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Goal of this course

Make the theory concerning SIMD and vectorization more concrete

Detail the impact of vectorization on your code

on your data model
on actual C++code

Give an idea of what to expect from vectorized code
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SIMD - Single Instruction Multiple Data

Concept

Run the same operation in parallel on multiple data

Operation is as fast as in single data case

The data leave in a “vector”

Practically

A + B = R

A1

A2

A3

A4

+

B1

B2

B3

B4

=

R1

R2

R3

R4
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Promises of vectorization

Theoretical gains

Computation speed up corresponding to vector width

Note that it’s dependant on the type of data

float vs double
shorts versus ints

Various units for various vector width

Name Arch nb bits nb floats/int nb doubles/long

SSE1 4 X86 128 4 2
AVX2 X86 256 8 4
AVX2 2 (FMA) X86 256 8 4
AVX2 512 X86 512 16 8
SVE3 ARM 128-2048 4-64 2-32

1 Streaming SIMD Extensions 2 Advanced Vector eXtension 3 Scalable Vector Extension
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How to now what you can use
Manually

Look for sse, avx, etc in your processor flags

lscpu | egrep ``mmx|sse|avx''

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush dts acpi

mmx fxsr sse sse2 ss ht tm pbe syscall nx

rdtscp lm constant_tsc arch_perfmon pebs bts

rep_good nopl xtopology nonstop_tsc cpuid

aperfmperf pni pclmulqdq dtes64 monitor ds_cpl

vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid

sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer

aes xsave avx f16c rdrand lahf_lm cpuid_fault

epb pti ibrs ibpb stibp tpr_shadow vnmi

flexpriority ept vpid fsgsbase smep erms

xsaveopt dtherm ida arat pln pts
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Situation for Intel processors
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Am I using vector registers ?

Yes you are

As vector registers are used for scalar operations

But not so efficiently

Wasted

U
se
d

Am I efficiently using vector registers ?

Here we have to look at the generated assembly code

Looking for specific intructions

Or for the use of specific names of registers
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Side note : what to look at ?

What you should look at

Specific, CPU intensive pieces of code

The most time consuming functions

Very small subset of your code (often < 5%)

Where you should not waste your time

Try to have an overall picture of vectorization in your application

As most of the code won’t use vectors anyway
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Crash course in SIMD assembly
Register names

SSE : xmm0 to xmm15 (128 bits)

AVX2 : ymm0 to ymm15 (256 bits)

AVX512 : zmm0 to zmm31 (512 bits)

In scalar mode, SSE registers are used

floating point instruction names

<op><simd or not><raw type>
where

<op> is something like vmul, vadd, vmov or vfmadd

<simd or not> is either ’s’ for scalar or ’p’ for packed (i.e. vector)

<raw type> is either ’s’ for single precision or ’d’ for double precision

Typically :

vmulss, vmovaps, vaddpd, vfmaddpd
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Practical look at assembly

Extract assembly code

Run objdump -d -C on your executable or library

Search for your function name

Check for vectorization

For avx2, look for ymm

For avx512, look for zmm

Otherwise look for instructions with ps or pd at the end

but ignore mov operations
only concentrate on arithmetic ones
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Exercise 1

Code

d18: c5 fc 59 d8 vmulps %ymm0,%ymm0,%ymm3

d1c: c5 fc 58 c0 vaddps %ymm0,%ymm0,%ymm0

d20: c5 e4 5c de vsubps %ymm6,%ymm3,%ymm3

d24: c4 c1 7c 59 c0 vmulps %ymm8,%ymm0,%ymm0

d29: c4 c1 64 58 da vaddps %ymm10,%ymm3,%ymm3

d2e: c4 41 7c 58 c3 vaddps %ymm11,%ymm0,%ymm8

d33: c5 e4 59 d3 vmulps %ymm3,%ymm3,%ymm2

d37: c4 c1 3c 59 f0 vmulps %ymm8,%ymm8,%ymm6

d3c: c5 ec 58 d6 vaddps %ymm6,%ymm2,%ymm2

Solution

Presence of ymm

Vectorized, AVX level
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Exercise 2

Code

b97: 0f 28 e5 movaps %xmm5,%xmm4

b9a: f3 0f 59 e5 mulss %xmm5,%xmm4

b9e: f3 0f 58 ed addss %xmm5,%xmm5

ba2: f3 0f 59 ee mulss %xmm6,%xmm5

ba6: f3 0f 5c e7 subss %xmm7,%xmm4

baa: 0f 28 f5 movaps %xmm5,%xmm6

bad: f3 41 0f 58 e0 addss %xmm8,%xmm4

bb2: f3 0f 58 f2 addss %xmm2,%xmm6

bb6: 0f 28 ec movaps %xmm4,%xmm5

Solution

Presence of xmm but ps only in mov

Not vectorized
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For small pieces of code : godbolt

what is it

Online, on the fly compilation

Annotated, colorized assembler

Supports many platforms and compilers

http://godbolt.org
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Data format for vectorization

Some constraints

Loading/storing a vector from/to non contiguous data is very
inefficient

even worse than n data loads

Converting data format is also expensive

and will ruin your vectorization gains

So you need proper data format from scratch

Which data layout to choose ?

Depends on your algorithm

Also depends on your CPU !
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First Vectorization Attempt
Simple, standard matrix times vector

- Let’s adopt a row first storage

VZ

VY

VX

=

TZX TZY TZZ

TYX TYY TYZ

TXX TXY TXZ

·
PZ

PY

PX

=

TXX .Px + TXY .PY + TXZ .PZ

TYX .Px + TYY .PY + TYZ .PZ

TZX .Px + TZY .PY + TZZ .PZ

Will actually be something like :

TZX TZY TZZ

TYX TYY TYZ

TXX TXY TXZ

·
PZ

PY

PX

=

TXX .Px TXY .PY TXZ .PZ

TyX .Px TyY .PY TyZ .PZ

TzX .Px TzY .PY TzZ .PZ VZ

VY

VX

3 mul ∼ 6 cycles 6 hadd, 3 mov ∼ 60 cycles

Scalar case : 9 mul, 6 adds ∼ 30 cycles
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Second Vectorization Attempt

Let’s adopt a column first storage and use Broadcast

TZX TZY TZZ

TYX TYY TYZ

TXX TXY TXZ

·
PZ

PY

PX

=

TZX

TYX

TXX

·
PX

PX

PX

+

TZY

TYY

TXY

·
PY

PY

PY

+

TZZ

TYZ

TXZ

·
PZ

PZ

PZ

Costs :

3 broadcasts ∼ 3 cycles

3 mul and 2 adds ∼ 10 cycles

Twice better than scalar case !

Wait a minute... only twice ?!?
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Vertical vs Horizontal vectorization

Vertical vectorization

Previous attempts are examples of vertical vectorization

They use parallelism within the given data

Speedup is limited by data size

was 3 numbers here, while our vector was 8 or 16 items long !

Horizontal vectorization

Aims at using parallelism between independent (but similar)
computations

In our example several (many ?) products Matrix by Vector

Allows to fully use the vector sizes
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Horizontal vectorization example
Let’s compute n products in one go (n = 4 on the picture)
Let’s have vectors in the new dimension, one color = one vector

T 3
ZXT

3
ZYT

3
ZZ

T 3
YXT

3
YYT

3
YZ

T 3
XXT

3
XYT

3
XZ

T 2
ZXT

2
ZYT

2
ZZ

T 2
YXT

2
YYT

2
YZ

T 2
XXT

2
XYT

2
XZ

T 1
ZXT

1
ZYT

1
ZZ

T 1
YXT

1
YYT

1
YZ

T 1
XXT

1
XYT

1
XZ

T 0
ZXT

0
ZYT

0
ZZ

T 0
YXT

0
YYT

0
YZ

T 0
XXT

0
XYT

0
XZ · P3

Z

P3
Y

P3
X

P2
Z

P2
Y

P2
X

P1
Z

P1
Y

P1
X

P0
Z

P0
Y

P0
X

=

TZX · PX TZY · PY TZZ · PZ+ +

TYX · PX TYY · PY TYZ · PZ+ +

TXX · PX TXY · PY TXZ · PZ+ +

We compute as if we were scalar, using vectors to do n at a time

Cost :

9 mul + 6 add ∼ 30 cycles for n products

n is typically 8 or 16 → 4 to 2 cycles per product

Perfect speedup !
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Vertical vectorization allows AoS

AoS = Array of Structures

Basically you use standard structures
So you can write very natural code :

struct Vector { float x; float y; float z; };

using Matrix = std::array<float, 12>; // padded

std::array<Vector,N> Ps = ...;

std::array<Matrix,N> Ts = ...;

auto V0 = multiply(Ts[0], Ps[0]);

Drawback

It does not scale with vector width

It needs adaption of your math code

a dedicated, vectorized multiply
method

A1
X

A1
Y

A1
Z

+

B1
X

B1
Y

B1
Z

=

R1
X

R1
Y

R1
Z
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Horizontal vectorization requires SoA
SoA = Structures of Array

That is standard structures where each element became a vector
Thus you loose the concept of elements

using floats = std::array<float,N>;

struct Vectors { floats xs, ys, zs; };

using Matrices = std::array<floats, 9>;

Vectors Ps = ...;

Matrices Ts = ...;

auto Vs = multiply(Ts, Ps);

// no Ts[0] or Ps[0]

Advantages

Scales perfectly with vector width

Code similar (identical ?) to scalar one

A1
X

A2
X

A3
X

A4
X

+

B1
X

B2
X

B3
X

B4
X

=

R1
X

R2
X

R3
X

R4
X
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Auto asm Intrinsics Compiler Libraries

Vectorizing techniques in C++

1 Introduction

2 Measuring vectorization

3 Vectorization Prerequisite

4 Vectorizing techniques in C++
Autovectorization
Inline assembly
Intrinsics
Compiler extensions
Libraries

5 What to expect ?
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Auto asm Intrinsics Compiler Libraries

Example Code

Mandelbrot kernel

Given (ax , ay) a point in 2D space, compute n :

int kernel(float ax, float ay) {

float x = 0; float y = 0;

for (int n = 1; n <= 100; n++) {

float newx = x*x - y*y + ax;

float newy = 2*x*y + ay;

if (4 < newx*newx + newy*newy) {

return n;

}

x = newx; y = newy;

}

return -1;

}
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Auto asm Intrinsics Compiler Libraries

Why is autovectorization not so easy ?

Summary of previous slides

Main issues with autovectorization :

Aliasing, alignment, data dependencies, branching, ...

In general lack of knowledge of the compiler

Ways to solve (some of) them

restrict, align, ternary operator, ... aka give knowledge to compiler

And proper data structures (SoA)

Still worth trying it

It’s (almost) a free lunch !

100% portable code

No dependencies
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Auto asm Intrinsics Compiler Libraries

How to autovectorize ?

Compiler flags

Optimization ones

For gcc, clang : -O3 or -O2 -ftree-vectorize
For icc : -O2 or -O3. Use -no-vec to disable it

Architecture ones

For avx2 : -mavx2 on gcc/clang, -axAVX2 -xAVX2 on icc
For avx512 on gcc/clang : -march=skylake-avx512
For avx512 on icc: -xCORE-AVX512
For optimal vectorization depending on your CPU :
-march=native on gcc/clang, -xHOST on icc
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Auto asm Intrinsics Compiler Libraries

How to debug autovectorization
Ask the compiler about its choices

For icc

Use -vec-report=5 to “tell the vectorizer to report on non-vectorized
loops and the reason why they were not vectorized”

For clang

Use -Rpass-missed=loop-vectorize to “identify loops that failed to
vectorize”

Use -Rpass-analysis=loop-vectorize to “show the statements that
caused the vectorization to fail”

For gcc

Use -fopt-info-vec-missed to get “detailed info about loops not being
vectorized”
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Auto asm Intrinsics Compiler Libraries

Autovectorizing Mandelbrot

code

8 int kernel(float ax, float ay) {

9 float x = 0; float y = 0;

10 for (int n = 1; n <= 100; n++) {

11 float newx = x*x - y*y + ax;

12 float newy = 2*x*y + ay;

13 if (4 < newx*newx + newy*newy) {

compiler output (gcc)
...

mandel.cpp:10:21: note: not vectorized: control flow in loop.

mandel.cpp:10:21: note: bad loop form.

...
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For small code, godbolt is again your friend
Use clang, click “Add new...” in assembly pane
Select “optimization output”
Move mouse on the side of the interesting code
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Autovectorization is still not enough

It’s not fully mature

Still very touchy despite improvements

Only able to vectorize loops (or almost)

Hardly able to handle branching via masks

No abstract knowledge of the application (yet ?)

It will probably never be good enough

As it cannot know as much as the developer

Especially concerning input data such as

average number of tracks reconstructed
average energy in that data sample

And the optimal code depends on this

So we need to vectorize by hand from time to time
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Why inline assembly should not be used

Hard to write/read

Not portable at all

processor specific AND compiler specific

Almost completely superseeded by intrinsics

So just don’t do it
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The intrinsics layer

Principles

Intrinsics are functions that the compiler replaces with the proper
assembly instructions

It hides nasty assembly code but maps 1 to 1 to SIMD assembly
instructions

Pros

Easy to use

Full power of SIMD can be achieved

Cons

Very verbose, very low level

Processor specific
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Intrinsics crash course

naming convention :

_mm<S><mask>_<op>_<suffix>(data_type param1, ...)

where

<S> is empty for SSE, 256 for AVX2 and 512 for AVX512

<mask> is empty or mask or maskz (AVX512 only)

<op> is the operator (add, mul, ...)

<suffix> describes the data in the vector

Example :
_mm256_mul_ps, _mm512_maskz_add_pd

see https://software.intel.com/sites/landingpage/IntrinsicsGuide

https://software.intel.com/sites/landingpage/IntrinsicsGuide
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Practically for Mandelbrot

Code

__m256i kernel(__m256 ax, __m256 ay) {

__m256 x = _mm256_setzero_ps();

__m256 y = _mm256_setzero_ps();

for (int n = 1; n <= 100; n++) {

__m256 newx = _mm256_add_ps

(_mm256_sub_ps(_mm256_mul_ps(x,x), _mm256_mul_ps(y,y)), ax);

__m256 newy = _mm256_add_ps

(_mm256_mul_ps(two,_mm256_mul_ps(x,y)), ay);

__m256 norm = _mm256_add_ps(_mm256_mul_ps(newx, newx),

_mm256_mul_ps(newy, newy));

__m256 cmpmask = _mm256_cmp_ps(four, norm, _CMP_LT_OS);

A bit too verbose to my taste !

Hard to understand what’s going on
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Vector compiler extensions

Principle

Compiler extended syntax to write SIMD code

Compiler specific, mostly (clang and gcc are close)

Allows to use vector types naturally

Pros

Easy to use

(Almost) independent of processor

Cons

Limited instruction set

Compiler specific
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Practically for Mandelbrot

Code

typedef float Vec8f __attribute__ ((vector_size (32)));

typedef int Vec8i __attribute__ ((vector_size (32)));

Vec8i kernel(Vec8f ax, Vec8f ay) {

Vec8f x{0};

Vec8f y{0};

for (int n = 1; n <= 100; n++) {

Vec8f newx = x*x - y*y + ax;

Vec8f newy = 2*x*y + ay;

Vec8i cmpmask = (4 < newx*newx + newy*newy);

Syntax very close to scalar case

Only change : the comparison is returning a mask rather than a boolean
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The library way

Expectations

Write compiler agnostic code

With natural syntax, a la compiler extensions

Evolve with technologies without modifying the code

Many available libraries

VC, xSIMD, VCL, UME::SIMD, E.V.E., VecCore, ...

a proposal has been made to C++standard comitee

vector support is coming in the standard (cppref)

VCL is header only library, so easy to use

E.V.E has support for AVX512 and masked operations

VecCore is an attempt to rule them all

basically a common wrapper on top on the rest

https://en.cppreference.com/w/cpp/experimental/simd
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VCL - Practically for Mandelbrot

Code

#include <vectorclass.h>

Vec8i kernel(Vec8f ax, Vec8f ay) {

Vec8f x{0};

Vec8f y{0};

for (int n = 1; n <= 100; n++) {

Vec8f newx = x*x - y*y + ax;

Vec8f newy = 2*x*y + ay;

Vec8fb newcmp = (4 < newx*newx + newy*newy);

Code very close to vector extensions’ one, but compiler agnostic

Still using mask obviously
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STL - Practically for Mandelbrot

Code

#include <experimental/simd>

namespace stdx = std::experimental;

using float_v = stdx::native_simd<float>;

using int_v = stdx::fixed_size_simd<int, float_v::size()>;

int_v kernel(float_v ax, float_v ay) {

float_v x(0);

float_v y(0);

for (int n = 1; n <= 100; n++) {

float_v newx = x*x - y*y + ax;

float_v newy = 2*x*y + ay;

auto newcmp = 4 < newx*newx + newy*newy;

Note that the code is vector width agnostic this time !

Still experimental and needs polishing, gcc only
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What to expect ?

1 Introduction

2 Measuring vectorization

3 Vectorization Prerequisite

4 Vectorizing techniques in C++

5 What to expect ?
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Amdahl strikes back
Remember the talk on parallelisation ? I revisited it slightly

Applies to a fixed size problem,
speedup in terms of time

Maximum achievable speedup

Speedupmax = 1
(1−p)+ p

n

p the vectorizable portion,
p ∈ [0, 1]

n vector width (floats)

1 2 4 8 16 32 64 128 256 512
0

2

4

6

8

10

12

14

16

18

20

vector width (nb floats)
S
p
ee
d
u
p

Vectorizable part
50%

75%

90%

95%

“. . . the effort expended on achieving high parallel processing rates is
wasted unless it is accompanied by achievements in sequential processing
rates of very nearly the same magnitude.” - me, 2019
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When does vectorization bring speed ?

Vectorization will bring speed if

The code in computing intensive

You have enough parallelism (think horizontal vectorization)

The code has few branches

The data have proper format (SoA)

Vectorization won’t necessarily work

If you do not have SoA and conversion is too costly

you lose back what you won (or more ?)

For specific algorithms

typically standard sorting algorithm (std::sort)
for that case SoA is even to be avoided

A matter of testing and experience. You’ll be surprised for sure
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A word on Vectorization and IO

The Problem

When you optimize one piece, you put more pressure on the others

Speeding up CPU may lead to memory bandwidth issues

Typical scenario

Suppose you get x16 speedup on your matrix - vector code

So you’ll use 16x more input data than you used to

Do you have the memory bandwidth for that ?
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Roofline Model

Definition

Let’s define for a given piece of code (aka kernel) :

W work, number of operations performed

Q memory traffic, number of bytes of memory transfers

I = W
Q the arithmetic intensity

And let’s define for a given hardware :

β the peak bandwidth in bytes/s, usually obtained via benchmarks

π the peak performance in flops/s, derived from the architecture

All this is plotted in a log-log graph of flops/s versus arithmetic intensity
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Roofline plot

Shows what you can expect for a given arithmetic intensity

And whether you are ultimately CPU or I/O bound

Source : Giu.natale CC BY-SA 4.0, via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0


Practical vectorization

49 / 50 S. Ponce - CERN

Intro Measure Prereq Techniques Expectations

Realistic Roofline plot

Multiple lines for different levels of caches

Multiple lines for vectorization and FMA

Source : researchgate.net CC BY 3.0

https://www.researchgate.net/figure/depicts-a-Roofline-model-7-for-an-Intel-Haswell-processor-A-Roofline-model-relates-the_fig4_321234914
https://creativecommons.org/licenses/by/3.0
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Conclusion

Key messages of the day

Vectorization requires a suitable data model, typically SoA

And always prefer horizontal vectorization when you can

There are several ways to vectorize

Check whether autovectorization works for you
Otherwise choose between intrinsics, compiler extensions and libraries

Do not build wrong expectations on the overall speedup

Amdahl’s law is really stubborn
And you may hit other limitations, like I/O
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