electron 04 - p distribution, not electron - Ny
- Long from B, 2<n<5 i i Long from B, 2 <n <5 i Cl)‘
02} . 02} — T
i i | ® i Q)
0 N . 1 . 1 . \ 1 | 1 l 1 0 e NN NN AR R ] -
0 20000 40000 60000 0 20000 40000 60000 %
p [MeV] p [MeV] s
g 1.2_ L L L L L L B %()35% L l. | l. l_: %
P i LHCDb simulation _ : 03 - LHCb simulation )
s 1 — D ] !
=) i o orol T 8 - Forward tracks - =
AS = - . ry
: : 02} :
0.6 B ] u ]
- —e— Allen . 0.15F =
04— p distribution Allen ] I -
02 . - -
- . 005 ..
Ot—— e o~y . . . oo
0 10 20 30 40 30 1000 2000 3000 4000
T
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Not Always a Path of Roses

Not everything was a match from the beginning, we worked through issues.

Eg. event size in LHCb is too small —only 100 kB. Processing one event at a time is very
inefficient! GPUs need more work to be efficient.

Pipelining event processing wasn't good enough: we would need to produce events at a pace that keeps
up with the GPU.

Demonstrators are fundamental!
To convince your colleagues.
To convince yourselves.

To prove your hypotheses.

Allen was designed to process tens of thousands of

events in flight. R 6\;’»\9,'9‘

D O O
% O O
’19 NSIGAN
Number of events
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Not Always a Path of Roses (2)

Events don't always follow the same execution path. Processing tens of thousands of events

surely leads to a lot of branching!
“‘Select events” runs O(100) algorithms, the

outcome of each is not known beforehand.

Can one afford to cover all cases for all events
sequentially? No.

Knowing your hardware is paramount.

To design efficient and scalable solutions.

Allen produces a single algorithm execution
list and runs it with a mask mechanism of

active events (aka Multi-event scheduling).

[ Rawata |

Global
Event Cut

Velo decoding
& clustering

|

Velo tracking

|

Straight line fit

|

Find primary
vertices
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Muon decoding
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Muon ID

|

SciFi decoding

Calo decoding
& clustering

|

|

SciFi tracking

Electron ID

|

|

Parameterised
Kalman Filter

Brem recovery

Find
secondary
vertices

Select events
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Performance

- Making it faster has a big impact: cost efficient, energy efficient, wider physics programme.

30 MHz goal can be achieved with O(200) GPUs (maximum the Event Builder server can host is 500)

 Throughput scales well with theoretical TFLOPS of GPU card

 Additional functionalities are being explored
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Allen throughput [kHZ]
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50 -
LHCb% 2021
Allenvir7 5 e GeForce GTX 1060 6GB
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The LHCb Data Acquisition System (DAQ)

FULL PARTIAL DETECTOR
DETECTOR RECONSTRUCTION
READOUT & SELECTIONS
(GPU HLT1)

The success of the GPU HLT1 in LHCb is partially due to making a converged architecture.

Combine detector readout, event building and event filtering under the same server farm.
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Event Building

- Each collision of particle bunches (bunch-crossing) produces an event.

ool
- but events are tiny, sending them one by one wouldn’t be efficient for the network.

- S0 they are bundled: _

- But the subdetectors are far apart, so each event is divided in pieces.

- The bundling looks more like: . . . .
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Data Acquisition

» Readout units perform the readout of the detector by
looking at these fragments.

- Builder units put together the fragments of each event.

» Filter units reconstruct the events and select the most
iInteresting ones, discarding the others.

- This is typically done in separate networks and separate
server farms!
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Converged Architecture

» In LHCb we decided to do it in one server farm (with HLT 1)

RU#0O RU# 1 RU#2 RU#3
BU#O BU#1 BU#2 BU#3
FUHO FU# 1 FU#Z2 FU#3
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Converged Architecture (2)

» In LHCb we decided to do it in one server farm (with HLT1)!

- [t looks pretty awesome.
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Converged Architecture (3)

» In LHCb we decided to do it in one server farm (with HLT1)!

- [t looks pretty awesome.

» This put a lot of pressure on CPU memory throughput, CPU
utilisation, network throughput. We tested it all...

Fully built Events are leaving
he Node toward the Farm
Farm Ne k

Interfac Empty Memory 2

> . Allen throughput Memory bandwidth per socket
e 10 y p
o ;ﬁ{:;/ i =~ /‘/.
P Root C | \@5{ (EO troll 652 K 60.0 GBs
oot Complex Memory Contro
Socket 1 / Socket 2
65.1 K 50.0 GBs
Events that are being N 650 K
. : . I £ 40.0 GBs
Opportunibzioxtcine built on this machine  / = =
(pre) processing of Full CPU 1 QO e CPU 2 2 043K =
. A , S c 30.0 GBs
Events here v 3 = _ 2
N V| O 64.8K
= 20.0 GBs
/ 64.7 K
| 10.0 GBs
emory Contfolldl CleRoot Compl R S 16:30 17:00 17:30 18:00 18:30 19:00
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7 e we SKTO == SKT1
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Memory 1 Network Interface i A8l

, , B Data Arriving from Detector
Events being built on other machine’go out

Events being built on this machine come in
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Converged Architecture (4)

In LHCb we decided to do it in one server farm (with HLT1)!
It looks pretty awesome.

This put a lot of pressure on CPU memory throughput, CPU
utilisation, network throughput. We tested it all...

and it led to huge savings!

Cost, but also easier to maintain (less parts)

Consider high-risk high-gain scenarios in your application.
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HEP Experiments: ALICE

- ALICE was the first LHC experiment to embrace GPUSs.

- Events in ALICE were originally ~40 MBs, dominated by a single tracking problem (the TPC).

- Speed-up normalized to single
CPU core.

Red curve: algorithm speed-up.

Other curves: GPU v.s. CPU
speed-up corrected for
CPU resources.

-  How many cores does
the GPU replace.

- Significant gain with newer
GPU (blue v.s. green).

- GPU with Run 3 algorithm
replaces > 800 CPU cores

Running Run 2 algorithm.
(blue * red).

Speedup (normalized to a single core)

- We see ~30% speedup with new
GPU generation

(RTX 2080 v.s. GTX 1080)
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HEP Experiments: ALICE (2)

- Nowadays, most of the reconstruction sequence runs on GPU.

;; " Reconstruction steps on GPU (Barrel Tracking)

. Status of reconstruction steps on GPU:

«  All TPC steps during synchronous reconstruction are required on the GPU.

«  Synchronous ITS tracking and TPC dE/dx in good shape, thus considered baseline on the GPU.
« Remaining steps in tracking chain part of optimistic scenario, being ported step by step to GPU.

—  Porting order follows topology of chain, to avoid unnecessary data transfer for ported steps — current blocker is TPC ITS matching.

TPC Cluster
removal

part of baseline part of optimistic Identification

scenario scenario TPC Track Model TPC Entropy
Compression Compression

7/ TPC E
?’7 e TPC Track TPC Track TPC TRD '—1‘ Glglttial
AP Finding Merging Track Fit Tracking TOF
: Matching V(‘
ITS ITS Track * ITS TPCITS F '
ITS VO TPC

Vertexing Finding g TrackFit Matching

TRD tracking / TPC calibration: see poster of Ole Schmidt
Space point calibration of the ALICE TPC with track residuals

Afterburner Finding Calibration

GPU API| Framework m Material Lookup

'_[r i, AY)
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HEP Experiments: CMS

- CMS offloads part of computation to scientific low-profile cards on each node.

. The HLT menu has total of ~4400 modules G

« GPU Offloaded parts

— Pixel detector reconstruction: from RAW data
unpacking up to tracks and vertices (11
modules)

— ECAL local reconstruction 4 modules)

— HCAL local reconstruction (3 modules)

« O/ unique kernels, ranging from 2 usto /7 ms in
these events

391.8 ms

9
« Memory pool to amortize cost of raw memory
allocations and provide asynchronous allocation interface in CUDA stream order

e All offloaded modules have CPU versions that are used for reference measurement

From talk CMS by A. Di Florio
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https://indico.cern.ch/event/1327907/contributions/5646881/attachments/2757947/4802244/CMS_Adriano_FrameworkLHCb_22Nov23.pdf

Radio Astronomy

- Radio astronomy also has streaming problems
that are solved at a high rate.

- Correlation - imaging modes that result in sky- o nininin
- Beamforming - Time series analysis searching CPU
for patterns indicative of astronomical events -
(eg. pulsars, bursts). GbE

Output
Streams

“Event” boundaries are not known in advance.

“Event” rates are also unknown! From paper A GPU Spatial Processing for CHIME
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https://arxiv.org/pdf/2005.09481.pdf

Al

- The evolution of Al has been fast-paced and-very recent. ChatGPT is released. Many LLM models follow

AlphaStar beats best humans (Starcraft 2)

AlphaGo wins against Lee Sedol (go, RL)

AlexNet (CNN) improves image classification significantly

Perceptrons cannot address
non-linearly separable problems (Minsky) Deep Blue defeats Gary Kasparov (chess) GPT-3 is released

f 1950 * 1960

Neuron (McCulloch and Pitts)

Perceptron (Rosenblatt et al.)

inputs weights

weighted sum activation function

O

b

.
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Al Model Sizes

Parameters in notable artificial intelligence systems

Parameters are variables in an Al system whose values are adjusted during training to establish how input data
gets transformed into the desired output; for example, the connection weights in an artificial neural network.

® o .. Taskdomain

1 trillion GShard (dense) ¢ Switch ,
vess M Biology
100 billion DLRM-202Q NLLE‘ & B Games
B Image generation
T5'1-1|3
10 billion MgE pT?gé# B Language
- Unsupervised High-level Feature Learner n & e B Multimodal
1 billion o ;W0rd2VeC‘('afge) " M Other
(Vp)
O - a - B Speech
% 100 million gupportvectopMachines  RBM Image Classifie B Vision
5 3 NPLM eV NORBIGRISTY (2018)s
g 10 million BV DImensmnaht?’Reductlonrtg o .
© Neocognitron ) ° o «
= 1 million® & ¢ ° e ban, ..
'g _ ‘BiLSTM for Speeche ¢ SPIDER?
5 100,000 LeNet-5 Drl'iM ? .
= Netlalk (dictionary) ® Dortain Adaptation  >Wift
- °
10,000 .K?)honen network zALVINN gystem 11
1,000 g
DSEFACE LSTM with forget gates
100 . °
10 .Innervator
Apr 1, 1980 Sep 4, 1992 Aug 18, 2003 Jul 31,2014
Publication date

Data source: Epoch (2024) OurWorldInData.org/artificial-intelligence | CC BY

Note: Parameters are estimated based on published results in the Al literature and come with some uncertainty. The authors expect the
estimates to be correct within a factor of 10.
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Scaling Up Unlocks Emergent Capabilities

LLMs exhibit emergent capabilities that are only available with a large enough model size.

—eo— LaMDA

(A) Mod. arithmetic
20

S

30

Accuracy (%)
o

—
-

-

e -

1018 1020 1022 1044

(E) TruthfulQA

Accuracy (%)
o o
oo O O

10

1020 1022 1024

—a— GPT-3 —4— Gopher

(B) IPA transliterate
o0

1018 1020 1022 1024

(F) Grounded mappings

Accuracy (%)

70
60

= N W s
O O O O O

1020 1022 1024

—a— Chinchilla

(C) Word unscramble
50

bo e —
- - -

Exact match (%)
=

1018 1020 1022 1044

-
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Emergent Abilities of Large Language Models (Wei et al., 2022)

(a) Modified arithmetic

In the following lines, the symbol ->
represents a simple mathematical
operation.

160 + 200 -> 301
1T+ 1 -> 3
2 + 2 -> §

(c) Word unscrambling

Input: The word hte is a scrambled
version of the English word
Output: the

Input: The word sohpto is a scrambled
version of the English word
Output: photos
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An example of Al Today: Weather Prediction

"Digital Twins” replicate a system to make simulations.
Al-based predictions are comparable to analytical simulations.

Performance is 5 orders of magnitude faster than traditional methods.

Digital Twin

Omniverse
———>

(Vi o~y &

From
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https://www.nvidia.com/en-us/high-performance-computing/earth-2/
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Summary

Learn to use your processor efficiently.
Use GPUs in jobs that are parallelizable.
GPUs are Single Instruction Multiple Thread.

You will learn a scalar-like language to program them.

The LHCb HLT 1 uses GPUs efficiently, getting more from the detector in near real-time.

Boundary conditions are very relevant.

GPUs are not limited to HEP, many HPC applications exist.

Al is a change of paradigm that is impacting many fields.
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Resources Used In the Talk

Talk Designing (New) C++ Hardware by O. Giroux.
Course by Song Han.
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