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$ whoami

• CERN (2010 – 2019)

• Summer Student, Indico

• Technical Student, ATLAS

• Fellow, LHCb

• Doctoral Student, LHCb

• NIKHEF (2020)

• Postdoc, LHCb

• Maastricht University (2021 – 2023)

• Assistant Professor (LHCb)

• NVIDIA (2023+)

• Senior Devtech Engineer

• Particle physics reconstruction

• Online

• Reconstruction (decoding, tracking, etc.)

• Framework

• AI inference

• TensorRT-LLM
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GPUs: Parallel Processors

• GPUs are historically processors specialized to perform graphic-oriented workloads.
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Dedicated GPU Card
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Dedicated GPU Card – Detail

High-speed network to other GPUs
(NVLINK)

Memory modules

Processor

NVSwitch

PCI express connector
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Making Toast Fast
https://www.youtube.com/watch?v=gVPK81rI390 

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

1 2 1 2 3 3

3 3 1 2 1 2

done in 4 minutes

https://www.youtube.com/watch?v=gVPK81rI390
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Making Toast Fast
https://www.youtube.com/watch?v=gVPK81rI390 

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

1 2 1 3

3 2

done in 3 minutes

2 3

1

https://www.youtube.com/watch?v=gVPK81rI390
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CUDA Cores
How many pans does it have?

• A GPU is made up of Streaming Multiprocessors, 100s of them.

• Arithmetic takes up most of the processor space.

• Applications may use one or more SMs simultaneously.

• GPU applications have thousands of threads in flight.
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Simplified Execution Model
How to operate the pans?

• N Kernels are executed in parallel by N different CUDA 
threads.

• Threads are arranged a one-dimensional, two-dimensional, 
or three-dimensional block of threads, called a thread block. 
A set of thread blocks are launched to execute a function.

• It is usually better the overcommit w.r.t. the number of 
threads to facilitate instruction latency (“prepare toast while 
other getting fried”).

• When a multiprocessor is given one or more thread blocks to 
execute, it partitions them into warps and each warp gets 
scheduled by a warp scheduler for execution.

• It is important to avoid warp divergence (“frying toasts with 
different cooking times in the same pan”) whenever 
possible!

• A set of thread blocks running concurrently is called a wave. 
The more waves, the better to minimize tail effects.
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CPUs and GPUs are Designed Very Differently

• CPU – Latency oriented cores.

• Finish quickly a series of instructions.

• GPU – Throughput oriented cores.

• Perform as many instructions per second as possible.
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CPU Highlights

• Powerful ALU

• Reduced operation latency

• Large caches

• Convert long latency memory accesses to short 
latency cache accesses

• Sophisticated control

• Branch prediction for reduced branch latency

• Data forwarding for reduced data latency
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GPU Highlights

• Small caches

• To boost memory throughput

• Simple control

• Simplistic branch prediction

• No data forwarding

• Energy efficient ALUs

• Many

• Long latency but heavily pipelined for high throughput

• Require massive number of threads to tolerate 
latencies

• Threading logic

• Thread state
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CPU vs GPU
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Demanding Applications Use Both in Tandem

• Rendering

• Shaders

• Lighting, reflections

• Normal mapping

• Level of detail

• Filtering

GPU

• NPC interactions

• Physics simulation

• Character animations

• Path finding

• Game logic

• Texture prefetching

CPU
From presentation Tunes of the Kingdom: Evolving Physics and Sounds for

The Legend of Zelda: Tears of the Kingdom

https://gdcvault.com/play/1034667/Tunes-of-the-Kingdom-Evolving
https://gdcvault.com/play/1034667/Tunes-of-the-Kingdom-Evolving
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In Scientific Computing This Is Also the Case

• CPUs excel at sequential problems where latency matters.

• GPUs excel at parallel problems where throughput matters.

Constructing a tower is faster on a sequential processor:
each level requires the previous one!

Calculating an image filter is faster on a parallel processor:
each pixel only requires the neighbouring ones!

Image by freepik

https://www.freepik.com/free-ai-image/3d-rendering-forest-frogs_96363967.htm
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SIMD and SIMT

• Modern CPUs are SIMD (single instruction multiple data)

• A thread can mutate several pieces of data owned by the same thread.

• GPUs are SIMT (single instruction multiple thread)

• Multiple threads are executing, each with its own data.
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SIMD Example

• SIMD expands the set of instructions (ISA) with extensions:

• SSE, SSE2, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AVX512-F, ...

• These extensions provide instructions that can run over several data simultaneously.

void sum(__m128 a, __m128 b) {
  return _mm_add_ps(a, b);
}

thread
a0 a1 a2 a3

b0 b1 b2 b3

+

new instruction (SSE)
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SIMT Example

• In SIMT, one uses the same set of instructions as for single threads.

• They are executed by a gang of threads (in CUDA terminology a warp, more details in Performant 
programming for GPUs).

• Each thread has its own:

• Program Counter – Pointer indicating executing instruction.

• Registers

• The ISA is extended with special instructions like barriers, atomics, etc.

• Most code remains familiar.

void sum(float* a, float* b, int i) {
  return a[i] + b[i];
}

Thread 0

a0

b0

+

Thread 1

a1

b1

+

Thread 2

a2

b2

+

Thread 3

a3

b3

+
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Many Scalar C++ Threads

C++

Thread virtualization

Scalar ISA

Scalar compiler

Vector µops

Array of
scalar threads

• CUDA exposes a scalar set of 
instructions (ISA). Each thread will 
run the same code.

• This choice eases syntax for the 
user.

• The hardware manages the 
complexity of many alive threads 
(100k+ threads possible).

• The performance hit of managing 
this complexity is negligible.
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Single Instruction Multiple Thread

• SIMT stems from Render Man, language developed by Pixar in the 80’s.

• C-like language where one would write what each color channel should do.

• Program is run by a gang of 4 threads.

• Programmable pixel shaders became supported with GeForce 3 (2001).

• Pixel shaders calculate effects on a per-pixel basis: pixels are rendered, lit, shaded and colored.

• Shortly after, geometry shaders were introduced, which allow transformations such as tessellations.

Image from wikipedia

https://en.wikipedia.org/wiki/Tessellation_(computer_graphics)
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General Purpose GPU

• Shaders were programmed at a low-level.

• A portable, higher level language for programming the GPU 
was created: Cg (C for graphics; aka HLSL).

• Cg outputs DirectX or OpenGL, standard APIs for graphics.

• Other similar languages exist, such as GLSL.

A screenshot from Far Cry, programmed in Cg.

• Scientists started using GPUs through shader languages.

• Adapting the use-cases to the available 4-way vector APIs.

• GPU Gems 2 has some fun examples.

• Significant speedups were observed for a few applications.

Vector representation in shaders (GPU Gems 2)

https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms
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CUDA

• GPU architecture evolved to be more homogeneous.

• Compute Unified Device Architecture (CUDA) was 
created in 2006.

• It hid the complexity of shaders behind a SIMT language 
extension to C.

• Shortly after, many papers were published reporting 
speedups in many fields.

• Successive iterations of GPUs are now created as 
hardware optimized for C++.

• Impacting future versions of the C++ standard as well.

• CUDA keeps up with the latest C++ standard support 
(C++20 at the moment).

From talk Designing (New) C++ Hardware

https://www.youtube.com/watch?v=86seb-iZCnI
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Artificial Intelligence

• Today, GPUs are widely used as processors for AI.

• Both learning and inference.

• All major AI-oriented libraries support GPUs.

• GPUs are the preferred platform to run AI:

• Hardware support specific to speedup matrix-matrix 
multiplication and addition.

• Software support.

• CUDA provides access to these low-level optimizations.

• This trend is likely to continue and drive hardware design 
in the future. Tensor Cores take up about a third

of arithmetic space on the die.
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So, What Are GPUs Useful For?

Financial 
Analysis

Scientific 
Simulation

Engineering 
Simulation

Data 
Intensive 
Analytics

Medical 
Imaging

Digital Audio 
Processing

Computer 
Vision

Digital Video 
Processing

Biomedical 
Informatics

Electronic 
Design 

Automation

Statistical 
Modeling

Ray Tracing 
Rendering

Interactive 
Physics

Numerical 
Methods

• Parallelizable problems.

• Most data centers have GPUs today.

• Making a successful GPU application 
requires a good understanding of the 
hardware, software, and a lot of hard work!

Accelerators in the top500
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The LHCb U1 Upgrade

The LHCb detector at CERN:

• Single-arm forward spectrometer for high-precision 
flavour physics

• High precision tracking and vertexing.

• Complemented with excellent Particle Identification.

The U1 upgrade:

• Instantaneous luminosity increased by 5x.

• Major upgrade in all sub-detectors to handle increased 
rates.

• Software-only trigger!
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Someone Had to Pull the (Hardware) Trigger
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The LHCb Data-flow

• Detector data recieved by ~500 FPGAs and built into events in the event building (EB) farm 
servers.

• 2-stage software trigger: HLT1 and HLT2.

• Real-time alignment and calibration.

• After HLT2: 10 GB/s of data for offline processing.
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The LHCb First Level Trigger

The goal of HLT1:

• Be able to intake the entirety of the LHCb raw data (5 TB/s) at 30 MHz.

• Perform partial event reconstruction and coarse selection of broad LHCb physics cases.

• Reduce the input rate by a factor of 30 (~1 MHz).

• Store selected events in intermediate buffer for real-time alignment and calibration.
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[Massive] Parallelism in HLT1

In LHCb alone, 32 Tbits per second are being processed in Run 3.

These data are structured as follows:

• 30 million independent collision events per second, 100 kB each.

For each event:

• Four tracking problems – 100s of tracks per event each.

• Vertex finders – 10s of vertices per event.

• Kalman filter – 100s of instances per event.

Looks like a problem where massively parallel architectures can make a difference!
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Going From This...
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Into This...
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At a High Rate!

30,000,000 per 

second
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Allen

The Allen framework is a modular, scalable and flexible 
framework for physics reconstruction on accelerators.

Features:

• Supports CPU, CUDA.

• Uses C++17.

• Multi-threaded, pipelined, configurable framework.

• Multi-event scheduler, event batches support.

• Custom memory manager, no dynamic allocations, 
flexible datatypes.

• Built-in validation. Generation of graphs with ROOT. http://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf

http://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
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Parallelization

We parallelize at three levels:

Sequences Events Intra-algorithms

Sequences Events Intra-Algorithms

CPU Threads Vectorisation

GPU Streams Blocks Threads
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Track Reconstruction at LHCb HLT1
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With State-of-the-Art Efficiencies
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Not Always a Path of Roses
Are GPUs a match?

• Not everything was a match from the beginning, we worked through issues.

• Eg. event size in LHCb is too small – only 100 kB. Processing one event at a time is very 
inefficient! GPUs need more work to be efficient.

• Pipelining event processing wasn’t good enough: we would need to produce events at a pace that keeps 
up with the GPU.

• Demonstrators are fundamental!

• To convince your colleagues.

• To convince yourselves.

• To prove your hypotheses.

• Allen was designed to process tens of thousands of 
events in flight.
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Not Always a Path of Roses (2)
Are GPUs a match?

• Events don’t always follow the same execution path. Processing tens of thousands of events 
surely leads to a lot of branching!

• “Select events” runs O(100) algorithms, the 
outcome of each is not known beforehand.

• Can one afford to cover all cases for all events 
sequentially? No.

• Knowing your hardware is paramount.

• To design efficient and scalable solutions.

• Allen produces a single algorithm execution 
list and runs it with a mask mechanism of 
active events (aka Multi-event scheduling).



43Daniel Cámpora – dcampora@nvidia.com

Performance

• Making it faster has a big impact: cost efficient, energy efficient, wider physics programme.
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The LHCb Data Acquisition System (DAQ)

• The success of the GPU HLT1 in LHCb is partially due to making a converged architecture.

• Combine detector readout, event building and event filtering under the same server farm.
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Event Building

• Each collision of particle bunches (bunch-crossing) produces an event.

• Events:

• but events are tiny, sending them one by one wouldn’t be efficient for the network.

• So they are bundled:

• But the subdetectors are far apart, so each event is divided in pieces.

• The bundling looks more like:
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Data Acquisition

• Readout units perform the readout of the detector by 
looking at these fragments.

• Builder units put together the fragments of each event.

• Filter units reconstruct the events and select the most 
interesting ones, discarding the others.

• This is typically done in separate networks and separate 
server farms!

RU#1 RU#2RU#0 RU#3

BU#1 BU#2BU#0 BU#3

FU#1 FU#2FU#0 FU#3

No No Yes No
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Converged Architecture

• In LHCb we decided to do it in one server farm (with HLT1)!

RU#1
BU#1
FU#1

RU#2
BU#2
FU#2

RU#0
BU#0
FU#0

RU#3
BU#3
FU#3
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Converged Architecture (2)

• In LHCb we decided to do it in one server farm (with HLT1)!

• It looks pretty awesome.

RU#1
BU#1
FU#1

RU#2
BU#2
FU#2

RU#0
BU#0
FU#0

RU#3
BU#3
FU#3

GPUs (FU)
FPGAs (RU)

CPUs (BU)

Network
cards
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Converged Architecture (3)

• In LHCb we decided to do it in one server farm (with HLT1)!

• It looks pretty awesome.

• This put a lot of pressure on CPU memory throughput, CPU 
utilisation, network throughput. We tested it all...
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Converged Architecture (4)

• In LHCb we decided to do it in one server farm (with HLT1)!

• It looks pretty awesome.

• This put a lot of pressure on CPU memory throughput, CPU
utilisation, network throughput. We tested it all...

• and it led to huge savings!

• Cost, but also easier to maintain (less parts)

Consider high-risk high-gain scenarios in your application.
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HEP Experiments: ALICE

• ALICE was the first LHC experiment to embrace GPUs.

• Events in ALICE were originally ~40 MBs, dominated by a single tracking problem (the TPC).
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HEP Experiments: ALICE (2)

• Nowadays, most of the reconstruction sequence runs on GPU.
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HEP Experiments: CMS

• CMS offloads part of computation to scientific low-profile cards on each node.

From talk CMS by A. Di Florio

https://indico.cern.ch/event/1327907/contributions/5646881/attachments/2757947/4802244/CMS_Adriano_FrameworkLHCb_22Nov23.pdf
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Radio Astronomy

From paper A GPU Spatial Processing for CHIME

• Radio astronomy also has streaming problems 
that are solved at a high rate.

• Correlation – imaging modes that result in sky-
images.

• Beamforming – Time series analysis searching 
for patterns indicative of astronomical events 
(eg. pulsars, bursts).

• “Event” boundaries are not known in advance.

• “Event” rates are also unknown!

https://arxiv.org/pdf/2005.09481.pdf
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AI

• The evolution of AI has been fast-paced and very recent.
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AI Model Sizes
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Scaling Up Unlocks Emergent Capabilities

• LLMs exhibit emergent capabilities that are only available with a large enough model size.

Emergent Abilities of Large Language Models (Wei et al., 2022)

(a) Modified arithmetic
In the following lines, the symbol -> 
represents a simple mathematical 
operation.
100 + 200 -> 301
1 + 1 -> 3
2 + 2 -> 5

(c) Word unscrambling

Input: The word hte is a scrambled 
version of the English word
Output: the

Input: The word sohpto is a scrambled 
version of the English word
Output: photos
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An example of AI Today: Weather Prediction

• “Digital Twins” replicate a system to make simulations.

• AI-based predictions are comparable to analytical simulations.

• Performance is 5 orders of magnitude faster than traditional methods.

From Earth-2

https://www.nvidia.com/en-us/high-performance-computing/earth-2/
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Summary

• Learn to use your processor efficiently.

• Use GPUs in jobs that are parallelizable.

• GPUs are Single Instruction Multiple Thread.

• You will learn a scalar-like language to program them.

• The LHCb HLT1 uses GPUs efficiently, getting more from the detector in near real-time.

• Boundary conditions are very relevant.

• GPUs are not limited to HEP, many HPC applications exist.

• AI is a change of paradigm that is impacting many fields.
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Resources Used in the Talk

• Talk Designing (New) C++ Hardware by O. Giroux.

• Course TinyML and Efficient Deep Learning Computing by Song Han.

https://efficientml.ai/
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