
AdePT
accelerating GEANT4 applications on GPUs

Severin Diederichs on behalf of the AdePT team

Also used in medical physics, space physics, accelerator physics, radiation protection…

 – a mini introduction

Monte-Carlo particle transport code. Backbone of detector simulation in HEP.

2

Monte-Carlo particle transport code. Backbone of detector simulation in HEP.

 – a mini introduction

Material 1 Material 2

start point

end point

a point where physics process (e.g., scattering) occurred
step length, depending on physics process and geometry
boundaries

geometry boundary

Output: local energy deposition in detector

Detector does not change within a single run
Particles do not interact with each other during transport (in detector)

3

Daunting evolution of required compute resources for the LHC

High-Lumi upgrade in 2028:
- higher statistics in simulations needed (more particles)
- simulations more expensive due to upgraded, finer detectors

4

High-Lumi upgrade in 2028:
- higher statistics in simulations needed (more particles)
- simulations more expensive due to upgraded, finer detectors

Paradigm shift in supercomputing landscape:
17/20 of the top500 are GPU-based (NVIDIA, AMD, Intel)
20/20 of the green500 are GPU-based

GEANT4 needs to be ported to GPU to keep up with
current technology

Daunting evolution of required compute resources for the LHC

5

A challenging, embarrassingly parallel problem

Huge amount of divergence between simulated particles due to different geometry and
different physics processes

 first approach: only port electromagnetic part to GPU
(less complex physics, large fraction of compute time in LHC experiments)

6

A challenging, embarrassingly parallel problem

Huge amount of divergence between simulated particles due to different geometry and
different physics processes

 first approach: only port electromagnetic part to GPU
(less complex physics, large fraction of compute time in LHC experiments)

Code structure:
AdePT (track management etc)
- G4HepEm (electromagnetic physics)
- VecGeom (geometry) > 80% of run time on

GPU spend in
geometry!

7

Mitigating the Geometry bottleneck

Default solid model:

High divergence, recursive calls, virtual
calls, high register usage

Not suited for GPUs!

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

8

New surface model:

Reduced divergence, no recursive calls, no
virtual calls, simpler code

Better suited for GPUs

Mitigating the Geometry bottleneck

Default solid model:

High divergence, recursive calls, virtual
calls, high register usage

Not suited for GPUs!

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

9

New surface model:

Reduced divergence, no recursive calls, no
virtual calls, simpler code

Better suited for GPUs

New model brings new challenges

10

Box 2

Box 1

Missing the overlapping
entering surface leads
to missing Box 2 entirely

Conclusions

Despite being an embarrassingly parallel problem with millions of rays, this is an extremely
challenging problem for GPUs due to code complexity, inevitable divergence, and poor
memory access patterns.

Next steps:
- use of mixed precision to accelerate on GPU
- improve scheduling of tracks
- add portability:
 AdePT, VecGeom, G4HepEm mostly header-based code + some CUDA

 SYCL, Kokkos?

11

	Slide 1
	– a mini introduction
	– a mini introduction
	Daunting evolution of required compute resources for the LHC
	Daunting evolution of required compute resources for the LHC
	A challenging, embarrassingly parallel problem
	A challenging, embarrassingly parallel problem
	Mitigating the Geometry bottleneck
	Mitigating the Geometry bottleneck
	New model brings new challenges
	Conclusions

