
Writing Parallel software

1 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

Writing Parallel software

Sébastien Ponce
sebastien.ponce@cern.ch

CERN

Thematic CERN School of Computing 2024

Writing Parallel software

2 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

Outline

1 Introduction and expectations
Scope : what is parallelism ?
Finding parallelism
Expectations

2 Threading, theory and practice
Processes and threads
Python threading
C++threading and async

3 Thread-safety issues
Data races
Thread safety

4 Thread-safety solutions
Avoid the problem
Replicate
Atomics
Locking

Credits to Danilo Piparo for the original talk in previous tCSCs
... and all the content I shamelessly stole from it

Writing Parallel software

3 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Introduction and expectations

1 Introduction and expectations
Scope : what is parallelism ?
Finding parallelism
Expectations

2 Threading, theory and practice

3 Thread-safety issues

4 Thread-safety solutions

Writing Parallel software

4 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Parallelism

Definition

the ability to make 2 or more things concurrently

start end
main flow

parallel flow

concepts

concurrency running 2 things in parallel

asynchronicity disentangle launching a task from getting its result

Writing Parallel software

4 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Parallelism

Definition

the ability to make 2 or more things concurrently

start end
main flow

parallel flow

2nd parallel flow

concepts

concurrency running 2 things in parallel

asynchronicity disentangle launching a task from getting its result

Writing Parallel software

4 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Parallelism

Definition

the ability to make 2 or more things concurrently

start end
main flow

parallel flow

2nd parallel flow

more parallel

concepts

concurrency running 2 things in parallel

asynchronicity disentangle launching a task from getting its result

Writing Parallel software

4 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Parallelism

Definition

the ability to make 2 or more things concurrently

start end
main flow

parallel flow

2nd parallel flow

more parallel

concepts

concurrency running 2 things in parallel

asynchronicity disentangle launching a task from getting its result

Writing Parallel software

5 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Different flavors along the history

Multiple levels of parallelism

machines (forever) / processors (for 40 years) / cores (for 25 years)

so not really a new topic !

Matching different programming techniques

RPC, MPI, map/reduce, .../ multi-processing / multi-threading

Why is it trendy now ?

on many core processors you cannot avoid it

individual cores are too slow

multi-core/multi-threading is tricky

and a major source of nasty bugs

Writing Parallel software

6 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Why would you use parallelism ?

From the software point of view

2 main targets

multiplexing different tasks on the same machine

making one heavy task faster

by running different subparts of it in parallel

From the hardware point of view

do not waste available resources

make best value for money

Net consequence : we need to find things to be done in parallel

Writing Parallel software

7 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Finding parallelism

Task parallelism

act on the work flow

break the work in tasks

run several concurrently

Measures

Sum

Sum squares

σ

Data parallelism

split data in pieces

run on several concurrently

data1
data2
data3

Compute χ2

Compute χ2

Compute χ2

Writing Parallel software

8 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Task parallelism

Concept

parallelism achieved through the partition of load into “baskets of work”
consumed by a pool of resources.

Implications

requires splitting the processing into blocks

and dealing with dependencies between them

well adapted to data processing frameworks

Thread/process pools usually useful

a pool a workers is created at start

and reused during all processing

tasks are mapped to available workers

Writing Parallel software

9 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Task parallelism example

Event reconstruction case

processing consists in running a bunch of algorithms

originally as a sequence

now as a dependency graph

using a thread pool and a scheduler

mapping what can be done to available threads.

Writing Parallel software

9 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Task parallelism example

Event reconstruction case

processing consists in running a bunch of algorithms

originally as a sequence

now as a dependency graph

using a thread pool and a scheduler

mapping what can be done to available threads.

Writing Parallel software

10 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Data parallelism

Concept

parallelism achieved through the application of the same transformation
to multiple pieces of data

Implications

requires independent pieces of data

may have an impact on data structures

and potentially on memory

Practically for our event processing example

Writing Parallel software

11 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Overall Strategy

Data or task based parallelism ?

Definitely both concurrently

Use as much parallelism as you can

allows to hide dependencies/contention

and to keep the hardware busy

Writing Parallel software

12 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Is it worth it ? Amdahl’s law

Applies to a fixed size problem,
speedup in terms of time

Maximum achievable speedup

Speedupmax = 1
(1−p)+ p

n

p the parallel portion,
p ∈ [0, 1]

n the number of workers

1 2 4 8 16 32 64 128 256 512
0

2

4

6

8

10

12

14

16

18

20

level of parallelisation
S
p
ee
d
u
p

Parallel part
50%

75%

90%

95%

“. . . the effort expended on achieving high parallel processing rates is
wasted unless it is accompanied by achievements in sequential processing
rates of very nearly the same magnitude.” - Gene Amdahl - 1967

Writing Parallel software

13 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Is it worth it ? Gustafson’s law

Applies to a fixed time interval,
with more or less work done

Maximum achievable speedup

Speedupmax = (1− p) + np

p the parallel portion,
p ∈ [0, 1]

n the number of workers
20 40 60 80 100 120

0

20

40

60

80

100

120

level of parallelisation

S
p
ee
d
u
p

Parallel part
50%

75%

90%

95%

Conclusion

there is no limit to the achievable speedup !

you only need enough work items

providing they can run in parallel

Writing Parallel software

14 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Consequences

Amdahl’s limitations

the speedup of a given task has a limit

in other terms, latency improvements are constrained
the limit being inversely proportional to the size of the serial part

so it is vital to reduce the non parallel part
and even more with large parallelism (manycores)

Gustafson’s promises

doing more processing at once will drop limitations

by reducing the percentage of serial work overall
as it’s usually a fixed amount of time

in other terms, throughput is not limited
providing you have enough independent items

think throughput rather than latency

Writing Parallel software

14 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

what find expect

Consequences

Amdahl’s limitations

the speedup of a given task has a limit

in other terms, latency improvements are constrained
the limit being inversely proportional to the size of the serial part

so it is vital to reduce the non parallel part
and even more with large parallelism (manycores)

Gustafson’s promises

doing more processing at once will drop limitations

by reducing the percentage of serial work overall
as it’s usually a fixed amount of time

in other terms, throughput is not limited
providing you have enough independent items

think throughput rather than latency

Writing Parallel software

15 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Threading, theory and practice

1 Introduction and expectations

2 Threading, theory and practice
Processes and threads

Python threading
C++threading and async

3 Thread-safety issues

4 Thread-safety solutions

Writing Parallel software

16 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Anatomy of a process
4 main areas

the code segment for the code of the executable

the data segment for global variables

the heap for dynamically allocated variables

the stack for parameters of functions and local variables
a collection of stack frames

Code segment

Data segment

Stack

...

Heap Managed by programmer

Managed by compiler

Initialized when process starts

Process Layout
Main

foo

bar

deepfunc

...

Writing Parallel software

17 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Threads

Definition

A lightweight process

with its own stack

sharing heap with other threads in the process

Code segment

Data segment

Stack Thread 1

...

Stack Thread 2

...

Common Heap

Process with 2 threads

topfunc 1

foo

bar

deepfunc

...

topfunc 2

bla

deepfunc2

...

Writing Parallel software

18 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Pros and cons of threads

Why should you use threads

lightweight

fits well with multi/many cores architecture

fast and easy inter-thread communication

through memory in the heap

The price to pay

access to heap may have to be synchronized

same for I/O and any shared resource

the code has to be “thread safe”

not trivial at all
particularly challenging for legacy code

Writing Parallel software

18 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Pros and cons of threads

Why should you use threads

lightweight

fits well with multi/many cores architecture

fast and easy inter-thread communication

through memory in the heap

The price to pay

access to heap may have to be synchronized

same for I/O and any shared resource

the code has to be “thread safe”

not trivial at all
particularly challenging for legacy code

Writing Parallel software

19 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Threads in python
threading module

the Thread object allows to create a thread

call start to start the processing

join waits until the thread ends

Example code

1 def doSth(i): ...

2 t = threading.Thread(target=doSth, args=(3,))

3 t.start()

4 ... do sth concurrently ...

5 t.join()

Single core used most of the time

due to the Global Interpreter Lock (GIL)

but useful to multiplex and hide latency (e.g. I/O)

Writing Parallel software

20 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Easy alternative : multiprocessing
multiprocessing module

the Process object allows to create a process

call start to start the processing

join waits until the process ends

Example code

1 def doSth(i): ...

2 p = multiprocessing.Process(target=doSth, args=(3,))

3 p.start()

4 ... do sth concurrently ...

5 p.join()

No GIL limitation anymore

but more heavy on start (process creation)

and memory may explode (times nb of processes)

Writing Parallel software

21 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Multi-processing in C++

A complicated task

not supported by the language itself

external libraries are available

in particular Boost Process

but inter-process communication is complex

thus very seldom used in my experience

Example code - from Boost documentation

1 #include <boost/process.hpp>

2 using namespace boost::process;

3 ipstream pipe_stream;

4 child c("gcc --version", std_out > pipe_stream);

5 ...

6 std::string line;

7 while (pipe_stream && std::getline(pipe_stream, line) && !line.empty())

8 std::cerr << line << std::endl;

9 ...

10 c.wait();

https://www.boost.org/doc/libs/1_78_0/doc/html/process.html

Writing Parallel software

22 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Threads in C++

std::thread

new (C++11) object std::thread in <thread> header

takes a callable as argument of its constructor

must be detached or joined before the main thread terminates

C++20: std::jthread automatically joins at destruction

Example code

1 void doSth(int i) {...}

2 int main() {

3 std::thread t1(doSth, 3);

4 std::thread t2([](){ ... lambda code ...});

5 for (auto t: {&t1,&t2}) t->join();

6 }

Writing Parallel software

23 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Asynchronicity

Concept

separation of the specification of what should be done and the
retrieval of the results

“start working on this, and ping me when it’s ready”

Practically

std::async function launches an asynchronous task

std::future template allows to handle the result

Example code

1 int computeSth() {...}

2 std::future<int> res = std::async(computeSth);

3 std::cout << res->get() << std::endl;

Writing Parallel software

23 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Asynchronicity

Concept

separation of the specification of what should be done and the
retrieval of the results

“start working on this, and ping me when it’s ready”

Practically

std::async function launches an asynchronous task

std::future template allows to handle the result

Example code

1 int computeSth() {...}

2 std::future<int> res = std::async(computeSth);

3 std::cout << res->get() << std::endl;

Writing Parallel software

23 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Asynchronicity

Concept

separation of the specification of what should be done and the
retrieval of the results

“start working on this, and ping me when it’s ready”

Practically

std::async function launches an asynchronous task

std::future template allows to handle the result

Example code

1 int computeSth() {...}

2 std::future<int> res = std::async(computeSth);

3 std::cout << res->get() << std::endl;

Writing Parallel software

24 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Mixing asynchronicity and threading

Is async running concurrent code ?

it depends!

you can control this with a launch policy argument

std::launch::async spawns a thread for immediate execution
std::launch::deferred causes lazy execution in current thread

execution starts when get() is called

default is not specified!

Usage

1 int computeSth() {...}

2 auto res = std::async(std::launch::async,

3 computeSth);

4 auto res2 = std::async(std::launch::deferred,

5 computeSth);

Writing Parallel software

24 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Mixing asynchronicity and threading

Is async running concurrent code ?

it depends!

you can control this with a launch policy argument

std::launch::async spawns a thread for immediate execution
std::launch::deferred causes lazy execution in current thread

execution starts when get() is called

default is not specified!

Usage

1 int computeSth() {...}

2 auto res = std::async(std::launch::async,

3 computeSth);

4 auto res2 = std::async(std::launch::deferred,

5 computeSth);

Writing Parallel software

25 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Fine grained control

std::packaged task template

creates an asynchronous version of any callable

identical arguments
returns a std::future

provides access to the returned future

associated with threads, gives full control on execution

Usage

1 int task() { return 42; }

2 std::packaged_task<int()> pckd_task(task);

3 auto future = pckd_task.get_future();

4 pckd_task();

5 std::cout << future.get() << std::endl;

Writing Parallel software

25 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

process python C++

Fine grained control

std::packaged task template

creates an asynchronous version of any callable

identical arguments
returns a std::future

provides access to the returned future

associated with threads, gives full control on execution

Usage

1 int task() { return 42; }

2 std::packaged_task<int()> pckd_task(task);

3 auto future = pckd_task.get_future();

4 pckd_task();

5 std::cout << future.get() << std::endl;

Writing Parallel software

26 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Thread-safety issues

1 Introduction and expectations

2 Threading, theory and practice

3 Thread-safety issues
Data races
Thread safety

4 Thread-safety solutions

Writing Parallel software

27 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Data races

Example code - godbolt

1 int a = 0;

2 void inc100() {

3 for (int i=0; i < 100; i++) a++;

4 };

5 int main() {

6 std::thread t1(inc100);

7 std::thread t2(inc100);

8 for (auto t: {&t1,&t2}) t->join();

9 std::cout << a << std::endl;

10 }

What result do you expect ?

Anything between 100 and 200 !!!

https://godbolt.org/z/oGz61Pn19

Writing Parallel software

27 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Data races

Example code - godbolt

1 int a = 0;

2 void inc100() {

3 for (int i=0; i < 100; i++) a++;

4 };

5 int main() {

6 std::thread t1(inc100);

7 std::thread t2(inc100);

8 for (auto t: {&t1,&t2}) t->join();

9 std::cout << a << std::endl;

10 }

What result do you expect ?

Anything between 100 and 200 !!!

https://godbolt.org/z/oGz61Pn19

Writing Parallel software

27 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Data races

Example code - godbolt

1 int a = 0;

2 void inc100() {

3 for (int i=0; i < 100; i++) a++;

4 };

5 int main() {

6 std::thread t1(inc100);

7 std::thread t2(inc100);

8 for (auto t: {&t1,&t2}) t->join();

9 std::cout << a << std::endl;

10 }

What result do you expect ?

Anything between 100 and 200 !!!

https://godbolt.org/z/oGz61Pn19

Writing Parallel software

28 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Atomicity

Definition (Wikipedia)

an operation (or set of operations) is atomic if it appears to the rest
of the system to occur instantaneously

Practically

an operation that won’t run concurrently to another one

an operation that will have a stable environment during execution

Is ++ operator atomic ?

Usually not. It behaves like :

1 eax = a // memory to register copy

2 increase eax // increase (atomic CPU instruction)

3 a = eax // copy back to memory

Writing Parallel software

28 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Atomicity

Definition (Wikipedia)

an operation (or set of operations) is atomic if it appears to the rest
of the system to occur instantaneously

Practically

an operation that won’t run concurrently to another one

an operation that will have a stable environment during execution

Is ++ operator atomic ?

Usually not. It behaves like :

1 eax = a // memory to register copy

2 increase eax // increase (atomic CPU instruction)

3 a = eax // copy back to memory

Writing Parallel software

28 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Atomicity

Definition (Wikipedia)

an operation (or set of operations) is atomic if it appears to the rest
of the system to occur instantaneously

Practically

an operation that won’t run concurrently to another one

an operation that will have a stable environment during execution

Is ++ operator atomic ?

Usually not. It behaves like :

1 eax = a // memory to register copy

2 increase eax // increase (atomic CPU instruction)

3 a = eax // copy back to memory

Writing Parallel software

29 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Timing of ++ operation

Code

1 eax = a // memory to register copy

2 increase eax // increase (atomic CPU instruction)

3 a = eax // copy back to memory

For 2 threads

read
0

read

0

incr incr

write 1write 1

Thread 1:eax Memory:a Thread 2:eax

time

Writing Parallel software

30 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Thread safe code

Definition (Wikipedia)

Thread-safe code only manipulates shared data structures in a manner
that ensures that all threads behave properly without unintended
interaction

Practically, in most cases

no data races

any shared data has to be protected

usage of heap is dangerous

stack should be used when possible

Writing Parallel software

31 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

What is not thread/safe ?

Everything ! unless explicitly stated

Non thread-safe code

heap

STL containers

they use the heap !
some functions may be thread safe though

global (non const) variables

any member of a C++class modified in a non const method

the method may be called concurrently by two threads

constcast, singletons, caches, ...

many C library calls (e.g. strtok, ctime, ...)

external libraries

random number generators (most of them)

Writing Parallel software

31 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

What is not thread/safe ?

Everything ! unless explicitly stated

Non thread-safe code

heap

STL containers

they use the heap !
some functions may be thread safe though

global (non const) variables

any member of a C++class modified in a non const method

the method may be called concurrently by two threads

constcast, singletons, caches, ...

many C library calls (e.g. strtok, ctime, ...)

external libraries

random number generators (most of them)

Writing Parallel software

32 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

race TS

Consequences of lack of thread safety

Best case : crashes

segfault, core dumps, ...

visible and easy to analyze

Not so good case : non reproducible behavior

e.g. crash once every 1000 runs

intermittent wrong results

Bad case : silent data corruption

wrong output (think physics results)

invisible systematic biases

Writing Parallel software

33 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Thread-safety solutions

1 Introduction and expectations

2 Threading, theory and practice

3 Thread-safety issues

4 Thread-safety solutions
Avoid the problem
Replicate
Atomics
Locking

Writing Parallel software

34 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Overall strategy

To be tried in this order

Avoid the problem

remove states in your code

Remove problems via replication

remove shared states in your code

Use atomics

reduce shared state to one atomic

Use locking

and pay the price
slowness, dead locks, contention, ...

thread
unsafe

avoid

replicate

atomics

locking thread
safe

not ok

not ok

not ok

ok

ok

ok

ok

Writing Parallel software

35 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Ideal case : avoid the problem

Good practices in that direction

use the stack

avoid global variables

use method constness

pass context explicitly as function parameters

Problematic code

1 struct Example {

2 Context *ctx;

3 std::vector<int>* tmp;

4 auto foo() {

5 tmp->clear();

6 ...use ctx, fill tmp...

7 return tmp;

8 }

9 };

Thread-safe code

1 struct Example {

2 auto foo(Context const& ctx) const {

3 std::vector<int> tmp;

4 ...use ctx, fill tmp...

5 return tmp; // copy elision

6 }

7 };

8 // or even drop class Example

Writing Parallel software

36 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Functional programming
Definition (Wikipedia) and rules

a programming paradigm where programs are constructed by applying and
composing functions. Functions have

no side effects

no modification of the input

new return values

Consequences

no state, no globals, no members

guaranteed thread-safety !

Usage

dedicated languages : Haskell, Erlang, Lisp, ...

modern C++(lambdas, move, copy elision, ...)

Writing Parallel software

37 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Data replication

Idea

drop shared states by having one state per thread

potentially all identical

only when the state is not a synchronization point

Typical cases

external state

internal state of the random number generator
current geometry / event / working item

counters

count per thread instead of globally
potentially merge at the end
there synchronization will be needed

Writing Parallel software

38 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Thread local storage in C++

Principles

have a private memory block per thread

some kind of private heap

so called thread_local storage (new C++keyword)

and automatically allocate one instance of each variable per thread

Practical usage in C++

1 void counter() {

2 thread_local int count{0};

3 std::cout << "called " << ++count << " times in this thread";

4 }

count is initialized on first call in each thread

it’s a kind of static variable

it’s destroyed when thread terminates

low cost but not for free

Writing Parallel software

39 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Atomic types
Definition (cplusplus.com)

types that encapsulate a value whose access is guaranteed to not cause
data races and can be used to synchronize memory accesses

Usage in C++

#include <atomic>

wrap your type with std::atomic<>

resulting type is optimized

uses hardware atomics when available, locks otherwise

1 std::atomic<int> a{0};

2 std::thread t1([&](){ a++; });

3 std::thread t2([&](){ a++; });

4 a += 2;

5 t1.join(); t2.join();

6 assert(a == 4); // Guaranteed to succeed

Writing Parallel software

40 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Be cautious with atomics

Expressions using an atomic type are not always atomic!

1 std::atomic<int> a{0};

2 std::thread t1([&]{ a = a + 2; });

3 steps : Atomic load / value += 2 / atomic store

Sequence diagram

load

+2

load

+2

store 2 store 2

Thread 1: atomic: Thread 2:

time

Writing Parallel software

40 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Be cautious with atomics

Expressions using an atomic type are not always atomic!

1 std::atomic<int> a{0};

2 std::thread t1([&]{ a = a + 2; }); // a += 2 would be fine !

3 steps : Atomic load / value += 2 / atomic store

Sequence diagram

load

+2

load

+2

store 2 store 2

Thread 1: atomic: Thread 2:

time

Writing Parallel software

41 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Mutexes and Locks

Concept

Use “locks” to serialize access to a non-atomic piece of code

The basic item is a std::mutex

It can only be locked by one thread at a time

others trying will wait until the lock is freed

Practically

1 int a = 0; // please use atomics in such a case !

2 std::mutex m;

3 void inc() {

4 std::scoped_lock lock{m}; // serialization point

5 a++;

6 } // lock released

Writing Parallel software

41 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Mutexes and Locks

Concept

Use “locks” to serialize access to a non-atomic piece of code

The basic item is a std::mutex

It can only be locked by one thread at a time

others trying will wait until the lock is freed

Practically

1 int a = 0; // please use atomics in such a case !

2 std::mutex m;

3 void inc() {

4 std::scoped_lock lock{m}; // serialization point

5 a++;

6 } // lock released

Writing Parallel software

42 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

And now comes the bill...

Locks are relatively slow

previous example slows down by factor 15...

but usually fine for reasonable cases

essentially not taking locks too often

Locks bring a range of new issues

contention : threads idle waiting for a lock

and the holding thread may be on hold by the OS
may prevent to reach expected speedup

dead locks : threads fighting for locks

Writing Parallel software

43 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Dead lock

Scenario

2 mutexes, 2 threads

locking order different in the 2 threads

Sequence diagram

lock
lock

lock (block)

lock (block)

Thread 1: Mutex A: Mutex B: Thread 2:

time

Writing Parallel software

43 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Dead lock

Scenario

2 mutexes, 2 threads

locking order different in the 2 threads

Sequence diagram

lock
lock

lock (block)

lock (block)

Thread 1: Mutex A: Mutex B: Thread 2:

time

Writing Parallel software

44 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

How to avoid dead locks

Possible solutions

C++17: std::scoped_lock lock{m1, m2}; comes with
deadlock-avoidance algorithm

Never take several locks

Or add master lock protecting the locking phase

Respect a strict order in the locking across all threads

Do not use locks

Use other techniques, e.g. queues

Writing Parallel software

45 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Lock summary

Good practice

Always avoid locks when possible

Take as few locks as possible

Hold a lock for the smallest amount of time possible

wrap critical section within ”{ }”

Use scoped_lock to avoid deadlock and missing release

1 void function(...) {

2 // ...

3 {

4 std::scoped_lock myLocks{mutex, ...};

5 // critical section

6 }

7 }

Writing Parallel software

46 / 46 S. Ponce - CERN

Intro Threading Safety Solutions

avoid replicate atomics locks

Conclusion

Key messages of the day

parallelism is ubiquitous today

required by modern hardware
usually through cores and threading

multi-threading is the key on modern processors

easy to use with python or modern C++

brings new problems of synchronization

many solutions

avoiding, replication, atomics, locks, ...
respect this order and pay for your needs

	Introduction and expectations
	Scope : what is parallelism ?
	Finding parallelism
	Expectations

	Threading, theory and practice
	Processes and threads
	Python threading
	C++threading and async

	Thread-safety issues
	Data races
	Thread safety

	Thread-safety solutions
	Avoid the problem
	Replicate
	Atomics
	Locking

