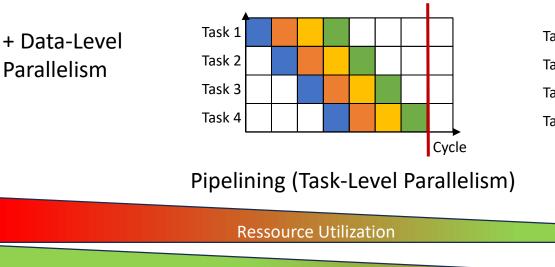
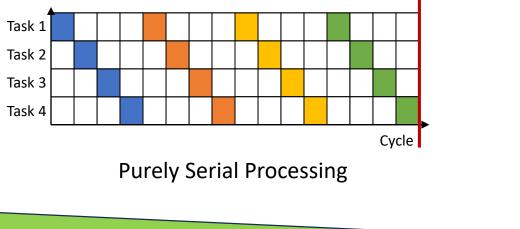
Data Processing on FPGAs in Space

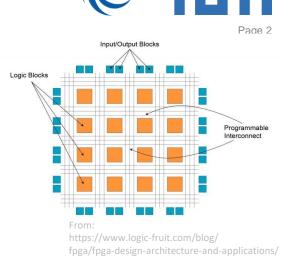
FRGA

Thematic CERN School of Computing 2024 Peter Hinderberger Technical University of Munich (TUM)

June 12, 2024




Field-Programmable Gate Arrays


Quick Recap

- Principle:
- Network of Registers, Look-up-Tables (LUT), RAM blocks, Digital Signal Processors (DSP), Buffers, Clock Circuitry, Transceivers etc.
- → Wire them flexibly
- → Hardware Description Language (HDL), High-Level Synthesis (HLS)
- + Flexible, inherently parallel, high number of IOs... + Power-efficient!
- Low clock frequencies: O(100) MHz vs. O(1) GHz on a modern CPU High programming complexity

Throughput

ORIGINS Excellence Cluster

Data Processing on Small Satellites

Can't we shoot that into space?

Freelence Cluster Page 3

- Limited Power
- Limited Volume
- Limited Transmission
- Need for Reconfigurability
- Radiation Environment

Data Processing on Satellites

Can't we shoot that into space?

Limited Power

- Limited Volume
- Limited Transmission
- Need for Reconfigurability
- Radiation Environment
- Several Mitigation Techniques (TMR, hardened components, scrubbing...)

From: https://www.logic-fruit.com/blog/ fpga/fpga-design-architecture-and-applications/

Input/Output Blocks

Logic Blocks

FPGA

• Example: Energetic Particle Detector (EPD) aboard the ESA's Solar Orbiter Mission

GPU. CPU

- Trigger and Data Acquisition for several scientific instruments
- Central data processing, including softcore processor on Instrument Control Unit (ICU)

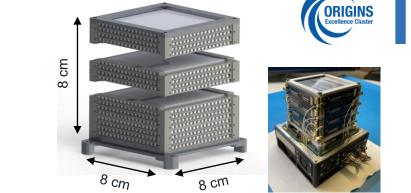
→ Reduce Data Bandwidth

cf. Rodriguez-Pacheco, Astronomy&Atrophysics 642, A7 (2020)

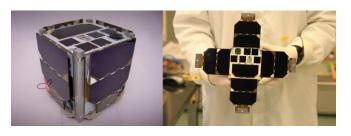
- Other Applications:
 - Remote sensing, hyperspectral imaging
 - Communications
 - Cryptography
 - Radar

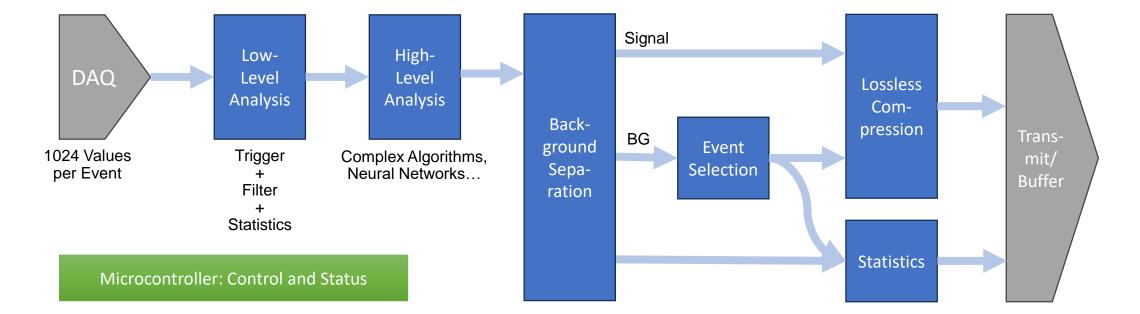
. . .

From: https://en.wikipedia.org/wiki/Solar_Orbiter


Programma

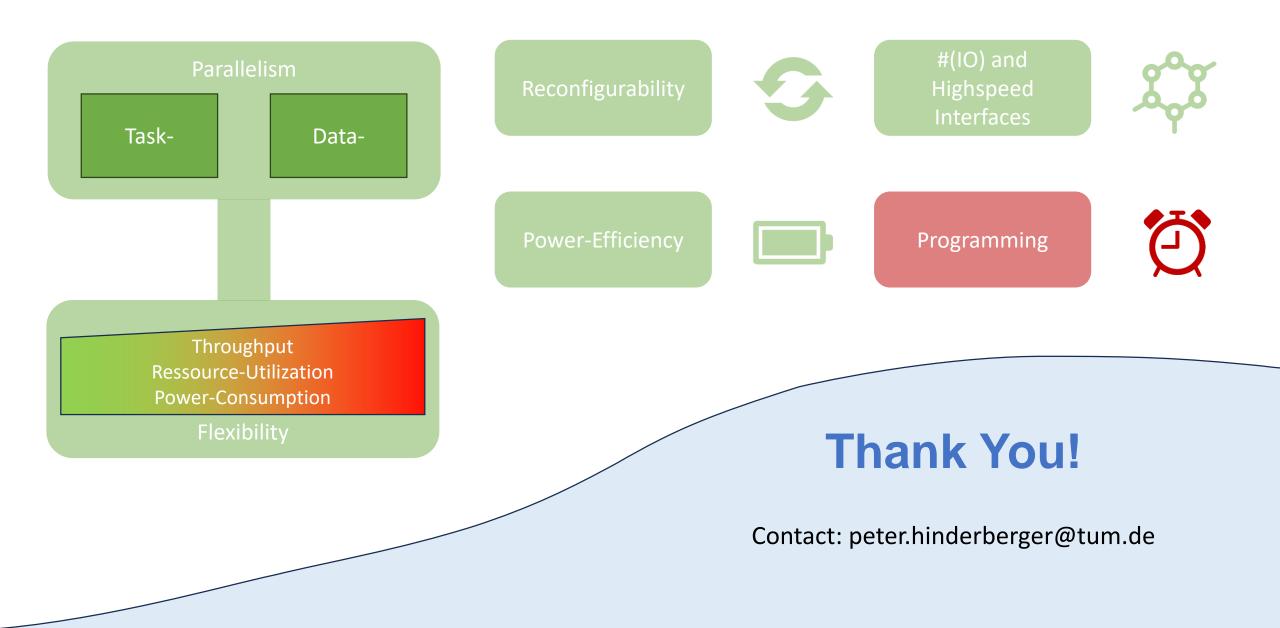
Pade 4


A practical example


Need to make it compact

- Detector: 3D Scintillating Fiber Matrix as Tracking Calorimeter
- Platform: NanoSat
- Objective:
- Measure Antiproton Flux + Antiproton-to-Proton Ratio
- Requirements: Lower the bandwidth as much as possible Keep as much information as possible

Page 5



➔ "Compress"

Questions?

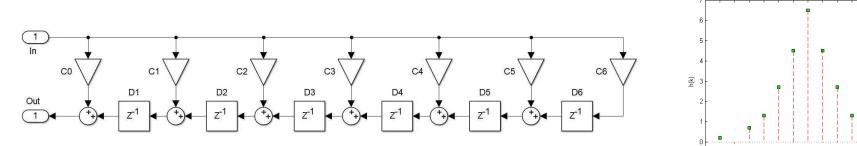
BACKUP

Compression Techniques

Every sense of the word

"Compression" Lossless Filtering Lossy Trigger Entropy Coding Transformation-Based **Event Filter** Hough-ANS Fourier Wavelet Online-Analysis and Background Reduction Latent-Space/ Zero-Suppression **Dimensionality Reduction** Classical Approaches, **Neural Nets** Threshold PCA/ Length + Address SVD Coding

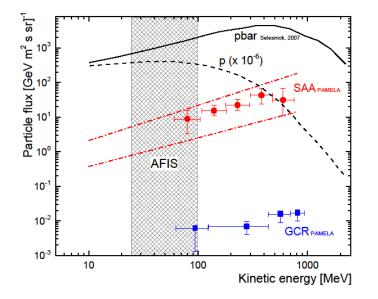
+ Combinations


Kintex[®] UltraScale[™] FPGAs

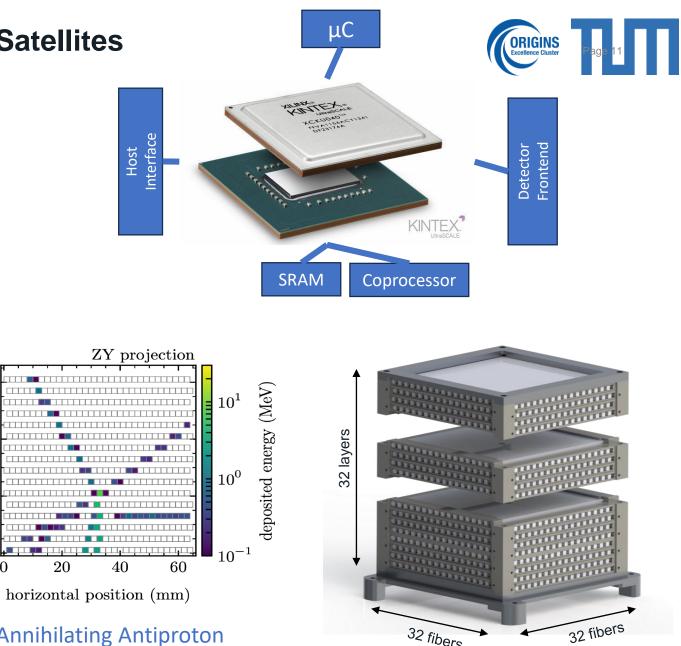
	Device Name	KU025 ⁽¹⁾	KU035	KU040	KU060	KU085	KU095	KU115
Logic Resources	System Logic Cells (K)	318	444	530	726	1,088	1,176	1,451
	CLB Flip-Flops	290,880	406,256	484,800	663,360	995,040	1,075,200	1,326,720
	CLB LUTs	145,440	203,128	242,400	331,680	497,520	537,600	663,360
Memory Resources	Maximum Distributed RAM (Kb)	4,230	5,908	7,050	9,180	13,770	4,800	18,360
	Block RAM/FIFO w/ECC (36Kb each)	360	540	600	1,080	1,620	1,680	2,160
	Block RAM/FIFO (18Kb each)	720	1,080	1,200	2,160	3,240	3,360	4,320
	Total Block RAM (Mb)	12.7	19.0	21.1	38.0	56.9	59.1	75.9
Clock Resources	CMT (1 MMCM, 2 PLLs)	6	10	10	12	22	16	24
	I/O DLL	24	40	40	48	56	64	64
I/O Resources	Maximum Single-Ended HP I/Os	208	416	416	520	572	650	676
	Maximum Differential HP I/O Pairs	96	192	192	240	264	288	312
	Maximum Single-Ended HR I/Os	104	104	104	104	104	52	156
	Maximum Differential HR I/O Pairs	48	48	48	48	56	24	72
Integrated IP Resources	DSP Slices	1,152	1,700	1,920	2,760	4,100	768	5 <mark>,</mark> 520
	System Monitor	1	1	1	1	2	1	2
	PCIe [®] Gen1/2/3	1	2	3	3	4	4	6
	Interlaken	0	0	0	0	0	2	0
	100G Ethernet	0	0	0	0	0	2	0
	16.3Gb/s Transceivers (GTH/GTY)	12	16	20	32	56	64 ⁽²⁾	64
Speed Grades	Commercial	-1	-1	-1	-1	-1	-1	-1
	Extended	-2	-2 -3	-2 -3	-2 -3	-2 -3	-2	-2 -3
	Industrial	-1 -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -2	-1 -1L -2

Example

7-Tap FIR-Filter with parallel implementation



From: https://vhdlwhiz.com/part-2-finite-impulse-response-fir-filters/



Particle Physics Processing on Small Satellites

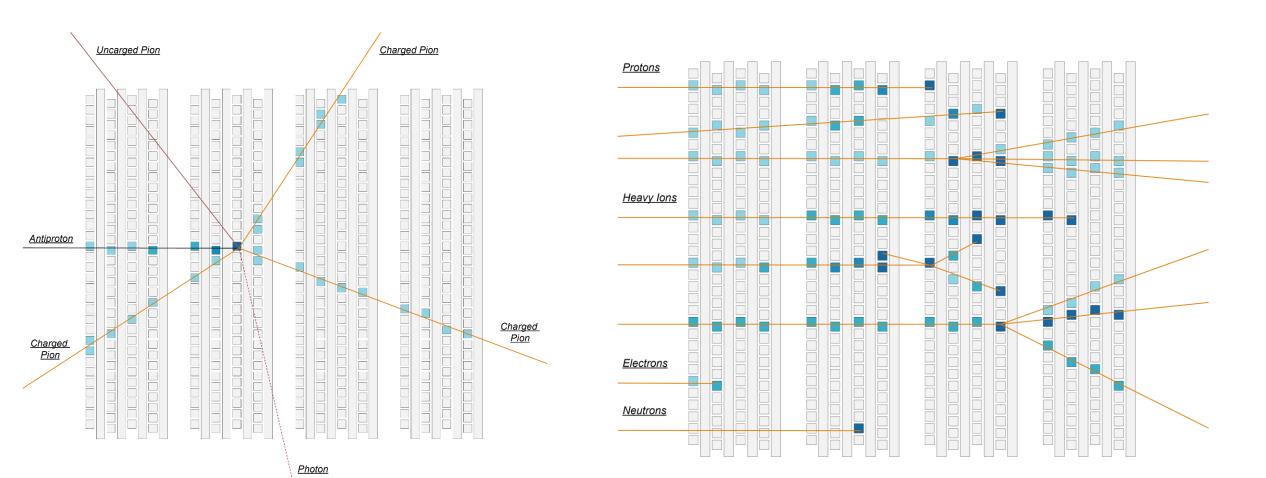
Example from our own research

- 1024 Fibers in 64 Readout-ASICs
- Signal-to-Background-Ratio: 10⁻⁷ to 10⁻⁹
- Event Rates O(10⁵)
- Bragg-Curve Spectroscopy + Event-Topology

32 fibers

Annihilating Antiproton

60


40

20

0

The Antiproton Flux In Space Mission

Event Topologies

