
1

Scientific Computing on
Heterogeneous Architectures
Daniel Cámpora | Senior AI Devtech Engineer, NVIDIA

2Daniel Cámpora – dcampora@nvidia.com

$ whoami

• CERN (2010 – 2019)

• Summer Student, Indico

• Technical Student, ATLAS

• Fellow, LHCb

• Doctoral Student, LHCb

• NIKHEF (2020)

• Postdoc, LHCb

• Maastricht University (2021 – 2023)

• Assistant Professor (LHCb)

• NVIDIA (2023+)

• Senior Devtech Engineer

• Particle physics reconstruction

• Online

• Reconstruction (decoding, tracking, etc.)

• Framework

• AI inference

• TensorRT-LLM

3Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Introduction

• CPU vs GPU

• Graphics, scientific computing and AI

• GPUs at the LHCb reconstruction sequence

• Other embarrassingly parallel applications in HPC

• Summary

4Daniel Cámpora – dcampora@nvidia.com

GPUs: Parallel Processors

• GPUs are historically processors specialized to perform graphic-oriented workloads.

5Daniel Cámpora – dcampora@nvidia.com

Dedicated GPU Card

6Daniel Cámpora – dcampora@nvidia.com

Dedicated GPU Card – Detail

High-speed network to other GPUs
(NVLINK)

Memory modules

Processor

NVSwitch

PCI express connector

7Daniel Cámpora – dcampora@nvidia.com

Making Toast Fast
https://www.youtube.com/watch?v=gVPK81rI390

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

1 2 1 2 3 3

3 3 1 2 1 2

done in 4 minutes

https://www.youtube.com/watch?v=gVPK81rI390

8Daniel Cámpora – dcampora@nvidia.com

Making Toast Fast
https://www.youtube.com/watch?v=gVPK81rI390

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

1 2 1 3

3 2

done in 3 minutes

2 3

1

https://www.youtube.com/watch?v=gVPK81rI390

9Daniel Cámpora – dcampora@nvidia.com

CUDA Cores
How many pans does it have?

• A GPU is made up of Streaming Multiprocessors, 100s of them.

• Arithmetic takes up most of the processor space.

• Applications may use one or more SMs simultaneously.

• GPU applications have thousands of threads in flight.

10Daniel Cámpora – dcampora@nvidia.com

Simplified Execution Model
How to operate the pans?

• N Kernels are executed in parallel by N different CUDA
threads.

• Threads are arranged a one-dimensional, two-dimensional,
or three-dimensional block of threads, called a thread block.
A set of thread blocks are launched to execute a function.

• It is usually better the overcommit w.r.t. the number of
threads to facilitate instruction latency (“prepare toast while
other getting fried”).

• When a multiprocessor is given one or more thread blocks to
execute, it partitions them into warps and each warp gets
scheduled by a warp scheduler for execution.

• It is important to avoid warp divergence (“frying toasts with
different cooking times in the same pan”) whenever
possible!

• A set of thread blocks running concurrently is called a wave.
The more waves, the better to minimize tail effects.

11Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Introduction

• CPU vs GPU

• Graphics, scientific computing and AI

• GPUs at the LHCb reconstruction sequence

• Other embarrassingly parallel applications in HPC

• Summary

12Daniel Cámpora – dcampora@nvidia.com

CPUs and GPUs are Designed Very Differently

• CPU – Latency oriented cores.

• Finish quickly a series of instructions.

• GPU – Throughput oriented cores.

• Perform as many instructions per second as possible.

13Daniel Cámpora – dcampora@nvidia.com

CPU Highlights

• Powerful ALU

• Reduced operation latency

• Large caches

• Convert long latency memory accesses to short
latency cache accesses

• Sophisticated control

• Branch prediction for reduced branch latency

• Data forwarding for reduced data latency

14Daniel Cámpora – dcampora@nvidia.com

GPU Highlights

• Small caches

• To boost memory throughput

• Simple control

• Simplistic branch prediction

• No data forwarding

• Energy efficient ALUs

• Many

• Long latency but heavily pipelined for high throughput

• Require massive number of threads to tolerate
latencies

• Threading logic

• Thread state

15Daniel Cámpora – dcampora@nvidia.com

CPU vs GPU

16Daniel Cámpora – dcampora@nvidia.com

Demanding Applications Use Both in Tandem

• Rendering

• Shaders

• Lighting, reflections

• Normal mapping

• Level of detail

• Filtering

GPU

• NPC interactions

• Physics simulation

• Character animations

• Path finding

• Game logic

• Texture prefetching

CPU
From presentation Tunes of the Kingdom: Evolving Physics and Sounds for

The Legend of Zelda: Tears of the Kingdom

https://gdcvault.com/play/1034667/Tunes-of-the-Kingdom-Evolving
https://gdcvault.com/play/1034667/Tunes-of-the-Kingdom-Evolving

17Daniel Cámpora – dcampora@nvidia.com

In Scientific Computing This Is Also the Case

• CPUs excel at sequential problems where latency matters.

• GPUs excel at parallel problems where throughput matters.

Constructing a tower is faster on a sequential processor:
each level requires the previous one!

Calculating an image filter is faster on a parallel processor:
each pixel only requires the neighbouring ones!

Image by freepik

https://www.freepik.com/free-ai-image/3d-rendering-forest-frogs_96363967.htm

18Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Introduction

• CPU vs GPU

• Graphics, scientific computing and AI

• GPUs at the LHCb reconstruction sequence

• Other embarrassingly parallel applications in HPC

• Summary

19Daniel Cámpora – dcampora@nvidia.com

SIMD and SIMT

• Modern CPUs are SIMD (single instruction multiple data)

• A thread can mutate several pieces of data owned by the same thread.

• GPUs are SIMT (single instruction multiple thread)

• Multiple threads are executing, each with its own data.

20Daniel Cámpora – dcampora@nvidia.com

SIMD Example

• SIMD expands the set of instructions (ISA) with extensions:

• SSE, SSE2, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AVX512-F, ...

• These extensions provide instructions that can run over several data simultaneously.

void sum(__m128 a, __m128 b) {
 return _mm_add_ps(a, b);
}

thread
a0 a1 a2 a3

b0 b1 b2 b3

+

new instruction (SSE)

21Daniel Cámpora – dcampora@nvidia.com

SIMT Example

• In SIMT, one uses the same set of instructions as for single threads.

• They are executed by a gang of threads (in CUDA terminology a warp, more details in Performant
programming for GPUs).

• Each thread has its own:

• Program Counter – Pointer indicating executing instruction.

• Registers

• The ISA is extended with special instructions like barriers, atomics, etc.

• Most code remains familiar.

void sum(float* a, float* b, int i) {
 return a[i] + b[i];
}

Thread 0

a0

b0

+

Thread 1

a1

b1

+

Thread 2

a2

b2

+

Thread 3

a3

b3

+

22Daniel Cámpora – dcampora@nvidia.com

Many Scalar C++ Threads

C++

Thread virtualization

Scalar ISA

Scalar compiler

Vector µops

Array of
scalar threads

• CUDA exposes a scalar set of
instructions (ISA). Each thread will
run the same code.

• This choice eases syntax for the
user.

• The hardware manages the
complexity of many alive threads
(100k+ threads possible).

• The performance hit of managing
this complexity is negligible.

23Daniel Cámpora – dcampora@nvidia.com

Single Instruction Multiple Thread

• SIMT stems from Render Man, language developed by Pixar in the 80’s.

• C-like language where one would write what each color channel should do.

• Program is run by a gang of 4 threads.

• Programmable pixel shaders became supported with GeForce 3 (2001).

• Pixel shaders calculate effects on a per-pixel basis: pixels are rendered, lit, shaded and colored.

• Shortly after, geometry shaders were introduced, which allow transformations such as tessellations.

Image from wikipedia

https://en.wikipedia.org/wiki/Tessellation_(computer_graphics)

24Daniel Cámpora – dcampora@nvidia.com

General Purpose GPU

• Shaders were programmed at a low-level.

• A portable, higher level language for programming the GPU
was created: Cg (C for graphics; aka HLSL).

• Cg outputs DirectX or OpenGL, standard APIs for graphics.

• Other similar languages exist, such as GLSL.

A screenshot from Far Cry, programmed in Cg.

• Scientists started using GPUs through shader languages.

• Adapting the use-cases to the available 4-way vector APIs.

• GPU Gems 2 has some fun examples.

• Significant speedups were observed for a few applications.

Vector representation in shaders (GPU Gems 2)

https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms

25Daniel Cámpora – dcampora@nvidia.com

CUDA

• GPU architecture evolved to be more homogeneous.

• Compute Unified Device Architecture (CUDA) was
created in 2006.

• It hid the complexity of shaders behind a SIMT language
extension to C.

• Shortly after, many papers were published reporting
speedups in many fields.

• Successive iterations of GPUs are now created as
hardware optimized for C++.

• Impacting future versions of the C++ standard as well.

• CUDA keeps up with the latest C++ standard support
(C++20 at the moment).

From talk Designing (New) C++ Hardware

https://www.youtube.com/watch?v=86seb-iZCnI

26Daniel Cámpora – dcampora@nvidia.com

Artificial Intelligence

• Today, GPUs are widely used as processors for AI.

• Both learning and inference.

• All major AI-oriented libraries support GPUs.

• GPUs are the preferred platform to run AI:

• Hardware support specific to speedup matrix-matrix
multiplication and addition.

• Software support.

• CUDA provides access to these low-level optimizations.

• This trend is likely to continue and drive hardware design
in the future. Tensor Cores take up about a third

of arithmetic space on the die.

27Daniel Cámpora – dcampora@nvidia.com

So, What Are GPUs Useful For?

Financial
Analysis

Scientific
Simulation

Engineering
Simulation

Data
Intensive
Analytics

Medical
Imaging

Digital Audio
Processing

Computer
Vision

Digital Video
Processing

Biomedical
Informatics

Electronic
Design

Automation

Statistical
Modeling

Ray Tracing
Rendering

Interactive
Physics

Numerical
Methods

• Parallelizable problems.

• Most data centers have GPUs today.

• Making a successful GPU application
requires a good understanding of the
hardware, software, and a lot of hard work!

Accelerators in the top500

28Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Introduction

• CPU vs GPU

• Graphics, scientific computing and AI

• GPUs at the LHCb reconstruction sequence

• Other embarrassingly parallel applications in HPC

• Summary

29Daniel Cámpora – dcampora@nvidia.com

The LHCb U1 Upgrade

The LHCb detector at CERN:

• Single-arm forward spectrometer for high-precision
flavour physics

• High precision tracking and vertexing.

• Complemented with excellent Particle Identification.

The U1 upgrade:

• Instantaneous luminosity increased by 5x.

• Major upgrade in all sub-detectors to handle increased
rates.

• Software-only trigger!

30Daniel Cámpora – dcampora@nvidia.com

Someone Had to Pull the (Hardware) Trigger

31Daniel Cámpora – dcampora@nvidia.com

The LHCb Data-flow

• Detector data recieved by ~500 FPGAs and built into events in the event building (EB) farm
servers.

• 2-stage software trigger: HLT1 and HLT2.

• Real-time alignment and calibration.

• After HLT2: 10 GB/s of data for offline processing.

32Daniel Cámpora – dcampora@nvidia.com

The LHCb First Level Trigger

The goal of HLT1:

• Be able to intake the entirety of the LHCb raw data (5 TB/s) at 30 MHz.

• Perform partial event reconstruction and coarse selection of broad LHCb physics cases.

• Reduce the input rate by a factor of 30 (~1 MHz).

• Store selected events in intermediate buffer for real-time alignment and calibration.

33Daniel Cámpora – dcampora@nvidia.com

[Massive] Parallelism in HLT1

In LHCb alone, 32 Tbits per second are being processed in Run 3.

These data are structured as follows:

• 30 million independent collision events per second, 100 kB each.

For each event:

• Four tracking problems – 100s of tracks per event each.

• Vertex finders – 10s of vertices per event.

• Kalman filter – 100s of instances per event.

Looks like a problem where massively parallel architectures can make a difference!

34Daniel Cámpora – dcampora@nvidia.com

Going From This...

35Daniel Cámpora – dcampora@nvidia.com

Into This...

36Daniel Cámpora – dcampora@nvidia.com

At a High Rate!

30,000,000 per

second

37Daniel Cámpora – dcampora@nvidia.com

Allen

The Allen framework is a modular, scalable and flexible
framework for physics reconstruction on accelerators.

Features:

• Supports CPU, CUDA.

• Uses C++17.

• Multi-threaded, pipelined, configurable framework.

• Multi-event scheduler, event batches support.

• Custom memory manager, no dynamic allocations,
flexible datatypes.

• Built-in validation. Generation of graphs with ROOT. http://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf

http://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf

38Daniel Cámpora – dcampora@nvidia.com

Parallelization

We parallelize at three levels:

Sequences Events Intra-algorithms

Sequences Events Intra-Algorithms

CPU Threads Vectorisation

GPU Streams Blocks Threads

39Daniel Cámpora – dcampora@nvidia.com

Track Reconstruction at LHCb HLT1

40Daniel Cámpora – dcampora@nvidia.com

With State-of-the-Art Efficiencies

41Daniel Cámpora – dcampora@nvidia.com

Not Always a Path of Roses
Are GPUs a match?

• Not everything was a match from the beginning, we worked through issues.

• Eg. event size in LHCb is too small – only 100 kB. Processing one event at a time is very
inefficient! GPUs need more work to be efficient.

• Pipelining event processing wasn’t good enough: we would need to produce events at a pace that keeps
up with the GPU.

• Demonstrators are fundamental!

• To convince your colleagues.

• To convince yourselves.

• To prove your hypotheses.

• Allen was designed to process tens of thousands of
events in flight.

42Daniel Cámpora – dcampora@nvidia.com

Not Always a Path of Roses (2)
Are GPUs a match?

• Events don’t always follow the same execution path. Processing tens of thousands of events
surely leads to a lot of branching!

• “Select events” runs O(100) algorithms, the
outcome of each is not known beforehand.

• Can one afford to cover all cases for all events
sequentially? No.

• Knowing your hardware is paramount.

• To design efficient and scalable solutions.

• Allen produces a single algorithm execution
list and runs it with a mask mechanism of
active events (aka Multi-event scheduling).

43Daniel Cámpora – dcampora@nvidia.com

Performance

• Making it faster has a big impact: cost efficient, energy efficient, wider physics programme.

44Daniel Cámpora – dcampora@nvidia.com

The LHCb Data Acquisition System (DAQ)

• The success of the GPU HLT1 in LHCb is partially due to making a converged architecture.

• Combine detector readout, event building and event filtering under the same server farm.

45Daniel Cámpora – dcampora@nvidia.com

Event Building

• Each collision of particle bunches (bunch-crossing) produces an event.

• Events:

• but events are tiny, sending them one by one wouldn’t be efficient for the network.

• So they are bundled:

• But the subdetectors are far apart, so each event is divided in pieces.

• The bundling looks more like:

46Daniel Cámpora – dcampora@nvidia.com

Data Acquisition

• Readout units perform the readout of the detector by
looking at these fragments.

• Builder units put together the fragments of each event.

• Filter units reconstruct the events and select the most
interesting ones, discarding the others.

• This is typically done in separate networks and separate
server farms!

RU#1 RU#2RU#0 RU#3

BU#1 BU#2BU#0 BU#3

FU#1 FU#2FU#0 FU#3

No No Yes No

47Daniel Cámpora – dcampora@nvidia.com

Converged Architecture

• In LHCb we decided to do it in one server farm (with HLT1)!

RU#1
BU#1
FU#1

RU#2
BU#2
FU#2

RU#0
BU#0
FU#0

RU#3
BU#3
FU#3

48Daniel Cámpora – dcampora@nvidia.com

Converged Architecture (2)

• In LHCb we decided to do it in one server farm (with HLT1)!

• It looks pretty awesome.

RU#1
BU#1
FU#1

RU#2
BU#2
FU#2

RU#0
BU#0
FU#0

RU#3
BU#3
FU#3

GPUs (FU)
FPGAs (RU)

CPUs (BU)

Network
cards

49Daniel Cámpora – dcampora@nvidia.com

Converged Architecture (3)

• In LHCb we decided to do it in one server farm (with HLT1)!

• It looks pretty awesome.

• This put a lot of pressure on CPU memory throughput, CPU
utilisation, network throughput. We tested it all...

50Daniel Cámpora – dcampora@nvidia.com

Converged Architecture (4)

• In LHCb we decided to do it in one server farm (with HLT1)!

• It looks pretty awesome.

• This put a lot of pressure on CPU memory throughput, CPU
utilisation, network throughput. We tested it all...

• and it led to huge savings!

• Cost, but also easier to maintain (less parts)

Consider high-risk high-gain scenarios in your application.

51Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Introduction

• CPU vs GPU

• Graphics, scientific computing and AI

• GPUs at the LHCb reconstruction sequence

• Other embarrassingly parallel applications in HPC

• Summary

52Daniel Cámpora – dcampora@nvidia.com

HEP Experiments: ALICE

• ALICE was the first LHC experiment to embrace GPUs.

• Events in ALICE were originally ~40 MBs, dominated by a single tracking problem (the TPC).

53Daniel Cámpora – dcampora@nvidia.com

HEP Experiments: ALICE (2)

• Nowadays, most of the reconstruction sequence runs on GPU.

54Daniel Cámpora – dcampora@nvidia.com

HEP Experiments: CMS

• CMS offloads part of computation to scientific low-profile cards on each node.

From talk CMS by A. Di Florio

https://indico.cern.ch/event/1327907/contributions/5646881/attachments/2757947/4802244/CMS_Adriano_FrameworkLHCb_22Nov23.pdf

55Daniel Cámpora – dcampora@nvidia.com

Radio Astronomy

From paper A GPU Spatial Processing for CHIME

• Radio astronomy also has streaming problems
that are solved at a high rate.

• Correlation – imaging modes that result in sky-
images.

• Beamforming – Time series analysis searching
for patterns indicative of astronomical events
(eg. pulsars, bursts).

• “Event” boundaries are not known in advance.

• “Event” rates are also unknown!

https://arxiv.org/pdf/2005.09481.pdf

56Daniel Cámpora – dcampora@nvidia.com

AI

• The evolution of AI has been fast-paced and very recent.

57Daniel Cámpora – dcampora@nvidia.com

AI Model Sizes

58Daniel Cámpora – dcampora@nvidia.com

Scaling Up Unlocks Emergent Capabilities

• LLMs exhibit emergent capabilities that are only available with a large enough model size.

Emergent Abilities of Large Language Models (Wei et al., 2022)

(a) Modified arithmetic
In the following lines, the symbol ->
represents a simple mathematical
operation.
100 + 200 -> 301
1 + 1 -> 3
2 + 2 -> 5

(c) Word unscrambling

Input: The word hte is a scrambled
version of the English word
Output: the

Input: The word sohpto is a scrambled
version of the English word
Output: photos

59Daniel Cámpora – dcampora@nvidia.com

An example of AI Today: Weather Prediction

• “Digital Twins” replicate a system to make simulations.

• AI-based predictions are comparable to analytical simulations.

• Performance is 5 orders of magnitude faster than traditional methods.

From Earth-2

https://www.nvidia.com/en-us/high-performance-computing/earth-2/

60Daniel Cámpora – dcampora@nvidia.com

Table of Contents

• Introduction

• CPU vs GPU

• Graphics, scientific computing and AI

• GPUs at the LHCb reconstruction sequence

• Other embarrassingly parallel applications in HPC

• Summary

61Daniel Cámpora – dcampora@nvidia.com

Summary

• Learn to use your processor efficiently.

• Use GPUs in jobs that are parallelizable.

• GPUs are Single Instruction Multiple Thread.

• You will learn a scalar-like language to program them.

• The LHCb HLT1 uses GPUs efficiently, getting more from the detector in near real-time.

• Boundary conditions are very relevant.

• GPUs are not limited to HEP, many HPC applications exist.

• AI is a change of paradigm that is impacting many fields.

62Daniel Cámpora – dcampora@nvidia.com

Resources Used in the Talk

• Talk Designing (New) C++ Hardware by O. Giroux.

• Course TinyML and Efficient Deep Learning Computing by Song Han.

https://efficientml.ai/

63

