

Programming for GPUs Daniel Cámpora | Senior Al Devtech Engineer, NVIDIA

The CUDA Programming Model

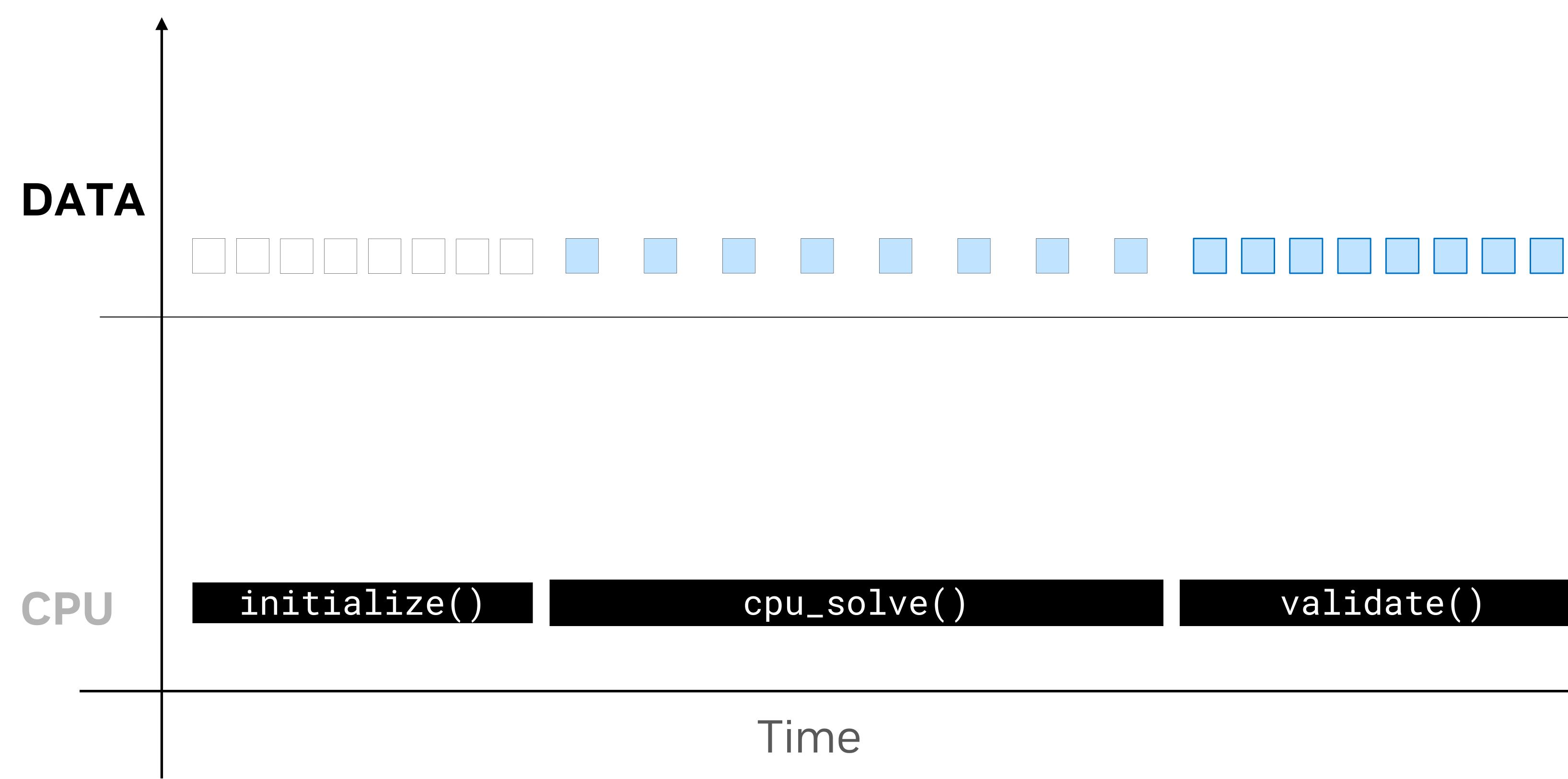
- Host, device and memory
- Writing a kernel
- GPU architecture
- Common data parallel techniques
- Summary

Table of Contents

Daniel Cámpora – dcampora@nvidia.com

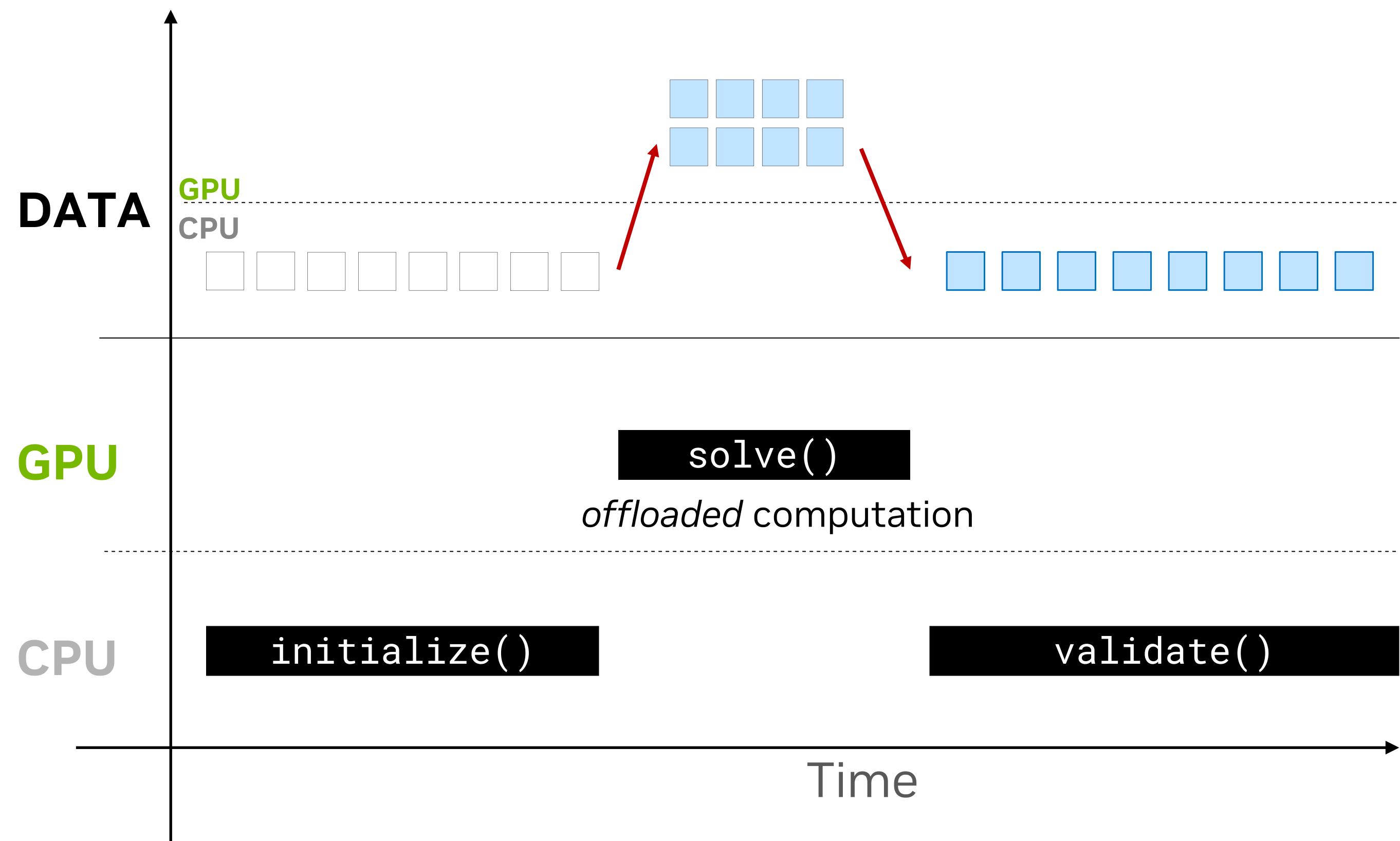
- CUDA stands for Compute Unified Device Architecture.
- It is a programming model introduced in 2006 by NVIDIA as a set of extensions to the C programming language.
- Nowadays, it works with a variety of languages: Python, C, C++, Fortran, etc.
- It allows GPUs to be used for general purpose computing (also referred to as **GPGPU** or **GPU** computing).
- Since its inception, other standards have emerged, such as OpenCL, ROCm or SYCL, to name a few. We will discuss them in depth in lecture Design patterns and best practices.

What Is CUDA?



A CPU Application

Daniel Cámpora – dcampora@nvidia.com



A GPU Application

Daniel Cámpora – dcampora@nvidia.com

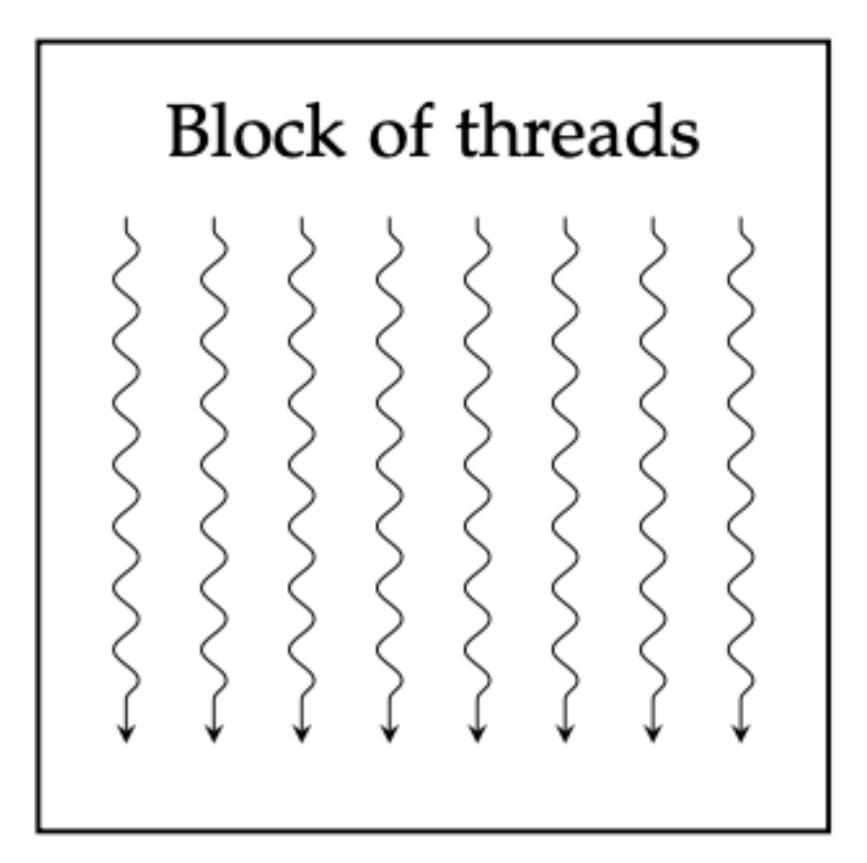
validate()

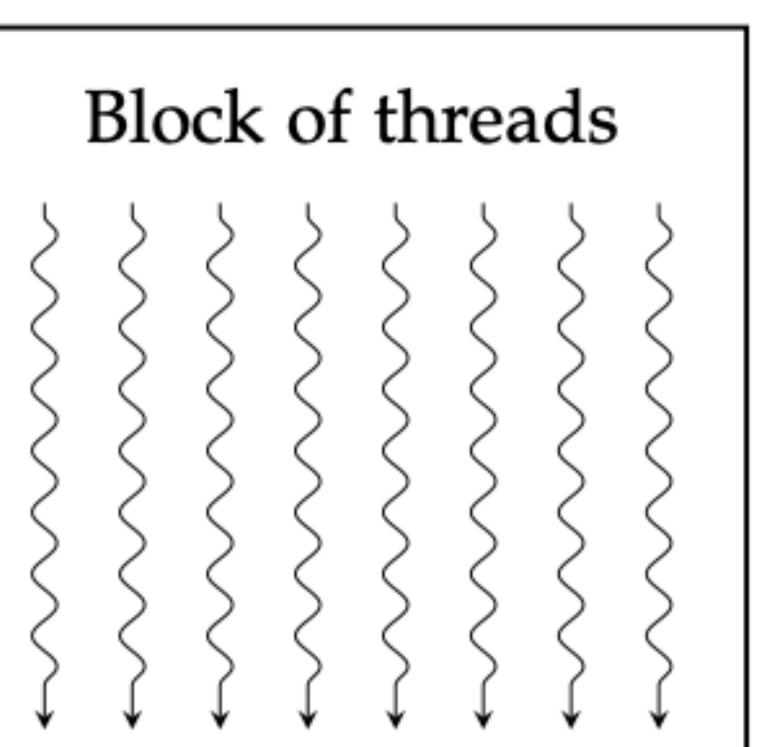
- Threads are organized in **blocks of threads**.

Thread

Parallel Processors

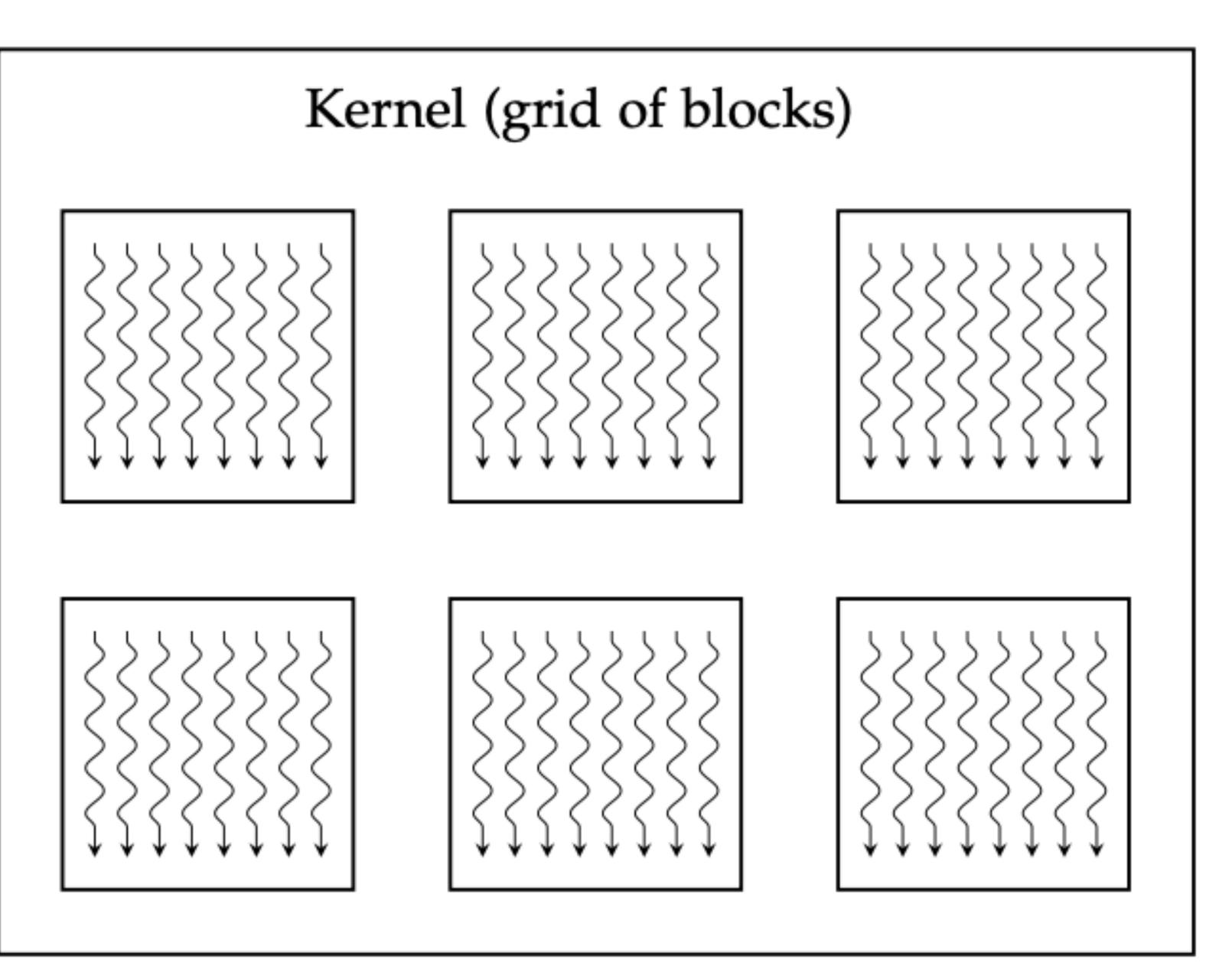
GPUs are parallel processors that can execute many threads in parallel.





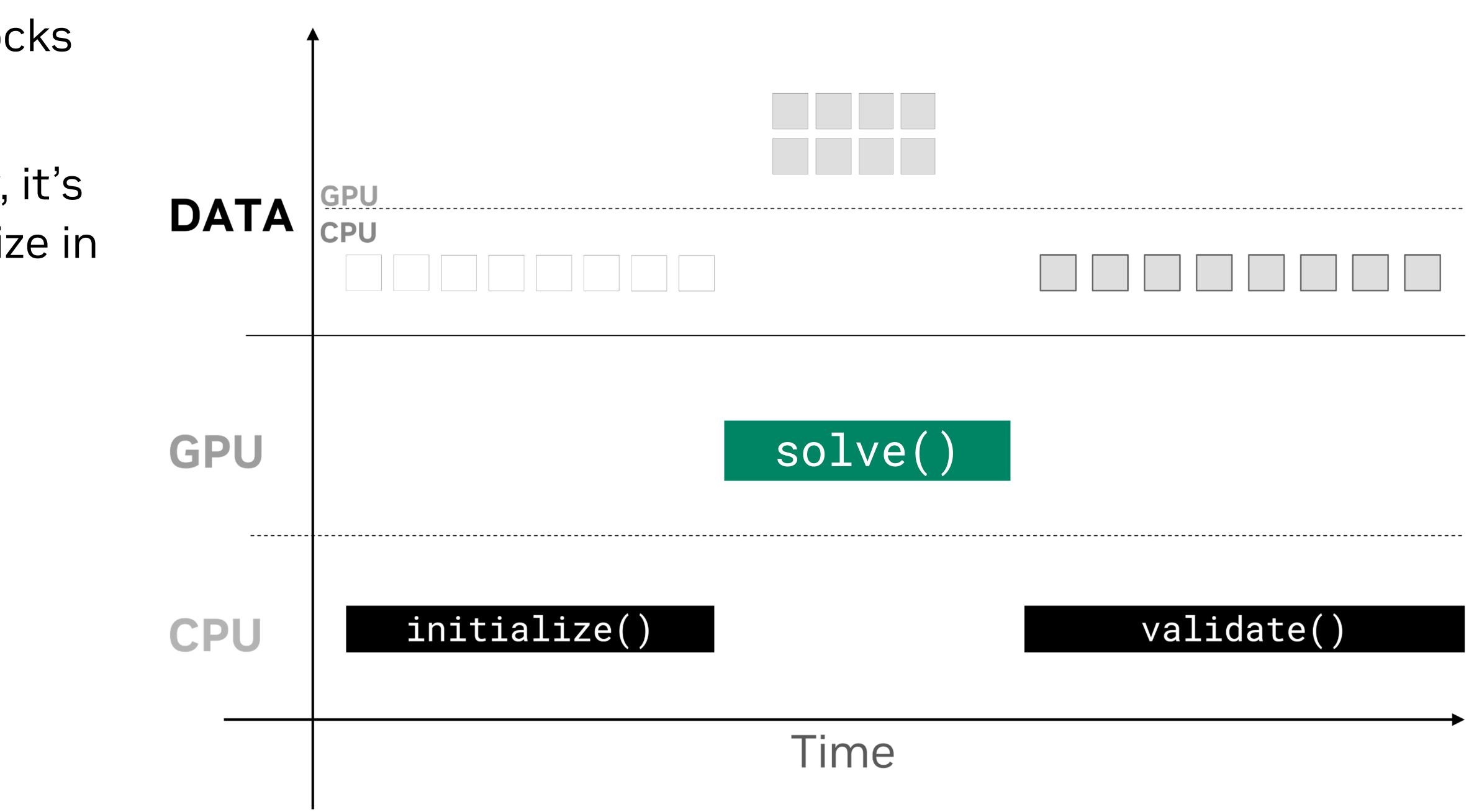
A function in CUDA, also called a kernel, is invoked with a configurable grid of blocks, each with the same number of threads.

The Kernel



- The **solve** kernel runs blocks and threads in parallel.
- According to Amdahl's law, it's the best target to parallelize in this example.
- Let's inspect it.

Kernel Execution Example



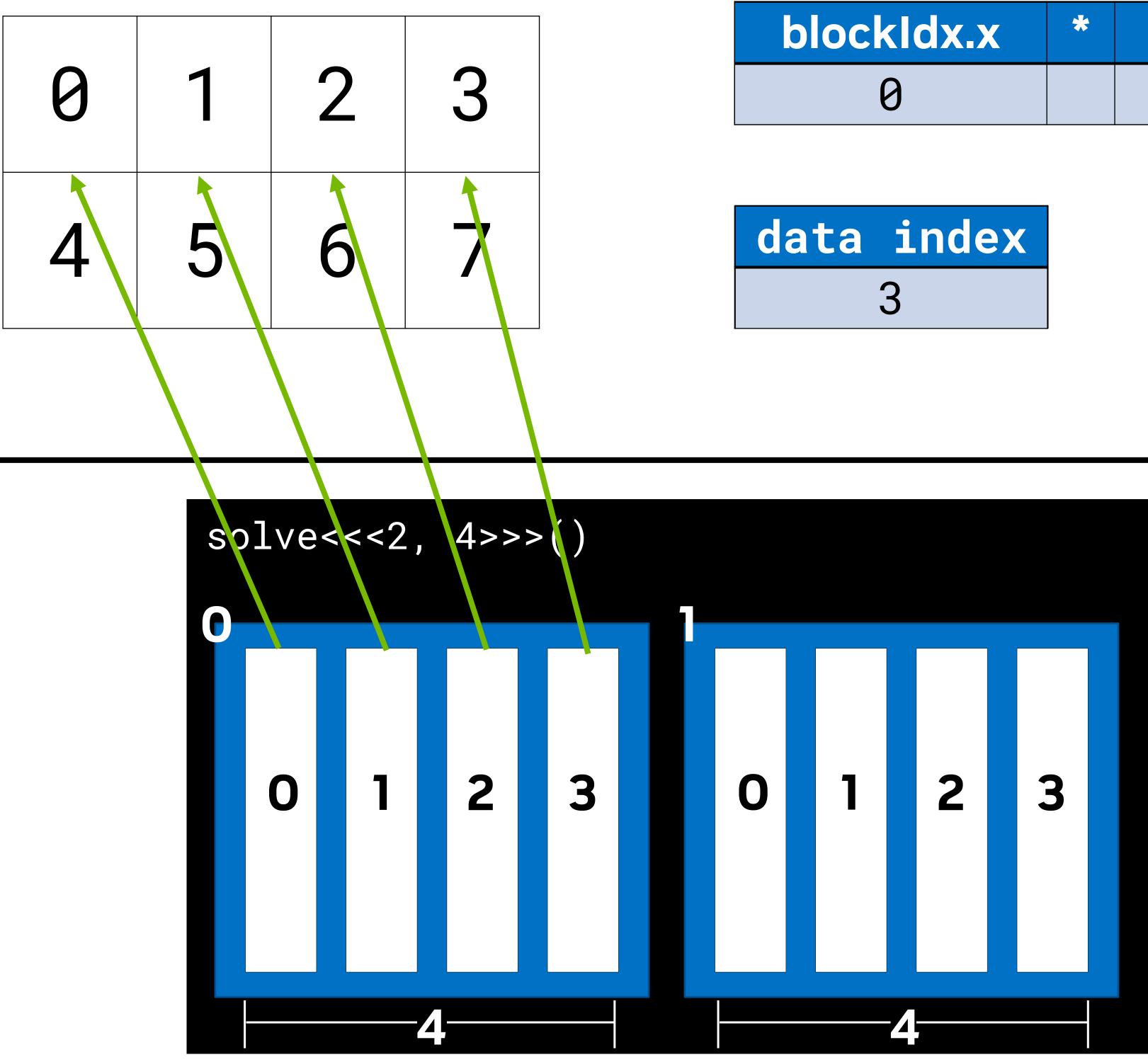
- solve is invoked with a configuration of 2 blocks and 4 threads per block.
- Each block runs independently from one another.
- Each thread runs independently from one another.
- All blocks in a grid must have the same number of threads.

A Day in a Kernel's Life

- Inside our kernel execution, indices identify each individual thread.
- gridDim.x is the number of blocks in the grid, in this case 2.
- blockIdx.x identifies the current block within the grid.
- blockDim.x refers to the number of threads in a block, in this case 4.
- threadIdx.x identifies the current thread within the block.
- kernel in the grid.

Indices

• The formula **blockIdx.x** * **blockDim.x** + **threadIdx.x** uniquely identifies threads in our

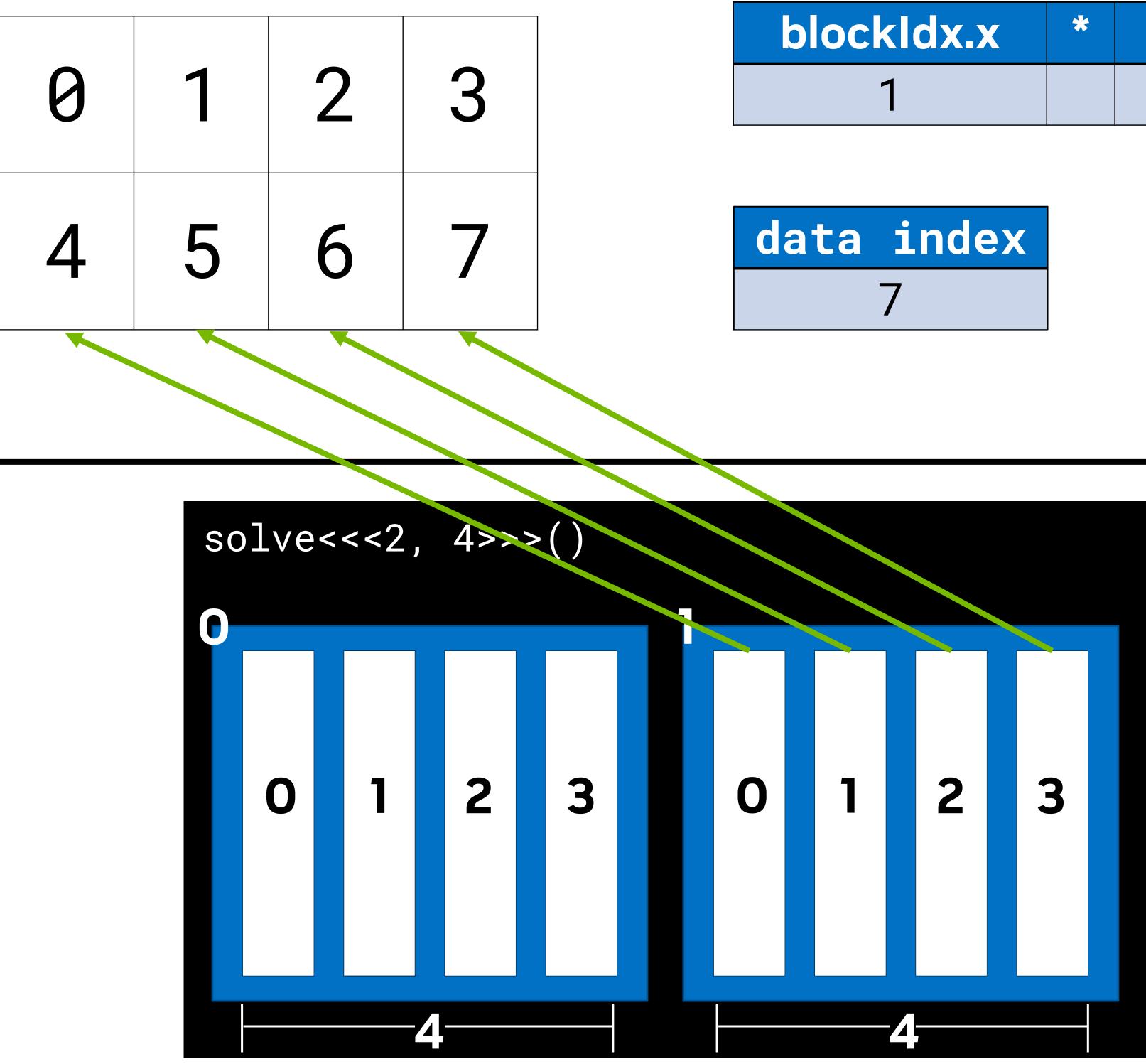


GPU DATA

Coordinating Parallel Threads

Daniel Cámpora – dcampora@nvidia.com

*	blockDim.x	+	threadIdx.x
	4		3



GPU DATA

Coordinating Parallel Threads

Daniel Cámpora – dcampora@nvidia.com

*	blockDim.x	+	threadIdx.x
	4		3

- Grid and block size can be configured with 3 dimensions.
- The 3 dimensions allow for simplicity when assigning tasks to each block / thread.
 - Eq. a configuration of {32, 4, 4} threads will generate 512 threads in total.

There is a maximum of 1024 threads per block

- The multiplication of the three dimensions should not exceed the maximum.
- Dimensions can be accessed with members x, y and z:
 - gridDim.x, gridDim.y, gridDim.z
 - blockDim.x, blockDim.y, blockDim.z
 - blockIdx.x, blockIdx.y, blockIdx.z
 - threadIdx.x, threadIdx.y, threadIdx.z

Configuration Goodies

- The CUDA Programming Model
- Host, device and memory
- Writing a kernel
- GPU architecture
- Common data parallel techniques
- Summary

Table of Contents

Daniel Cámpora – dcampora@nvidia.com

- A GPU-accelerated application runs like any other OS application. • It requires a CPU, which launches the application and acts as the **host**. The host can offload some of the work onto the GPU, which acts as the device. The host is in charge of the application at all times.

- It can kill the application, react to interrupts, etc.

Host and Device

Get results

Device

Function qualifiers:

- A function that is invoked by the **host**, and runs on the **host**. __host__ • __device__ A function that is invoked by the **device**, and runs on the **device**. • __global__ A function that is invoked by the **host or device**, and runs on the **device**.

CUDA Syntax

__global__ functions always execute asynchronously.

The GPU has three main kinds of memory:

- Global memory High latency, GBs of space.
- Caches Lower latency.
 - L2 cache MBs of space.
 - L1 cache KBs of space.
- **Registers** Lowest latency.
 - A configurable 64-255 registers available per GPU core.

Memory Hierarchy

L1 cache

Reg.

L2 cache

Global memory

- The host can only access device global memory.
- our kernel.

Host – Device Communication

• Therefore, all **input data** to the GPU needs to be populated on **global memory** prior to starting

• All output data needs to be put on global memory before the kernel ends executing.

Offload computation

Get results

Daniel Cámpora – dcampora@nvidia.com

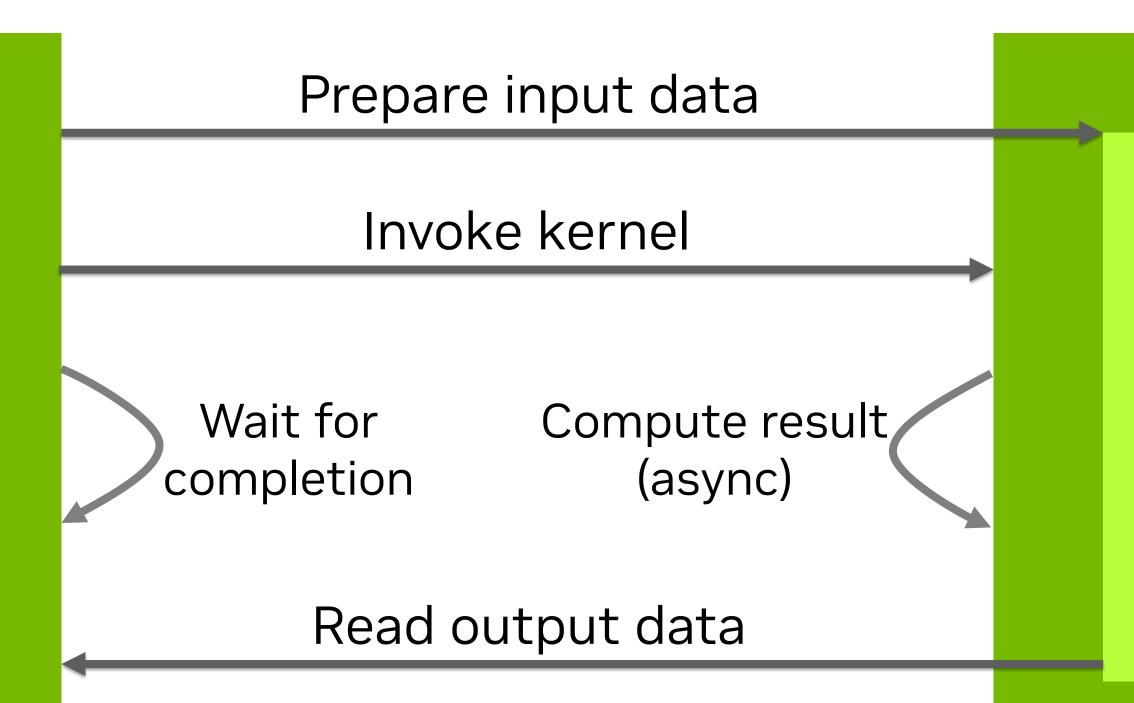
Device

Host – Device Communication (2)

- The host can only access device global memory.
- our kernel.

• Therefore, all input data to the GPU needs to be populated on global memory prior to starting

• All output data needs to be put on global memory before the kernel ends executing.



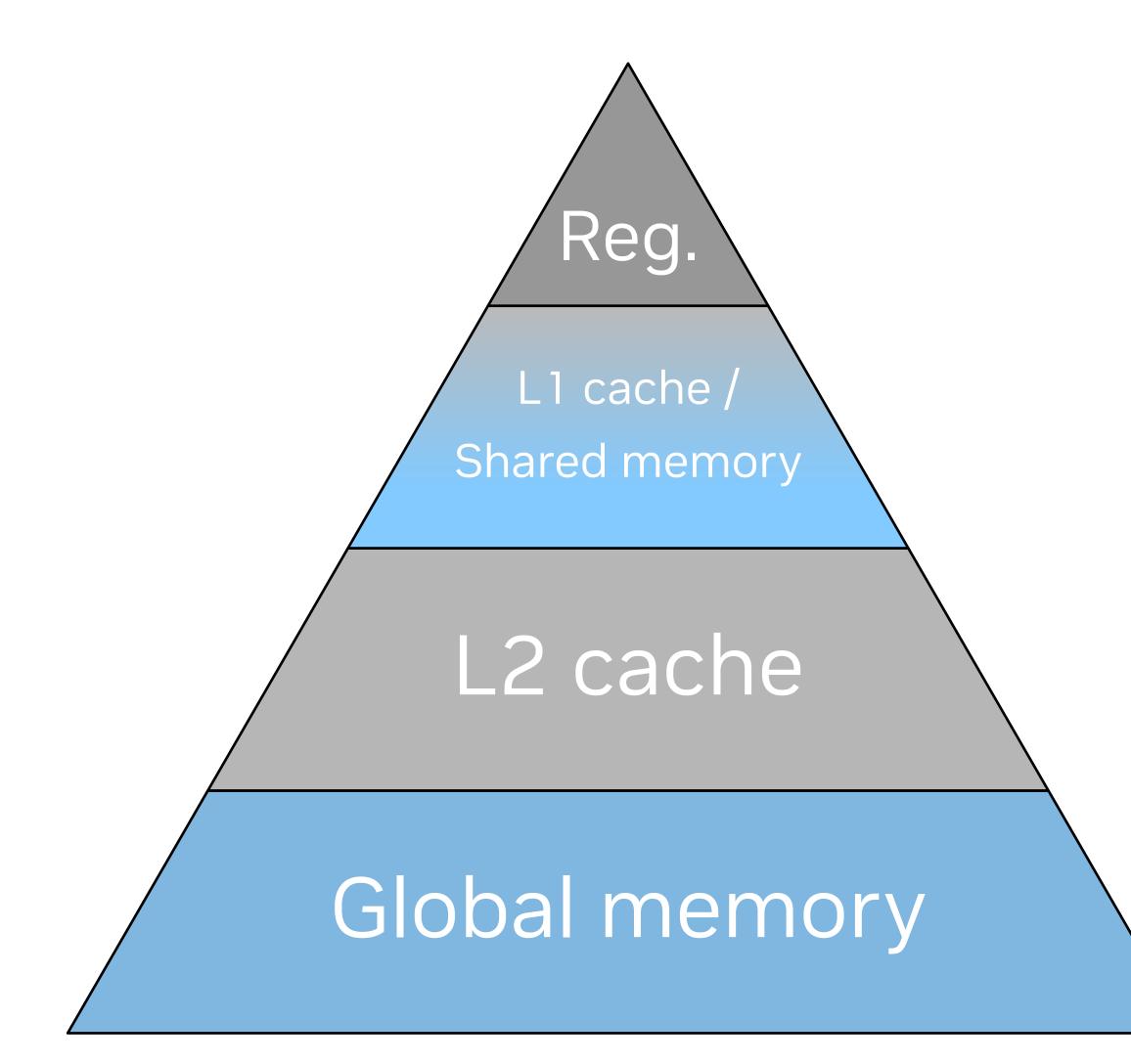
Global memory

GPUs offer a low-level optimization that is not available on CPUs.

• A part of L1 cache can be configured as shared memory.

Memory used for shared memory will not be used for L1 (tradeoff).

Shared memory



Daniel Cámpora – dcampora@nvidia.com

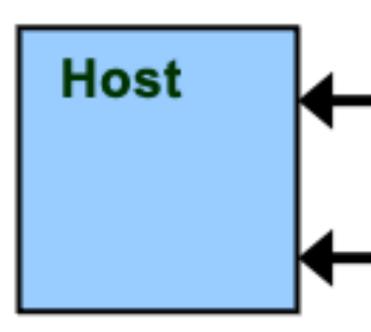
- Shared memory is:
 - Fast memory you have direct control over.
 - Limited in size.
 - Shared among the block.
 - It can only be accessed from the device.
- Shared memory size is limited:

Shared Memory (2)

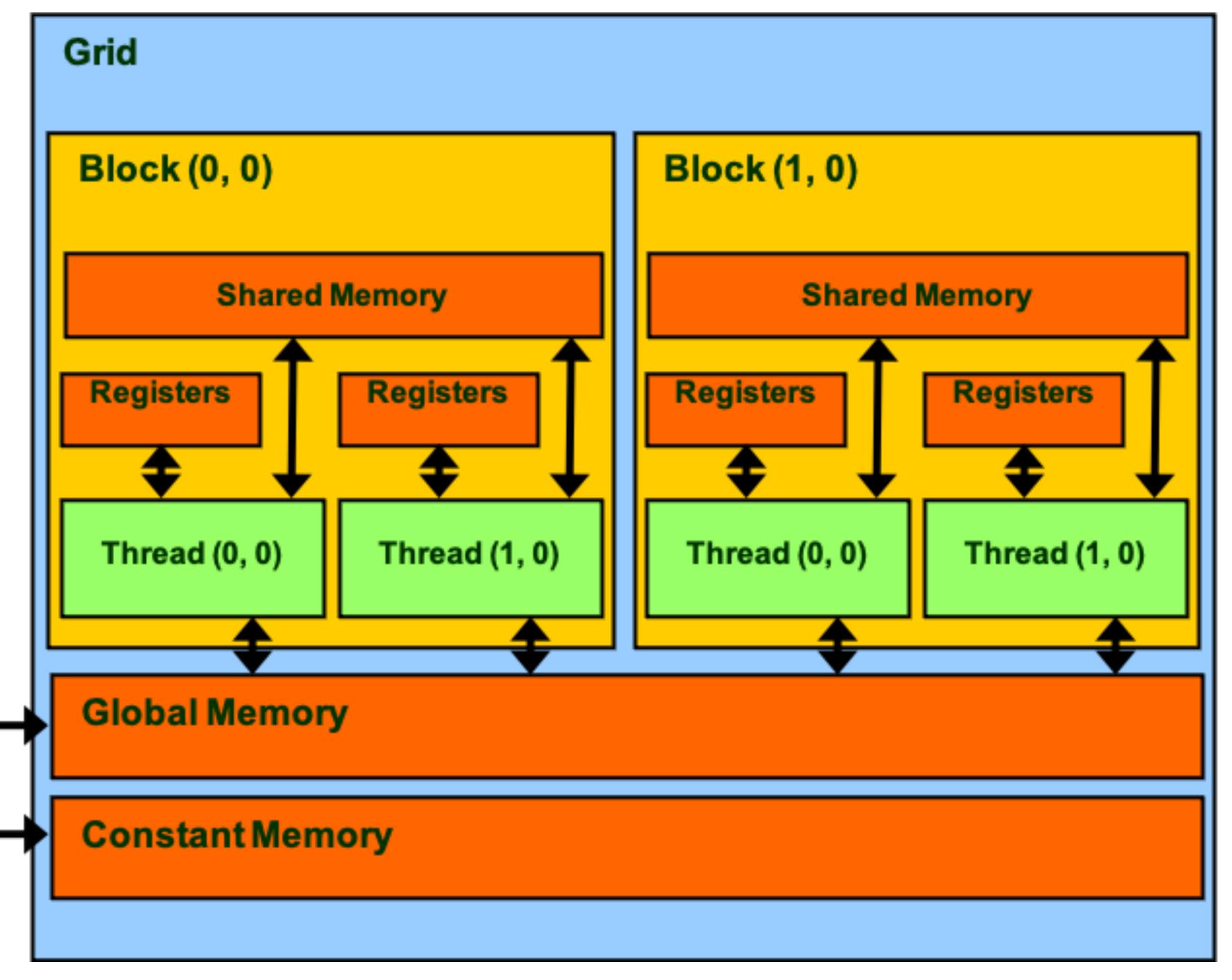
Its contents are flushed after the __global__ function terminates.

• On the Tesla T4 that you will use in the tutorials, its processors (SMs) allow a maximum of **48 KBs**. • Generally speaking, it is configurable and its maximum size depends on the architecture.

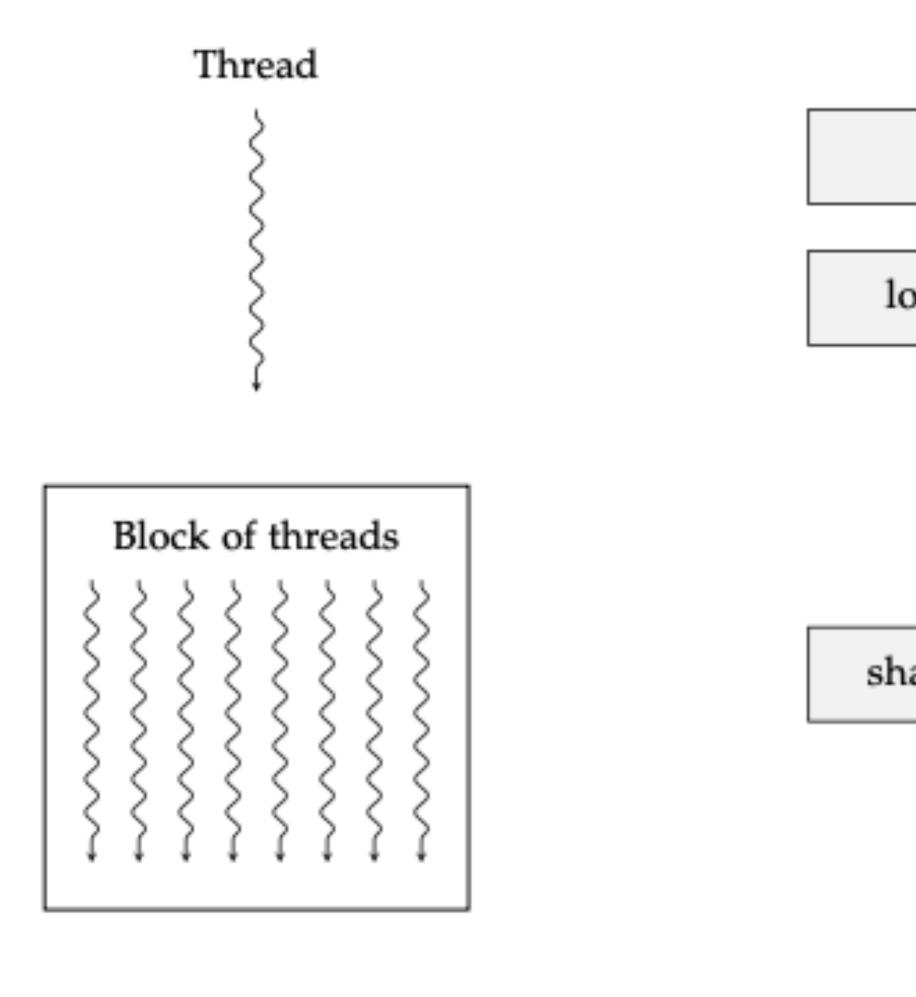
• We'll see an example in lecture Performant Programming for GPUs.

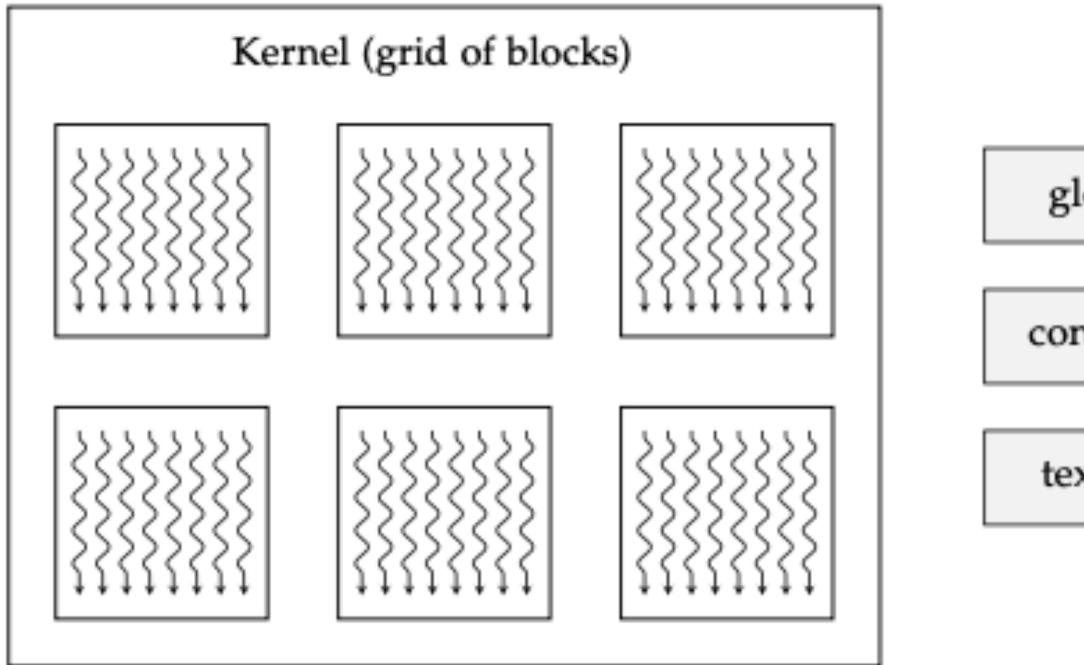


Memory Overview



Memory Schema





Daniel Cámpora – dcampora@nvidia.com

local memory

We will see this in the next lecture.

shared memory

global memory

constant memory

texture memory

You can ignore constant and texture memory.

- The CUDA Programming Model
- Host, device and memory

Writing a kernel

- GPU architecture
- Common data parallel techniques
- Summary

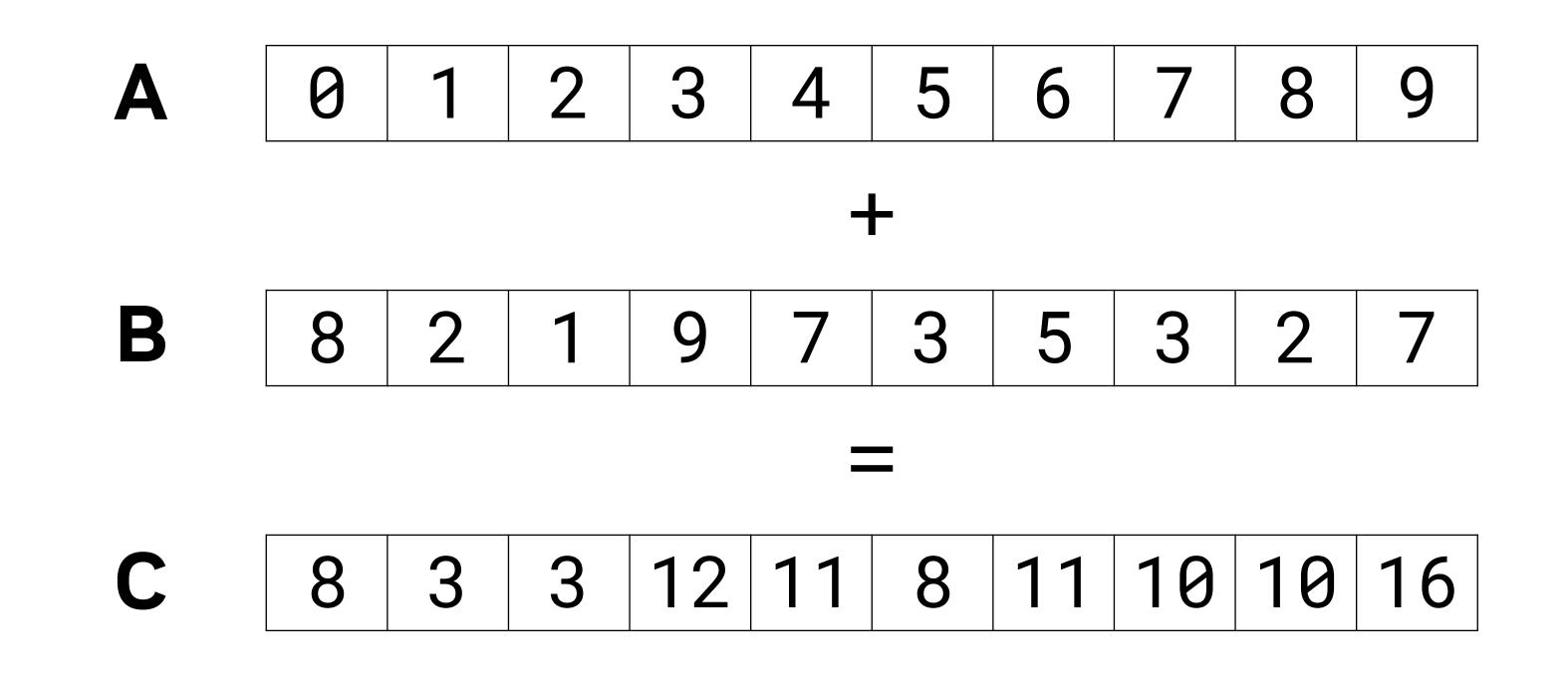
Table of Contents

Daniel Cámpora – dcampora@nvidia.com

Let's write a vector addition kernel.

• **A**, **B**, and **C** are arrays of float of size **N**.

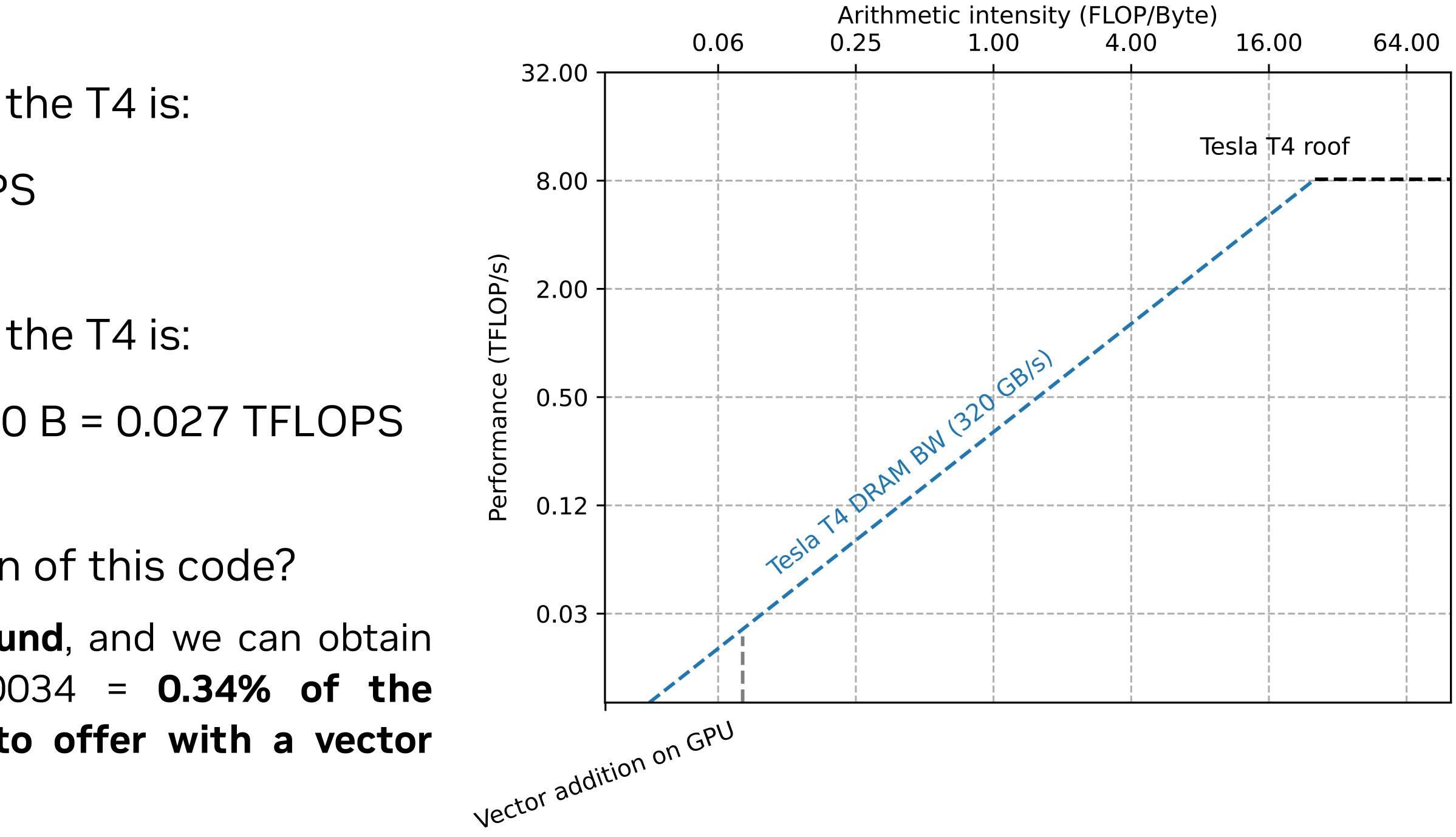
Vector Addition



• Compute to global memory access ratio (arithmetic intensity in FLOPs / Bytes): $10 \, FLOPs / 120 \, Bytes = 0.08$

- Recall the Roofline model.
 The peak performance on the T4 is: 8 TFLOPS
- Our peak performance on the T4 is:
 0.32 TBps * 10 FLOPS / 120 B = 0.027 TFLOPS
- What is the main limitation of this code?
 We are heavily memory bound, and we can obtain at best 0.027 / 8 = 0.0034 = 0.34% of the performance the T4 has to offer with a vector addition.

Vector Addition



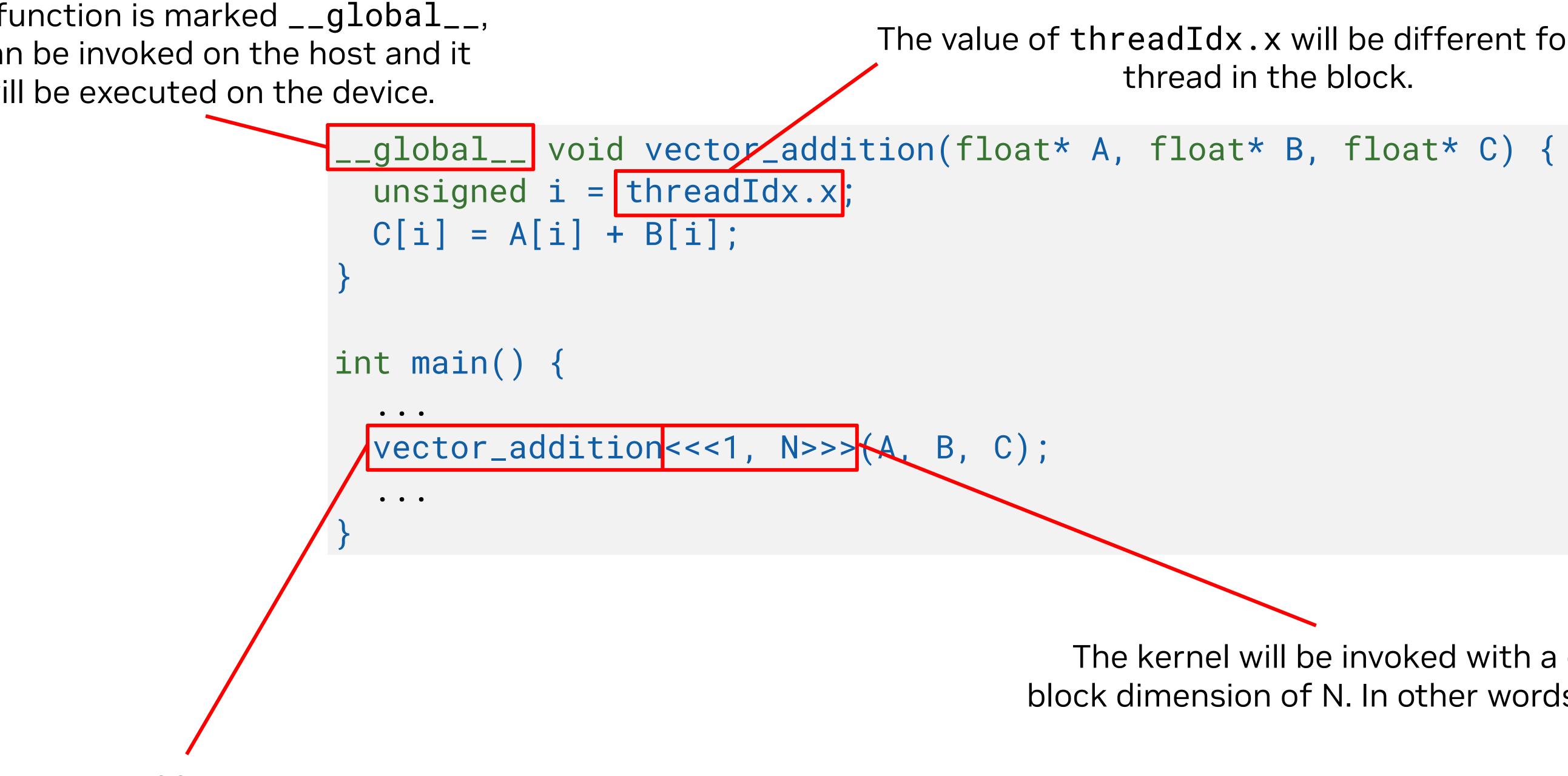
- Function attributes:
- threadIdx.x, blockIdx.x Indices:
- gridDim.x, blockDim.x • Dimensions:
- Kernels (__global__ functions) invocation must specify grid and block dimensions as follows: • fn<<<grid_dim, block_dim>>>(arg0, arg1, ...);

CUDA Syntax Reminder

__global__, __device__, __host__

Vector Addition Parallelized Across Single Block of Threads

This function is marked __global__, it can be invoked on the host and it will be executed on the device.



vector_addition is invoked from the host. It will run asynchronously and non-blockingly. Control is returned immediately to the host.

The kernel will be invoked with a grid dimension of 1, and a block dimension of N. In other words, a single block of N threads.

Daniel Cámpora – dcampora@nvidia.com

The value of threadIdx.x will be different for each thread in the block.

accesses.

Flexibility

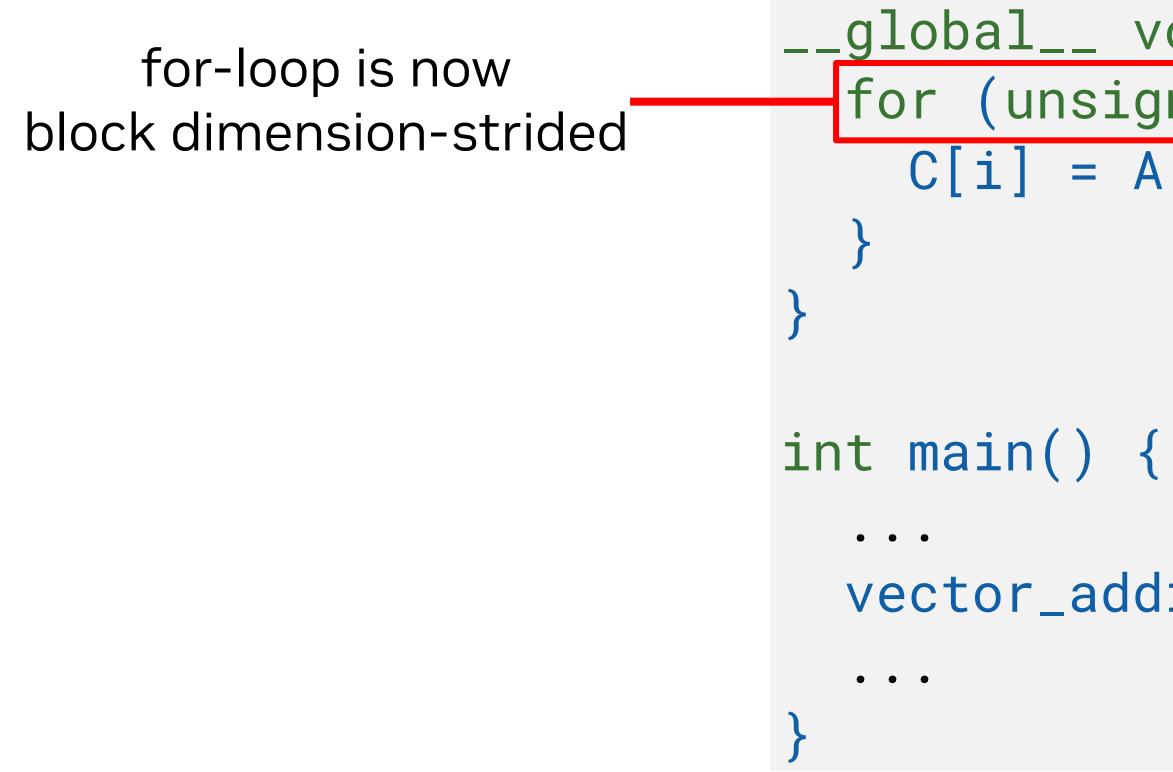
• The prior kernel assumes the block dimension to be N.

__global__ void vector_addition(float* A, float* B, float* C) { unsigned i = threadIdx.x; C[i] = A[i] + B[i];

Invoking the kernel with any other block dimension leads to incorrect results or out of bounds

Daniel Cámpora – dcampora@nvidia.com

- A common practice is to make loops involving threadIdx.x to be block dimension-strided. Now, invoking the kernel with any number of threads will give a correct result.



Block-dimension Strided Loops

_global__ void vector_addition(float* A, float* B, float* C) { for (unsigned i = threadIdx.x; i < N; i += blockDim.x) {</pre> C[i] = A[i] + B[i];

vector_addition<<<1, n>>>(A, B, C);

Any number of threads will yield the same result.

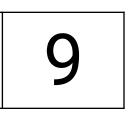
- We are so far using a single block. We could do better!
- Splitting the work across several blocks will ensure the GPU is better utilized for the task.

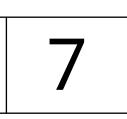
A good size for block dimension is 256.

Moving to Multiple Blocks

A	0	1	2	3	4	5	6	7	8
			+						
B	8	2	1	9	7	3	5	3	2
С	8	3	3	12	11	8	11	10	10

• If it's too few threads, the processors will be underutilized.





Vector Addition Parallelized Across Several Blocks

We now iterate through all threads across all blocks, evenly assigning work.

Grid and block dimensions are configurable at runtime.

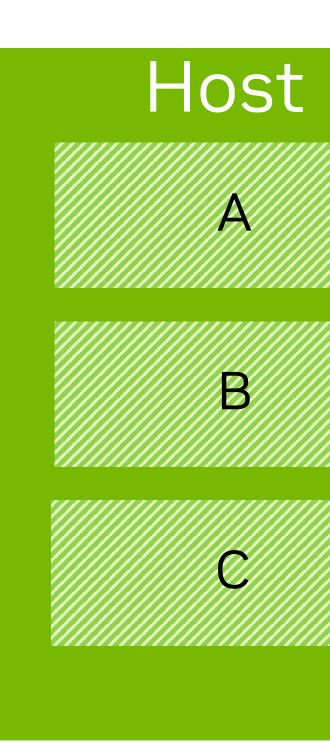
__global__ void vector_addition(float* A, float* B, float* C) { for (unsigned i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += gridDim.x * blockDim.x)</pre>

Daniel Cámpora – dcampora@nvidia.com

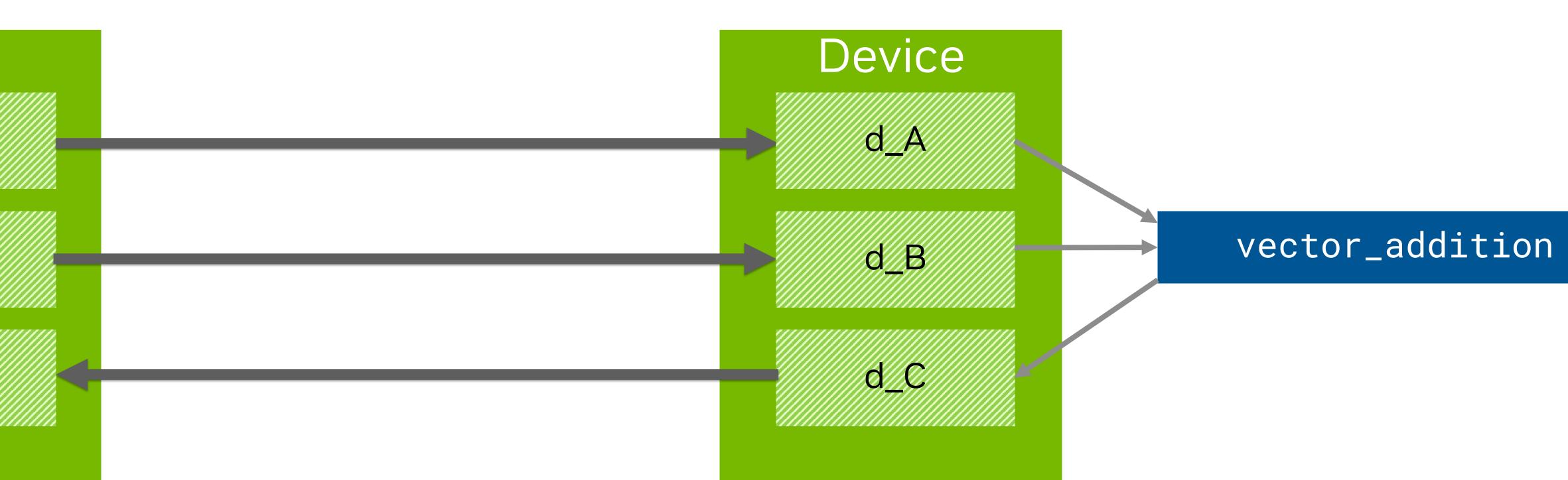
Stride is adjusted to account for blocks.

What About the Missing Sections?

- - 1. Allocate memory on the GPU.
 - 2. Populate inputs.
 - 3. Invoke kernel.
 - 4. Synchronize with kernel completion.
 - 5. Read outputs.



• We also need to perform data preparation, synchronization and data retrieval:

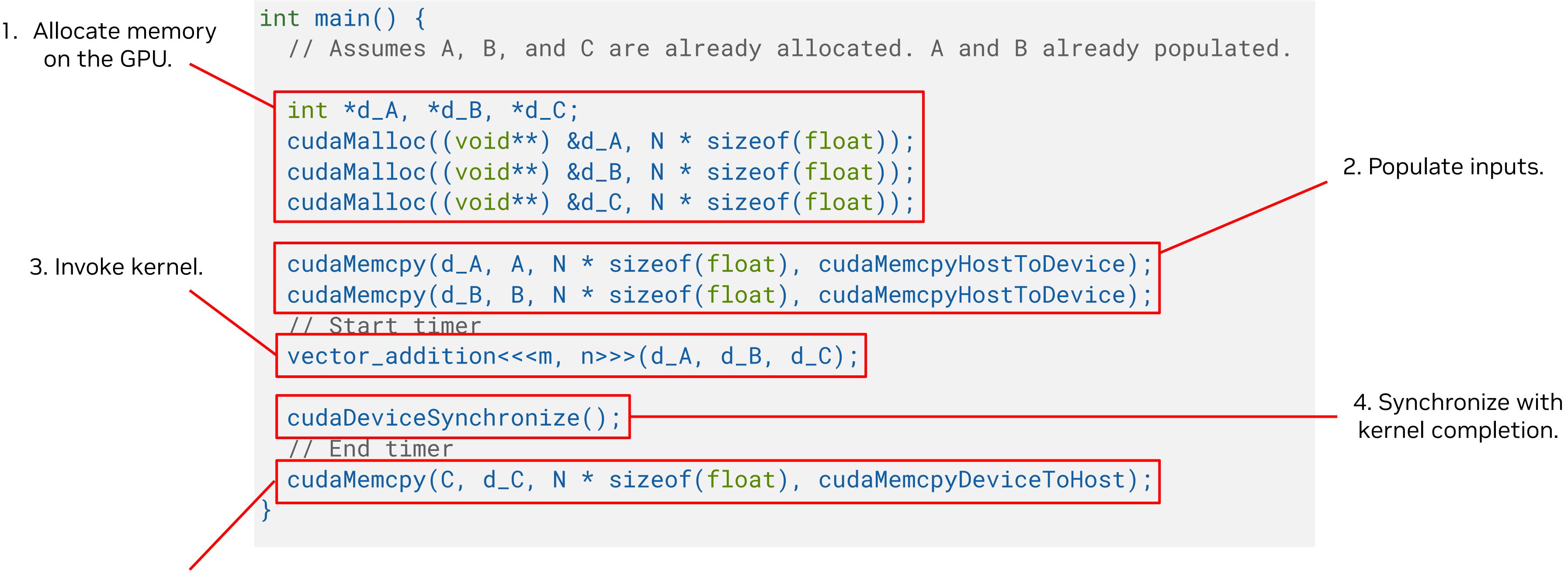


Daniel Cámpora – dcampora@nvidia.com

• There are several manners to control memory.

- Unified memory allows for a more high-level API where host device copies occur behind the scenes. • A lower-level API allows for explicit allocation, deallocation and copying.
- We will use the latter:
 - It assumes less from the user.
 - Allocations and copies are slow processes.
 - Unified memory requires doing prefetching for finer control, harder to get right.
 - They are fully translatable to other languages.

Data Handling Syntax



5. Read outputs.

Data Handling Example

- The CUDA Programming Model
- Host, device and memory
- Writing a kernel
- GPU architecture
- Common data parallel techniques
- Summary

Table of Contents

Daniel Cámpora – dcampora@nvidia.com

GPUs are made of processors known as **Streaming Multiprocessors (SMs)**.

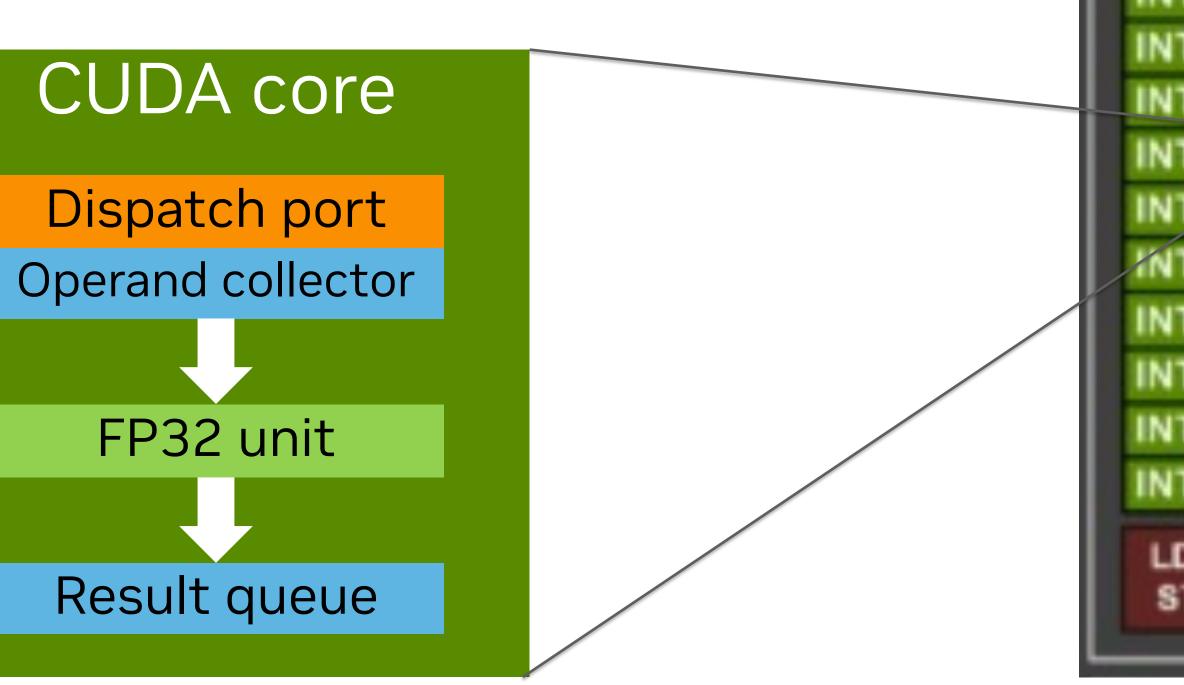
- Each SM contains:
 - A small control unit.
 - Many arithmetic units.
 - L1 cache and register memory (more on this later).

The Streaming Multiprocessor

The Streaming Multiprocessor (2)

- The heavy lifting is done by CUDA cores:
 - INT32, FP32, FP64 units and SFUs.
- Tensor cores are processors specialized for AI.
 - They allow faster matrix multiplications + additions.
 - They can also be used with CUDA.

y CUDA cores: nd SFUs.



L0 Instruction Cache

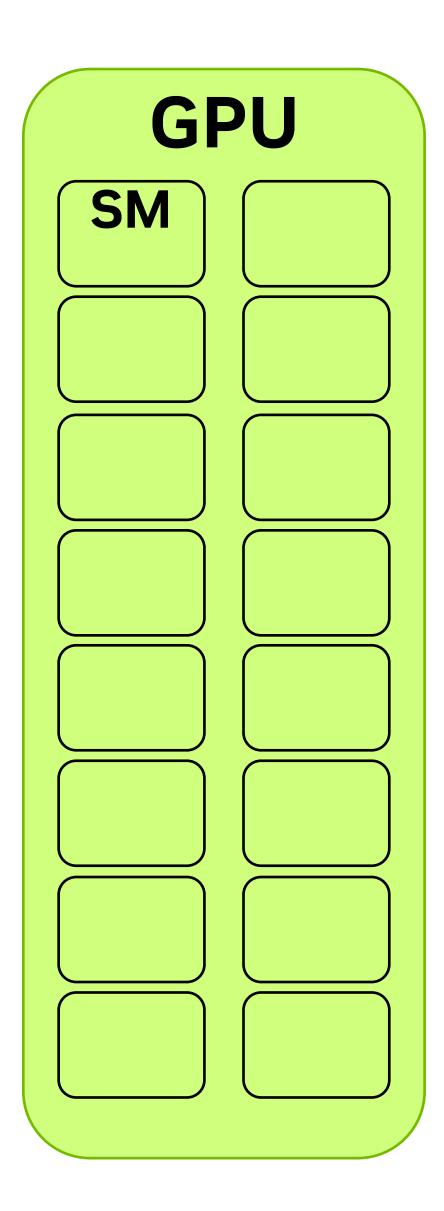
Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

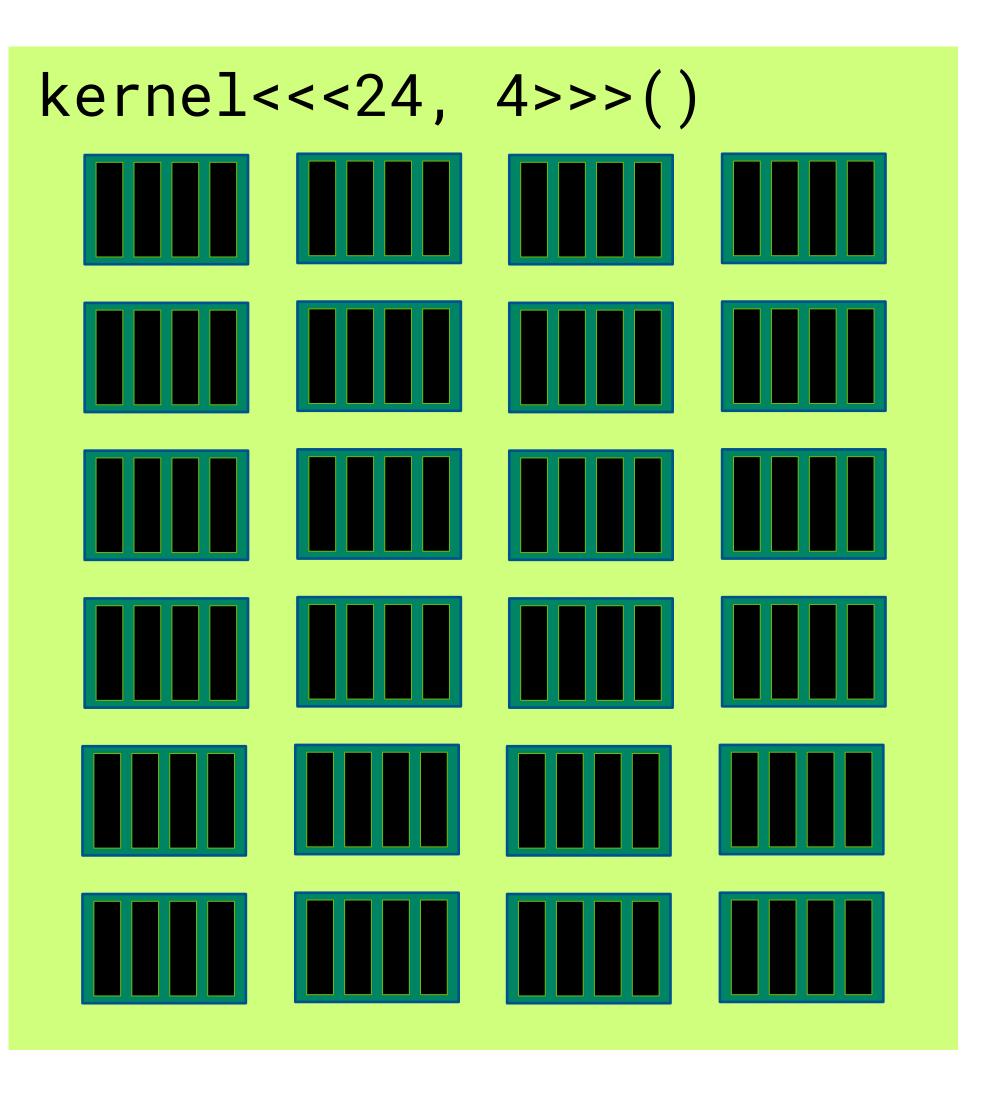
Register File (16,384 x 32-bit)

Г32	FP32	FP32	FP64	
Г32	FP32	FP32	FP64	
F32	FP32	FP32	FP64	
F32	FP32	FP32	FP64	
F32	FP32	FP32	FP64	
F32	FP32	FP32	FP64	
F32	FP32	FP32	FP64	
Г32	FP32	FP32	FP64	TENSOR CORE
F32	FP32	FP32	FP64	4 th GENERATION
F32	FP32	FP32	FP64	
1/2	FP32	FP32	FP64	
F32	FP32	FP32	FP64	
F32	FP32	FP32	FP64	
Г32	FP32	FP32	FP64	
F32	FP32	FP32	FP64	
Г32	FP32	FP32	FP64	
N	LD/ L	D/ LD	LDI LDI	
T ST ST ST ST ST ST ST				

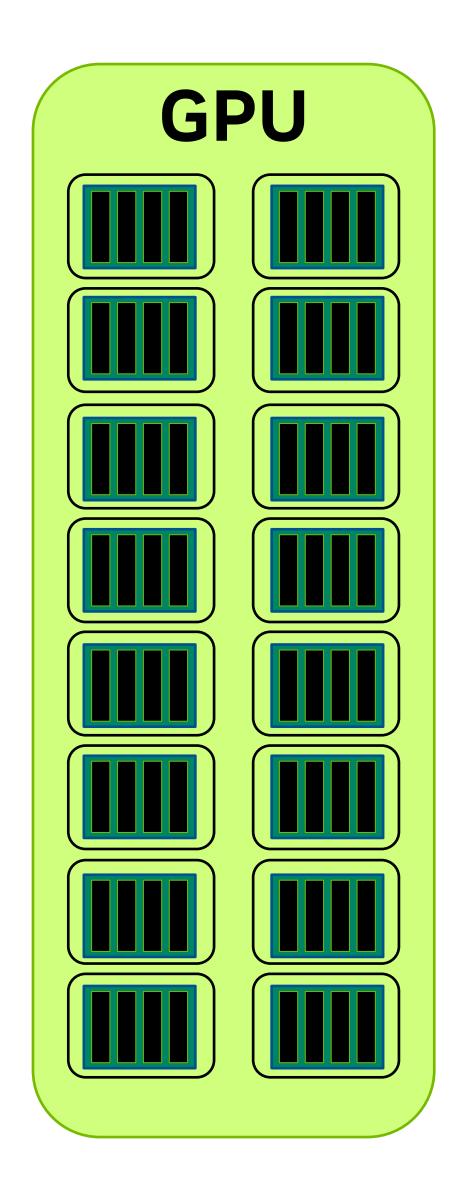
Blocks of threads are scheduled to run on SMs.



Transparent Scaling

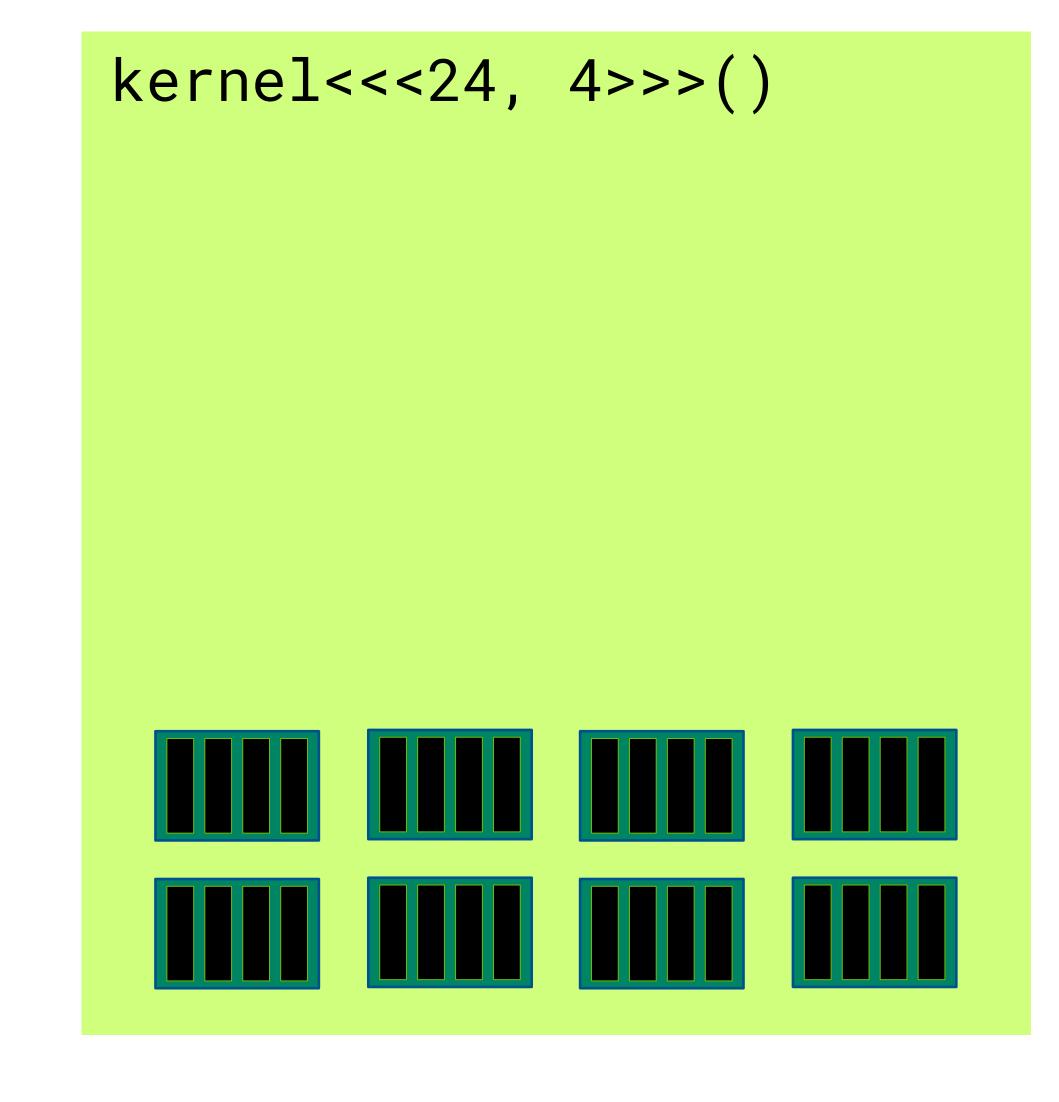


than one block may be scheduled on a SM.

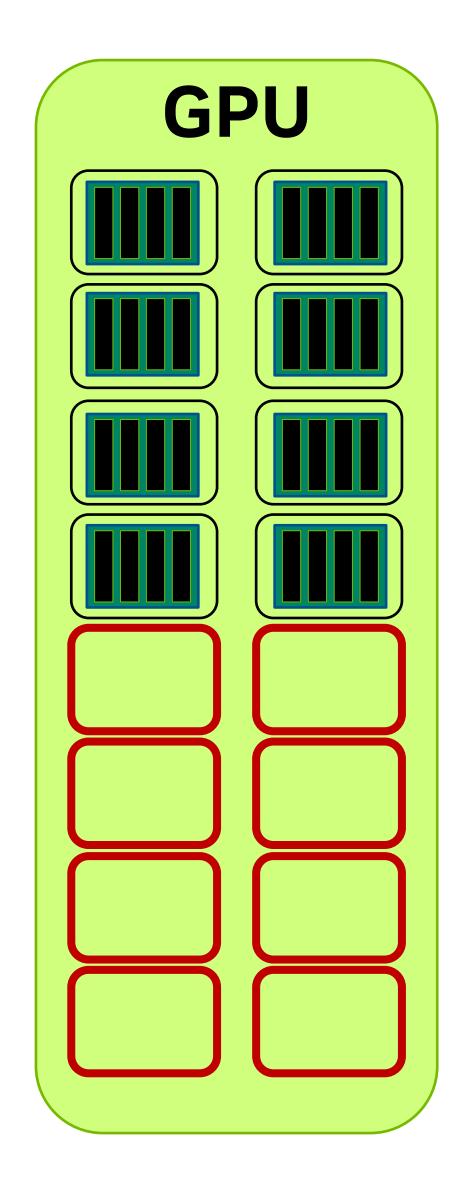


Transparent Scaling (2)

• Depending on the number of SMs, their capabilities, and the requirements of each block, more

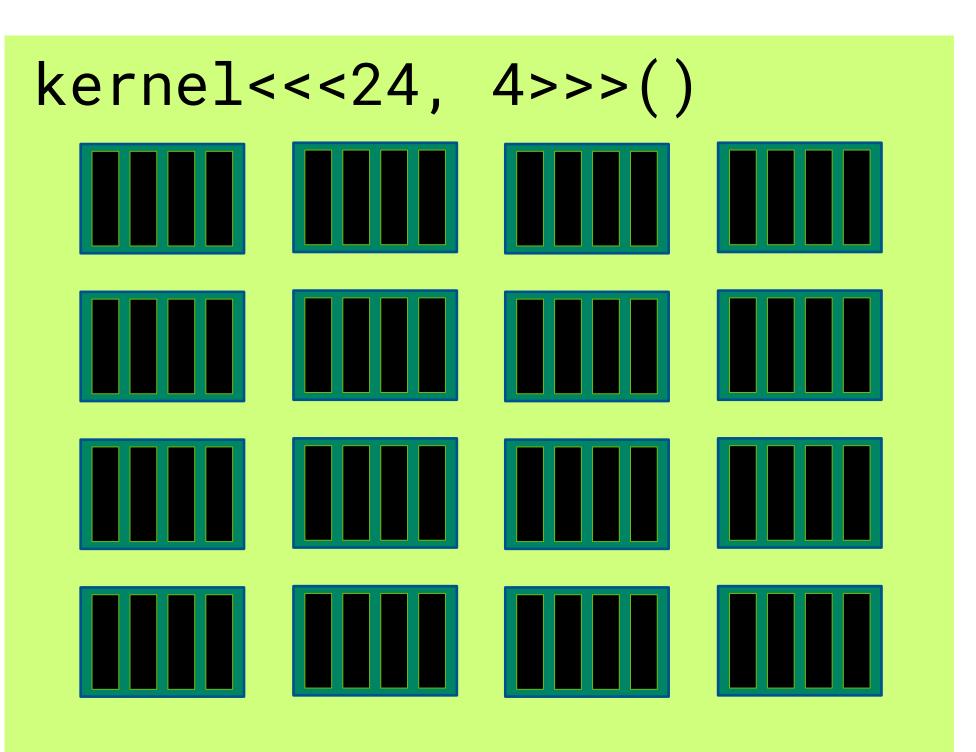


How relevant this is depends on your use-case.



Transparent Scaling (3)

 Invocation configuration that are not multiple of number of SMs lead to a wave quantization effect: we don't use the GPU to its fullest some of the time.



- We will use Tesla T4s for the tutorials.
 - Tesla T4s have **40 SMs**.
 - Tesla V100s have 80 SMs.
 - GH200s have **132 SMs**.

Saturating the GPU

• During a kernel invocation, each block of threads is executed *preferably* on a separate SM. • Hence, a kernel with at least 40 blocks would use all SMs of the Tesla T4.

Saturating the GPU – Slightly More Detail

- There are three parameters that determine how many blocks can be scheduled in parallel: Invocation configuration (i.e. number of blocks, number of threads). • **Register usage** of the kernel.
- - Shared memory usage of the kernel.
- Of course, if the GPU is busy processing other tasks that will also impact the performance of the kernel.
- The CUDA scheduler assigns work to the SMs and manages the GPU resources. In particular, it is possible to runs several kernels asynchronously. Or even several CUDA applications.

- The CUDA Programming Model
- Host, device and memory
- Writing a kernel
- GPU architecture
- Common data parallel techniques
- Summary

Table of Contents

Daniel Cámpora – dcampora@nvidia.com

44

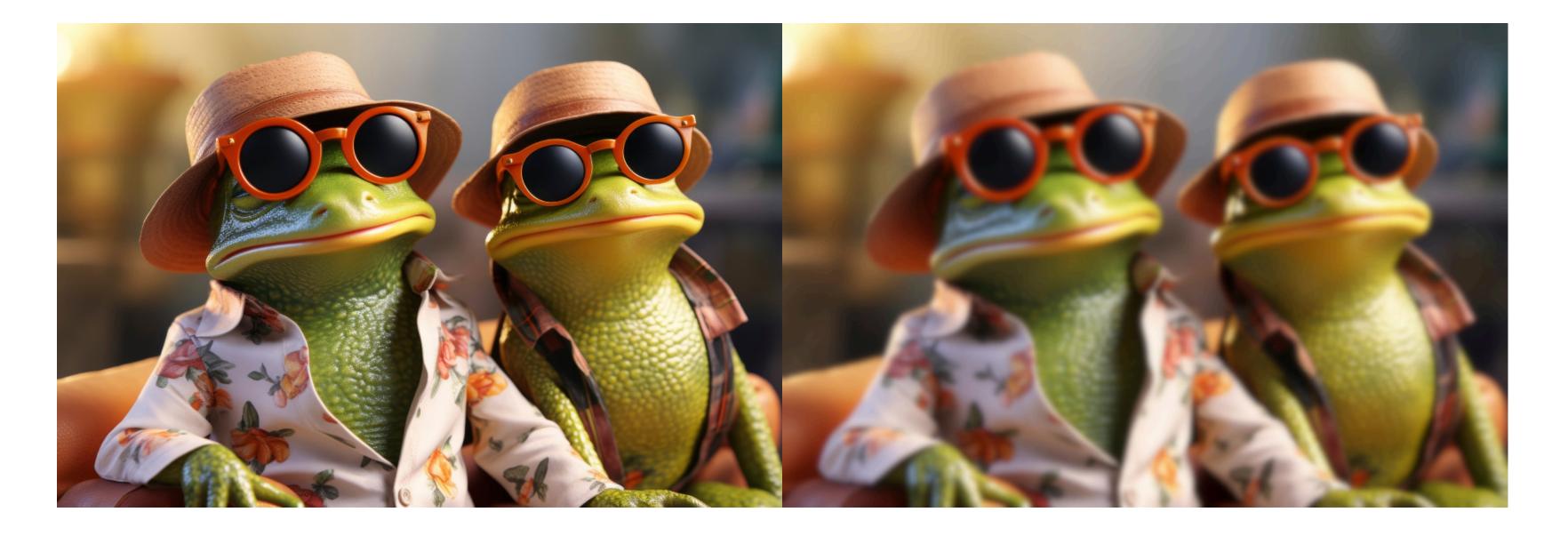
GPUs are very efficient for data parallel workloads.

- Perform the same operation across a dataset.
- As opposed to instruction / thread / process level parallelism.

Constructing a tower is not data parallel

Data Parallelism

Data dependencies are key factors to take into consideration!

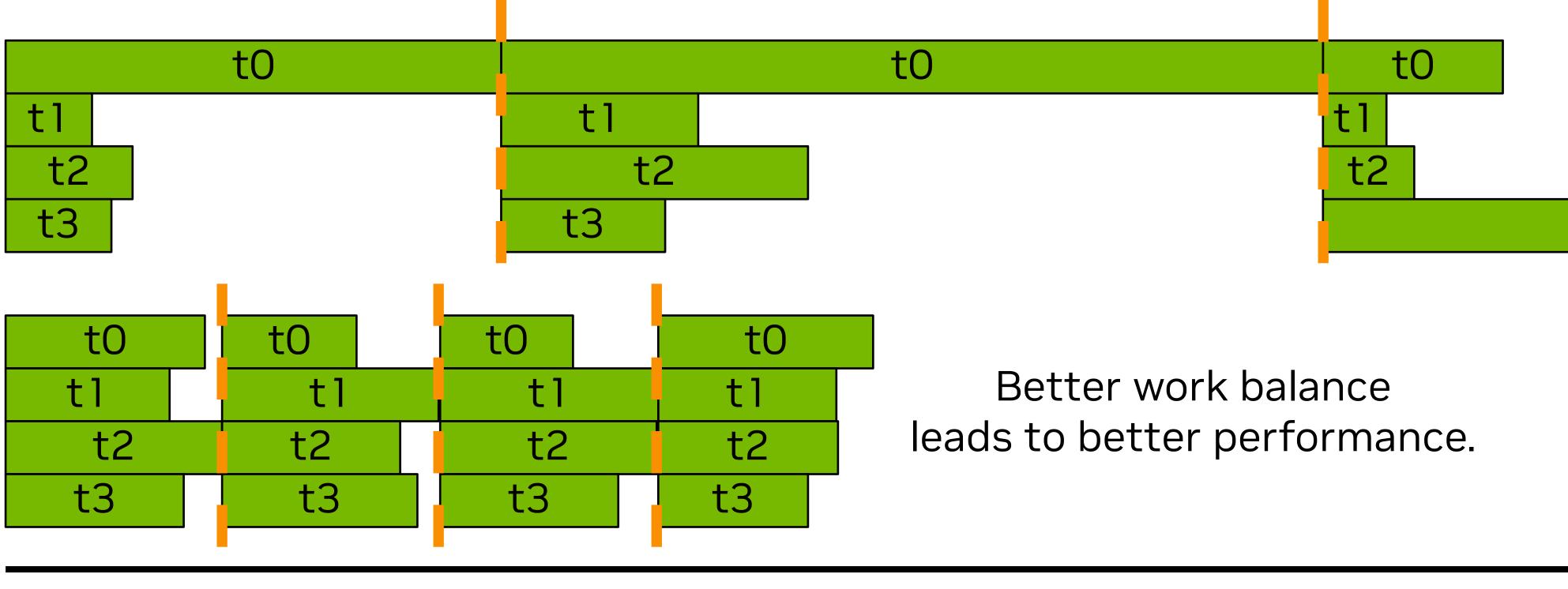


Daniel Cámpora – dcampora@nvidia.com

Image by freepik

Calculating a filter is data parallel

- - Cache hits are more likely.



Work Balance

Blocks are small executable pieces that can be carried out by a single SM.

There should be enough work to efficiently use the SM resources.

Work imbalance is important: a single thread can stall resources of the entire block.

Ideally all threads should have a similar amount of work to do.

The slower thread stalls the entire block.

46

• It acts as a *control flow barrier*, it will wait for all threads to reach that instruction.

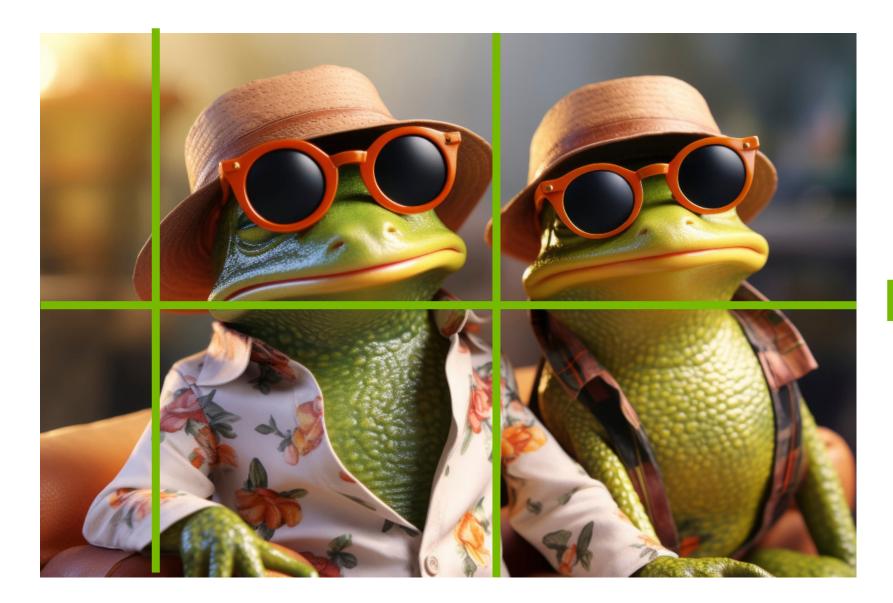
```
for (unsigned i = threadIdx.x; i < N; i += blockDim.x) {</pre>
 C[i] = A[i] + B[i];
__syncthreads();
 C[i] += C[i - 1];
```

Synchronising Threads

- Threads in a block can be synchronized through the __syncthreads() command.
 - __global__ void vector_addition(float* A, float* B, float* C) {

for (unsigned i = 1 + threadIdx.x; i < N; i += blockDim.x) {</pre>

Blocks cannot communicate to one another.



Assign blocks to sections.

Use all threads to load pixels in parallel.

Blocks Are Independent

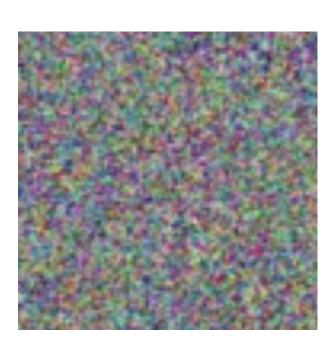
• In fact, *it is not guaranteed* that any two blocks will even execute concurrently.

You can reuse blocks smartly to divide the work considering data dependencies.

• Use __synchronize() and then reassign the role of each thread.

• Eq. imagine we need to encrypt an image with an encoding that has a dependency across columns:

Synchronize



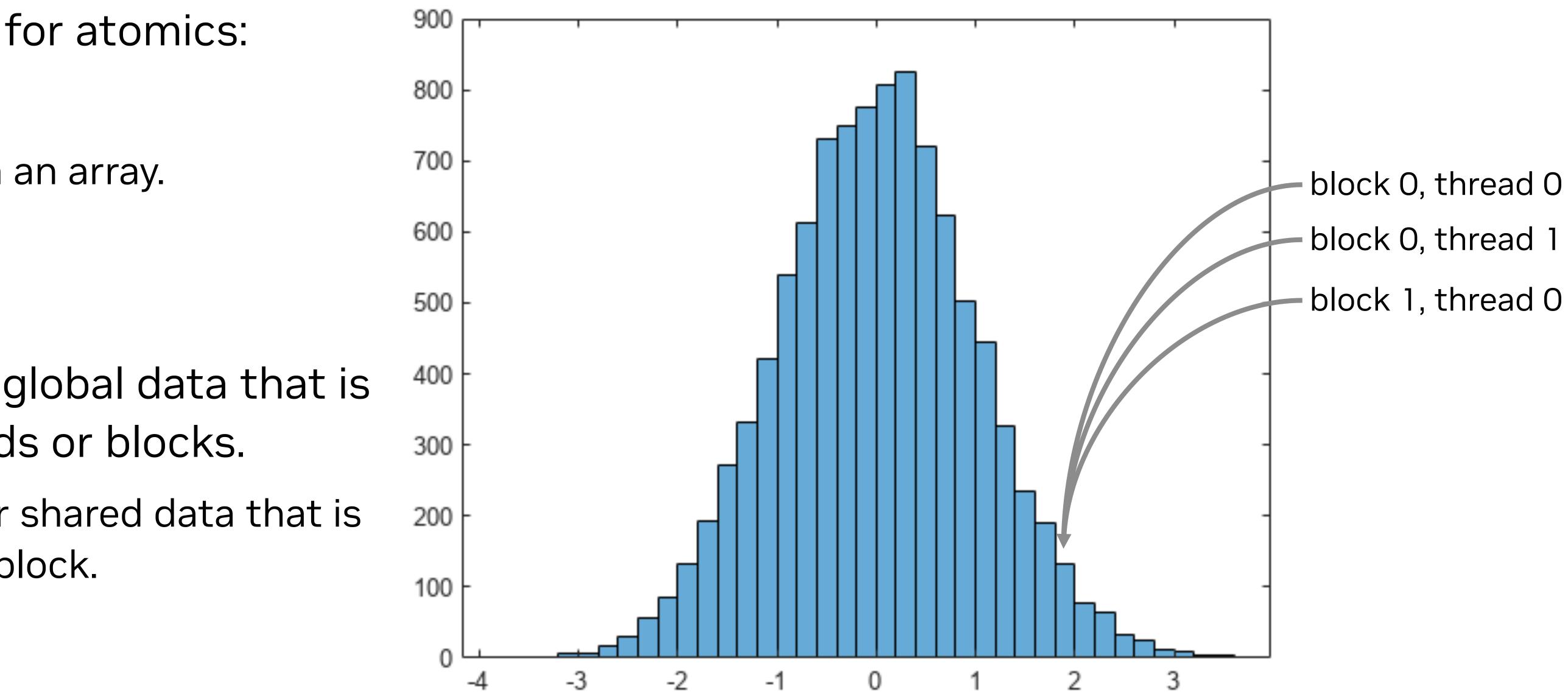
Each thread gets assigned a different row.

- memory).
- There are many use cases for atomics:
 - Counting elements.
 - Searching eg. elements on an array.
 - Histogramming...
- Atomics can be used over global data that is accessed by several threads or blocks.
 - They can also be used over shared data that is accessed by threads on a block.

Atomics

CUDA provides operations that allow atomic accesses over data (on global memory or shared)

Atomic accesses guarantee data will be coherent and prevents race conditions between threads.

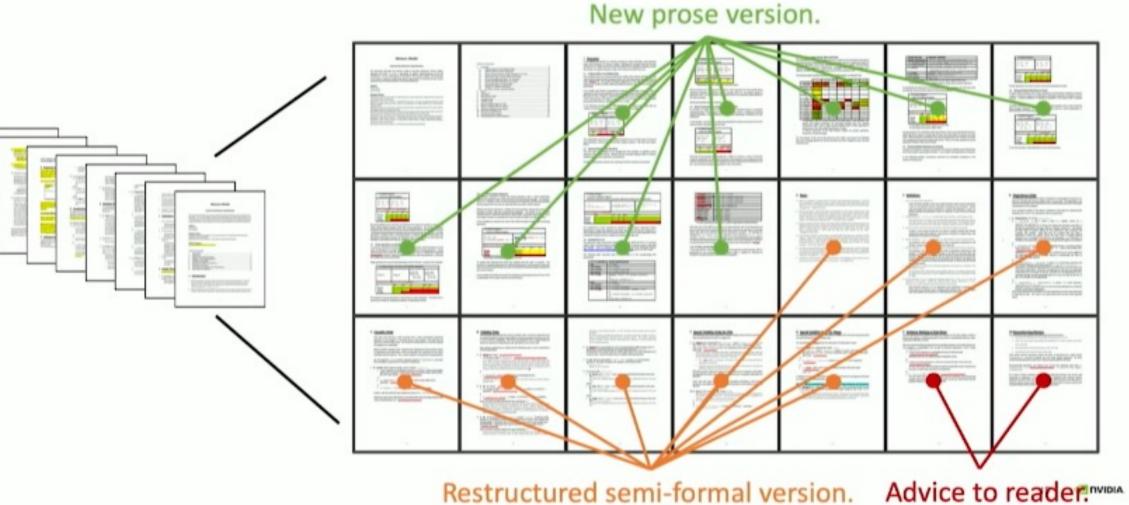


Daniel Cár

- Atomics could be potentially very slow if they are abused.
- The good news is that atomics are automatically optimized (both software and hardware).
 - Just because they are needed so often.
- Two syntaxes are supported on CUDA:
 - Functions: atomicAdd, atomicInc, atomicOr, ...
 - cuda::atomic (it took 10 years to get this one) working in CUDA).

Atomics (2)

TOOK A LITTLE BIT LONGER TO EXPLAIN...



- - Hence, it could live in shared memory or global memory.

One detail to know about C++ atomics:

• std::atomic owns the memory.

Cannot be copied.

- location.
 - Meant to be passed by value, can be copied.

cuda::(std::)atomic

 cuda::atomic behaves like what you would expect from the C++ standard std::atomic. It also allows to define a scope where the atomic takes effect: • The scope could e.g. be a single block, a cluster of blocks or the entire GPU.

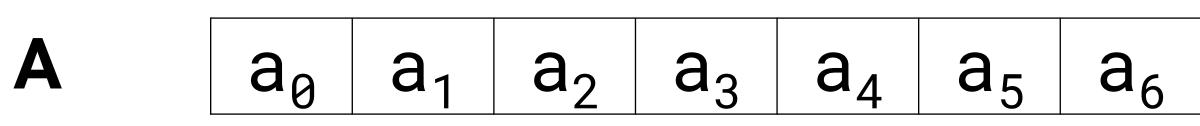
• std::atomic_ref is a lightweight non-owning wrapper around a user-specified memory

One Last Example: an Atomic Addition

Adding together numbers in a floating point array.

sum += A[i];

Bear in mind: **Floating point** atomics will result in a non-deterministic result! Integer atomics don't have this issue.



__global__ void vector_addition(float* A, cuda::atomic<float>& sum) { for (unsigned i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += gridDim.x * blockDim.x) {</pre>

$$a_7 \ \dots \ a_{n-1}$$

- The CUDA Programming Model
- Host, device and memory
- Writing a kernel
- GPU architecture
- Common data parallel techniques
- Summary

Table of Contents

Daniel Cámpora – dcampora@nvidia.com

53

- We have gone through the basic building blocks of CUDA. The host is in charge, the device is used for offloading computation. • *Kernels* are functions invoked on the host, run on the device. Computation is divided in blocks and threads.

- Knowing your hardware leads to better software.
 - SMs execute blocks in parallel.
 - Global memory allows for communication with the host and device, and must be preallocated.
- GPUs excel at data parallelism.
 - Identifying the right problem to tackle on GPU is half the work.

Summary

- GPU Teaching Kit on Accelerated Computing.
- NVIDIA Deep Learning Institute materials.
- <u>CUDA Programming Guide</u>.

Resources Used in the Talk

Talk by O. Giroux on <u>The One-Decade Task: Putting std::atomic in CUDA</u>.

