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What Is CUDA?

• CUDA stands for Compute Unified Device Architecture.

• It is a programming model introduced in 2006 by NVIDIA as a set of extensions 
to the C programming language.

• Nowadays, it works with a variety of languages: Python, C, C++, Fortran, etc.

• It allows GPUs to be used for general purpose computing (also referred to as 
GPGPU or GPU computing).

• Since its inception, other standards have emerged, such as OpenCL, ROCm or 
SYCL, to name a few. We will discuss them in depth in lecture Design patterns 
and best practices.
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A CPU Application

CPU

Time

initialize() cpu_solve() validate()

DATA
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A GPU Application

CPU

DATA

GPU

CPU

Time

initialize()

solve()

validate()

GPU

offloaded computation
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Parallel Processors

• GPUs are parallel processors that can execute many threads in parallel.

• Threads are organized in blocks of threads.
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The Kernel

• A function in CUDA, also called a kernel, is invoked with a configurable grid of blocks, each with 
the same number of threads.
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Kernel Execution Example

solve()

• The solve kernel runs blocks 
and threads in parallel.

• According to Amdahl’s law, it’s 
the best target to parallelize in 
this example.

• Let’s inspect it.
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A Day in a Kernel’s Life

• solve is invoked with a configuration of 2 blocks and 4 threads per block.

• Each block runs independently from one another.

• Each thread runs independently from one another.

• All blocks in a grid must have the same number of threads.
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Indices

• Inside our kernel execution, indices identify each individual thread.

• gridDim.x is the number of blocks in the grid, in this case 2.

• blockIdx.x identifies the current block within the grid.

• blockDim.x refers to the number of threads in a block, in this case 4.

• threadIdx.x identifies the current thread within the block.

• The formula blockIdx.x * blockDim.x + threadIdx.x uniquely identifies threads in our 
kernel in the grid.



11Daniel Cámpora – dcampora@nvidia.com

Coordinating Parallel Threads

blockIdx.x * blockDim.x + threadIdx.x
0 4 0

data index
0

0 1 2 3

4 5 6 7
DATA
GPU

GPU

solve<<<2, 4>>>()

0 1 2 3 0 1 2 3

0 1

4 4

data index
1

data index
2

data index
3

blockIdx.x * blockDim.x + threadIdx.x
0 4 1

blockIdx.x * blockDim.x + threadIdx.x
0 4 2

blockIdx.x * blockDim.x + threadIdx.x
0 4 3
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Coordinating Parallel Threads

0 1 2 3

4 5 6 7
DATA
GPU

GPU

solve<<<2, 4>>>()

0 1 2 3 0 1 2 3

0 1

4 4

blockIdx.x * blockDim.x + threadIdx.x
0 4 0

data index
0

data index
1

data index
2

data index
7

blockIdx.x * blockDim.x + threadIdx.x
0 4 1

blockIdx.x * blockDim.x + threadIdx.x
0 4 2

blockIdx.x * blockDim.x + threadIdx.x
1 4 3
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Configuration Goodies

• Grid and block size can be configured with 3 dimensions.

• The 3 dimensions allow for simplicity when assigning tasks to each block / thread.

• Eg. a configuration of {32,4,4} threads will generate 512 threads in total.

• There is a maximum of 1024 threads per block

• The multiplication of the three dimensions should not exceed the maximum.

• Dimensions can be accessed with members x, y and z:

• gridDim.x, gridDim.y, gridDim.z

• blockDim.x, blockDim.y, blockDim.z

• blockIdx.x, blockIdx.y, blockIdx.z

• threadIdx.x, threadIdx.y, threadIdx.z
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Host and Device

• A GPU-accelerated application runs like any other OS application.

• It requires a CPU, which launches the application and acts as the host.

• The host can offload some of the work onto the GPU, which acts as the device.

• The host is in charge of the application at all times.

• It can kill the application, react to interrupts, etc.

Host Device

Offload computation

Get results
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CUDA Syntax

Function qualifiers:

• __host__ A function that is invoked by the host, and runs on the host.

• __device__ A function that is invoked by the device, and runs on the device.

• __global__ A function that is invoked by the host or device, and runs on the device.

• __global__ functions always execute asynchronously.

Host Device

__global____host__

__device__
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Memory Hierarchy

The GPU has three main kinds of memory:

• Global memory – High latency, GBs of space.

• Caches – Lower latency.

• L2 cache – MBs of space.

• L1 cache – KBs of space.

• Registers – Lowest latency.

• A configurable 64-255 registers available per GPU 
core.

Reg.

L1 cache

L2 cache

Global memory
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Host – Device Communication

• The host can only access device global memory.

• Therefore, all input data to the GPU needs to be populated on global memory prior to starting 
our kernel.

• All output data needs to be put on global memory before the kernel ends executing.

Host Device

Offload computation

Get results
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Host – Device Communication (2)

• The host can only access device global memory.

• Therefore, all input data to the GPU needs to be populated on global memory prior to starting 
our kernel.

• All output data needs to be put on global memory before the kernel ends executing.

Host

DevicePrepare input data

Invoke kernel

Global 
memory

Read output data

Compute result
(async)

Wait for
completion
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Shared memory

• GPUs offer a low-level optimization that is not available on CPUs.

• A part of L1 cache can be configured as shared memory.

• Memory used for shared memory will not be used for L1 (tradeoff).

Reg.

L1 cache / 

Shared memory

L2 cache

Global memory
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Shared Memory (2)

• Shared memory is:

• Fast memory you have direct control over.

• Limited in size.

• Shared among the block.

• It can only be accessed from the device.

• Its contents are flushed after the __global__ function terminates.

• Shared memory size is limited:

• On the Tesla T4 that you will use in the tutorials, its processors (SMs) allow a maximum of 48 KBs.

• Generally speaking, it is configurable and its maximum size depends on the architecture.

• We’ll see an example in lecture Performant Programming for GPUs.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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Memory Overview
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Memory Schema

We will see this in the next lecture.

You can ignore constant
and texture memory.
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Vector Addition

• Let’s write a vector addition kernel.

• A, B, and C are arrays of float of size N.

• Compute to global memory access ratio (arithmetic intensity in FLOPs / Bytes):

10 FLOPs / 120 Bytes = 0.08

0 1 2 3 4 5 6 7 8 9

8 2 1 9 7 3 5 3 2 7
+

A

B

8 3 3 12 11 8 11 10 10 16C
=
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Vector Addition

• Recall the Roofline model.

• The peak performance on the T4 is:

8 TFLOPS

• Our peak performance on the T4 is:

0.32 TBps * 10 FLOPS / 120 B = 0.027 TFLOPS

• What is the main limitation of this code?

We are heavily memory bound, and we can obtain 
at best 0.027 / 8 = 0.0034 = 0.34% of the 
performance the T4 has to offer with a vector 
addition.
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CUDA Syntax Reminder

• Function attributes: __global__, __device__, __host__

• Indices:  threadIdx.x, blockIdx.x

• Dimensions:  gridDim.x, blockDim.x

• Kernels (__global__ functions) invocation must specify grid and block dimensions as follows:

• fn<<<grid_dim, block_dim>>>(arg0, arg1, ...);
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Vector Addition Parallelized Across Single Block of Threads

__global__ void vector_addition(float* A, float* B, float* C) {
  unsigned i = threadIdx.x;
  C[i] = A[i] + B[i];
}

int main() {
  ...
  vector_addition<<<1, N>>>(A, B, C);
  ...
}

This function is marked __global__,
it can be invoked on the host and it

will be executed on the device.

The value of threadIdx.x will be different for each
thread in the block.

The kernel will be invoked with a grid dimension of 1, and a
block dimension of N. In other words, a single block of N threads.

vector_addition is invoked from the host.
It will run asynchronously and non-blockingly.
Control is returned immediately to the host.
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Flexibility

• The prior kernel assumes the block dimension to be N.

• Invoking the kernel with any other block dimension leads to incorrect results or out of bounds 
accesses.

__global__ void vector_addition(float* A, float* B, float* C) {
  unsigned i = threadIdx.x;
  C[i] = A[i] + B[i];
}
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Block-dimension Strided Loops

__global__ void vector_addition(float* A, float* B, float* C) {
  for (unsigned i = threadIdx.x; i < N; i += blockDim.x) {
    C[i] = A[i] + B[i];
  }
}

int main() {
  ...
  vector_addition<<<1, n>>>(A, B, C);
  ...
}

• A common practice is to make loops involving threadIdx.x to be block dimension-strided.

• Now, invoking the kernel with any number of threads will give a correct result.

for-loop is now
block dimension-strided

Any number of threads
will yield the same result.
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Moving to Multiple Blocks

• We are so far using a single block. We could do better!

• Splitting the work across several blocks will ensure the GPU is better utilized for the task.

• A good size for block dimension is 256.

• If it’s too few threads, the processors will be underutilized.

0 1 2 3 4 5 6 7 8 9

8 2 1 9 7 3 5 3 2 7
+

A

B

8 3 3 12 11 8 11 10 10 16C
=
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Vector Addition Parallelized Across Several Blocks

__global__ void vector_addition(float* A, float* B, float* C) {
  for (unsigned i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += gridDim.x * blockDim.x) 
{
    C[i] = A[i] + B[i];
  }
}

int main() {
  ...
  vector_addition<<<m, n>>>(A, B, C);
  ...
}

We now iterate through all threads
across all blocks, evenly assigning work. Stride is adjusted to account for blocks.

Grid and block dimensions are configurable at runtime.
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What About the Missing Sections?

• We also need to perform data preparation, synchronization and data retrieval:

1. Allocate memory on the GPU.

2. Populate inputs.

3. Invoke kernel.

4. Synchronize with kernel completion.

5. Read outputs.

Host Device

A

B

C

d_A

d_B

d_C

d_A

d_B

d_CC

vector_addition
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Data Handling Syntax

• There are several manners to control memory.

• Unified memory allows for a more high-level API where host – device copies occur behind the scenes.

• A lower-level API allows for explicit allocation, deallocation and copying.

• We will use the latter:

• It assumes less from the user.

• Allocations and copies are slow processes.

• Unified memory requires doing prefetching for finer control, harder to get right.

• They are fully translatable to other languages.
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Data Handling Example

int main() {
  // Assumes A, B, and C are already allocated. A and B already populated.

  int *d_A, *d_B, *d_C;
  cudaMalloc((void**) &d_A, N * sizeof(float));
  cudaMalloc((void**) &d_B, N * sizeof(float));
  cudaMalloc((void**) &d_C, N * sizeof(float));

  cudaMemcpy(d_A, A, N * sizeof(float), cudaMemcpyHostToDevice);
  cudaMemcpy(d_B, B, N * sizeof(float), cudaMemcpyHostToDevice);
  // Start timer
  vector_addition<<<m, n>>>(d_A, d_B, d_C);

  cudaDeviceSynchronize();
  // End timer
  cudaMemcpy(C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);
}

1. Allocate memory
on the GPU.

2. Populate inputs.

3. Invoke kernel.

4. Synchronize with
kernel completion.

5. Read outputs.
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The Streaming Multiprocessor

• GPUs are made of processors known as 
Streaming Multiprocessors (SMs).

• Each SM contains:

• A small control unit.

• Many arithmetic units.

• L1 cache and register memory (more on this later).
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The Streaming Multiprocessor (2)

• The heavy lifting is done by CUDA cores:

• INT32, FP32 , FP64 units and SFUs.

• Tensor cores are processors specialized for AI.

• They allow faster matrix multiplications + 
additions.

• They can also be used with CUDA.

CUDA core

Dispatch port
Operand collector

Result queue

FP32 unit
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Transparent Scaling

• Blocks of threads are scheduled to run on SMs.

GPU
SM kernel<<<24, 4>>>()
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Transparent Scaling (2)

• Depending on the number of SMs, their capabilities, and the requirements of each block, more 
than one block may be scheduled on a SM.

kernel<<<24, 4>>>()
GPU

SM
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Transparent Scaling (3)

• Invocation configuration that are not multiple of number of SMs lead to a wave quantization 
effect: we don’t use the GPU to its fullest some of the time.

• How relevant this is depends on your use-case.

GPU
SM

kernel<<<24, 4>>>()
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Saturating the GPU

• We will use Tesla T4s for the tutorials.

• Tesla T4s have 40 SMs.

• Tesla V100s have 80 SMs.

• GH200s have 132 SMs.

• During a kernel invocation, each block of threads is executed preferably on a separate SM.

• Hence, a kernel with at least 40 blocks would use all SMs of the Tesla T4.
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Saturating the GPU – Slightly More Detail

• There are three parameters that determine how many blocks can be scheduled in parallel:

• Invocation configuration (i.e. number of blocks, number of threads).

• Register usage of the kernel.

• Shared memory usage of the kernel.

• Of course, if the GPU is busy processing other tasks that will also impact the performance of 
the kernel.

• The CUDA scheduler assigns work to the SMs and manages the GPU resources.

• In particular, it is possible to runs several kernels asynchronously.

• Or even several CUDA applications.
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Data Parallelism

• GPUs are very efficient for data parallel workloads.

• Perform the same operation across a dataset.

• As opposed to instruction / thread / process level parallelism.

• Data dependencies are key factors to take into consideration!

Constructing a tower is not data parallel Calculating a filter is data parallel

Image by freepik

https://www.freepik.com/free-ai-image/3d-rendering-forest-frogs_96363967.htm
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t0
t1
t2

t3

t0
t1
t2

t3

t0
t1
t2

t3

t0
t1

t2
t3

Work Balance

• Blocks are small executable pieces that can be carried out by a single SM.

• Cache hits are more likely.

• There should be enough work to efficiently use the SM resources.

• Work imbalance is important: a single thread can stall resources of the entire block.

• Ideally all threads should have a similar amount of work to do. 

t0
t1
t2
t3

Time

t0
t1

t2
t3

t0
t1

t2
t3

The slower thread
stalls the entire block.

Better work balance
leads to better performance.
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Synchronising Threads

• Threads in a block can be synchronized through the __syncthreads() command.

• It acts as a control flow barrier, it will wait for all threads to reach that instruction.

__global__ void vector_addition(float* A, float* B, float* C) {
  for (unsigned i = threadIdx.x; i < N; i += blockDim.x) {
    C[i] = A[i] + B[i];
  }

  __syncthreads();

  for (unsigned i = 1 + threadIdx.x; i < N; i += blockDim.x) {
    C[i] += C[i - 1];
  }  
}
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Blocks Are Independent

• Blocks cannot communicate to one another.

• In fact, it is not guaranteed that any two blocks will even execute concurrently.

• You can reuse blocks smartly to divide the work considering data dependencies.

• Use __synchronize() and then reassign the role of each thread.

• Eg. imagine we need to encrypt an image with an encoding that has a dependency across columns:

Load section of picture
onto shared memory

Perform operation with
dependencies across columns.

Use all threads to
load pixels in parallel.

Each thread gets
assigned a different row.

SynchronizeAssign blocks
to sections.
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Atomics

• CUDA provides operations that allow atomic accesses over data (on global memory or shared 
memory).

• Atomic accesses guarantee data will be coherent and prevents race conditions between threads.

• There are many use cases for atomics:

• Counting elements.

• Searching eg. elements on an array.

• Histogramming...
block 0, thread 0

block 0, thread 1

• Atomics can be used over global data that is 
accessed by several threads or blocks.

• They can also be used over shared data that is 
accessed by threads on a block.

block 1, thread 0
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Atomics (2)

• Atomics could be potentially very slow if they 
are abused.

• The good news is that atomics are 
automatically optimized (both software and 
hardware).

• Just because they are needed so often.

• Two syntaxes are supported on CUDA:

• Functions: atomicAdd, atomicInc, atomicOr, ...

• cuda::atomic (it took 10 years to get this one 
working in CUDA).

https://www.youtube.com/watch?v=VogqOscJYvk&t=408s&pp=ygUSMTAgeWVhciBzdGQgYXRvbWlj
https://www.youtube.com/watch?v=VogqOscJYvk&t=408s&pp=ygUSMTAgeWVhciBzdGQgYXRvbWlj
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cuda::(std::)atomic

• cuda::atomic behaves like what you would expect from the C++ standard std::atomic.

• It also allows to define a scope where the atomic takes effect:

• The scope could e.g. be a single block, a cluster of blocks or the entire GPU.

• Hence, it could live in shared memory or global memory.

One detail to know about C++ atomics:

• std::atomic owns the memory.

• Cannot be copied.

• std::atomic_ref is a lightweight non-owning wrapper around a user-specified memory 
location.

• Meant to be passed by value, can be copied.

https://en.cppreference.com/w/cpp/atomic/atomic_ref
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One Last Example: an Atomic Addition

• Adding together numbers in a floating point array.

Bear in mind: Floating point atomics will result in a non-deterministic result!

Integer atomics don’t have this issue.

a0 a1 a2 a3 a4 a5 a6 a7 ... an-1A

__global__ void vector_addition(float* A, cuda::atomic<float>& sum) {
  for (unsigned i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += gridDim.x * blockDim.x) {
    sum += A[i];
  }
}
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Summary

• We have gone through the basic building blocks of CUDA.

• The host is in charge, the device is used for offloading computation.

• Kernels are functions invoked on the host, run on the device.

• Computation is divided in blocks and threads.

• Knowing your hardware leads to better software.

• SMs execute blocks in parallel.

• Global memory allows for communication with the host and device, and must be preallocated.

• GPUs excel at data parallelism.

• Identifying the right problem to tackle on GPU is half the work.
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Resources Used in the Talk

• GPU Teaching Kit on Accelerated Computing.

• NVIDIA Deep Learning Institute materials.

• CUDA Programming Guide.

• Talk by O. Giroux on The One-Decade Task: Putting std::atomic in CUDA.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.youtube.com/watch?v=VogqOscJYvk
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