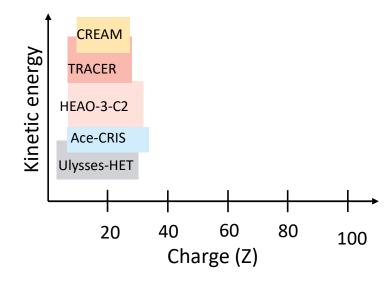
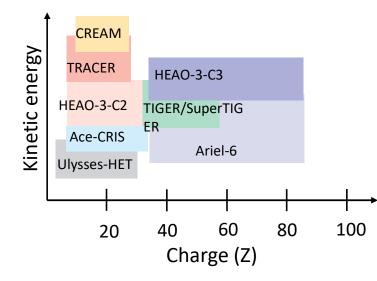
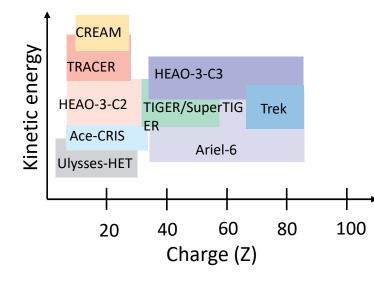

A few cross-section experiments towards a clearer view of our Galaxy

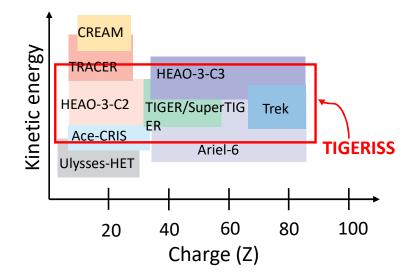
Priyarshini Ghosh, NASA Goddard Space Flight Center Igor Moskalenko, Stanford John Krizmanic, NASA Goddard Patrick Peplowski, Johns Hopkins Mauricio Unzueta, Berkeley Lab

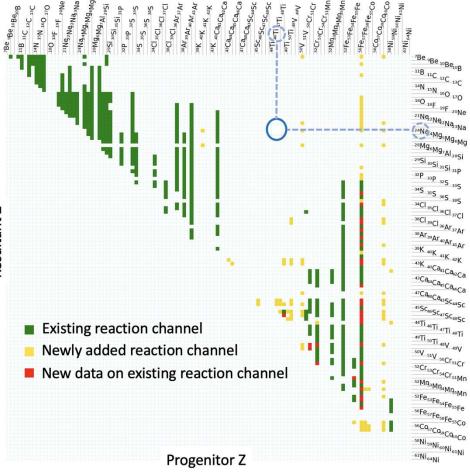

Advances in our knowledge of the Galaxy

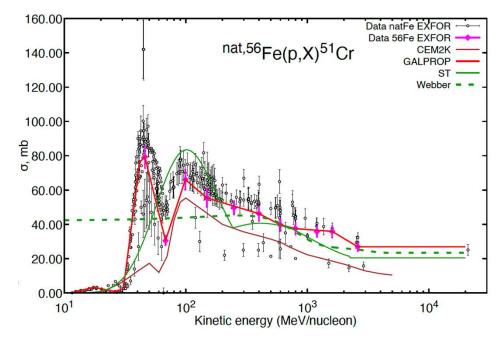
Ref: Rauch 2009, Murphy 2016, Lodders 2003, Sanuki 2000, Aguilar 2011


This is currently the picture we have of our Milky Way...


- Combining Silicon Strip Detectors and Cerenkov detectors
- Single-element resolution
- Uncertainty: 0.2 charge units
- Wide range: B to Pb
- No Normalization Required
- No atmosphere corrections-lesser systematic uncertainty


- Combining Silicon Strip Detectors and Cerenkov detectors
- Single-element resolution
- Uncertainty: 0.2 charge units
- Wide range: B to Pb
- No Normalization Required
- No atmosphere corrections-lesser systematic uncertainty


- Combining Silicon Strip Detectors and Cerenkov detectors
- Single-element resolution
- Uncertainty: 0.2 charge units
- Wide range: B to Pb
- No Normalization Required
- No atmosphere corrections-lesser systematic uncertainty

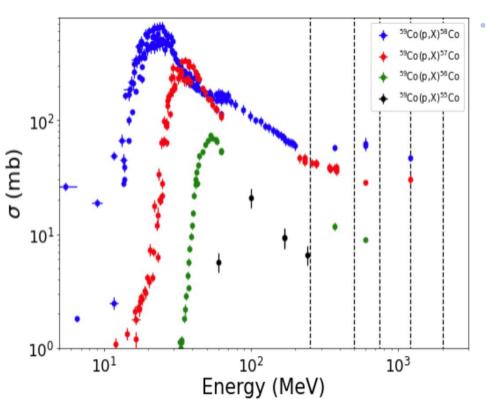


- Combining Silicon Strip Detectors and Cerenkov detectors
- Single-element resolution
- Uncertainty: 0.2 charge units
- Wide range: B to Pb
- No Normalization Required
- No atmosphere corrections-lesser systematic uncertainty

GALPROP cross-sec library:

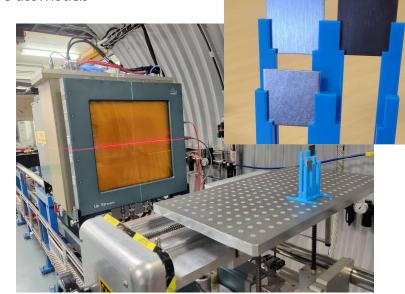
Available data for ^{nat}Fe(p,X)⁵¹Cr shows the need for isotopic measurements:

- 1) scatter of data (black circles) by different groups is large
- 2) data for ⁵⁶Fe isotope (magenta diamonds) differ from ^{nat}Fe data
- 3) Webber (green dashes) and Silberberg-Tsao (green line) systematics and the CEM2K code do not reproduce the data


TIGERISS measurements needed

		- I I I I I I I I I I I I I I I I I I I
Target	Astrophysically-important reactions and their current needs	
^{nat} Ba	^{nat} Ba(p,X) charge- and mass-changing cross section data available for	
	very low energies only (<70 MeV), higher energies required [6]	s-process
natSn	¹²⁴ Sn(p,n) ¹²⁴ Sb data available for very low energies only (<18 MeV) [7]	
^{nat} Os, ^{nat} Pt	No data	
natPb	[8] is the only known source that reports mass-changing cross sections,	r-process
	but only at one energy point (1A GeV) of ²⁰⁸ Pb. More data are required.	12 • Letaw
	$^{40}Ca \rightarrow ^{37}Ar$ (decays to ^{37}Cl): Low energy data <50 MeV/n and 6	10
^{nat} Ca	contradicting data points in the range 100-800 MeV/n. The data points	
	differ by factors of 2-5. The ratio ³⁶ Cl/ ³⁷ Cl is used as radioactive clock for	
	medium-mass CR nuclei. ⁴⁰ Ca→ ³⁶ Cl: just 3 data points, while cross	Constraining
	section is large (30-180 mb). ${}^{40}Ca \rightarrow {}^{39}Ca$ (decays to ${}^{39}K$): just 3 points.	
^{nat} Ni	^{nat} Ni(p,X) data important to Psyche as well	astrophysical
⁵² Cr	Major contributor to ⁵¹ Cr, which decays to ⁵¹ V. ⁵² Cr also contributes to	models,
	radioactive isotopes of Sc, which decay to ⁴⁶ Ti, ⁴⁷ Ti, ⁴⁸ Ti, and to ⁴⁵ Sc	relevant to
	(stable). Sc, Ti, V are mostly secondary and the ratios Sc/Fe, V/Fe are of	Contour plots of an χ^2 fit for the disk model (red is ⁵¹ V/ ⁵¹ Cr, blue
	the fundamental importance for understanding of propagation of heavy	
	GCRs.	denotes the electron attachment
¹²⁴ Xe	Current data are all <50 MeV/n, higher energies needed	composition cross section. The discrepancy
²⁸ Si	Current data exists mostly for ^{nat} Si. From ²⁸ Si beam, we can get cross	between the ⁵¹ V/ ⁵¹ Cr and ⁴⁹ Ti/ ⁴⁹ V fits (left) is cured by a 15%
	sections for isotopes of Li, Be, B, C, N, O, Ne, Na, Mg, Al	reduction in ⁴⁹ Ti production cross
⁵⁶ Fe	Current data exists mostly for ^{nat} Fe. Need cross sections for ⁵⁶ Fe beam	section {source: Benyamin 2011,
	· · ·	Kelly Lave 2003]

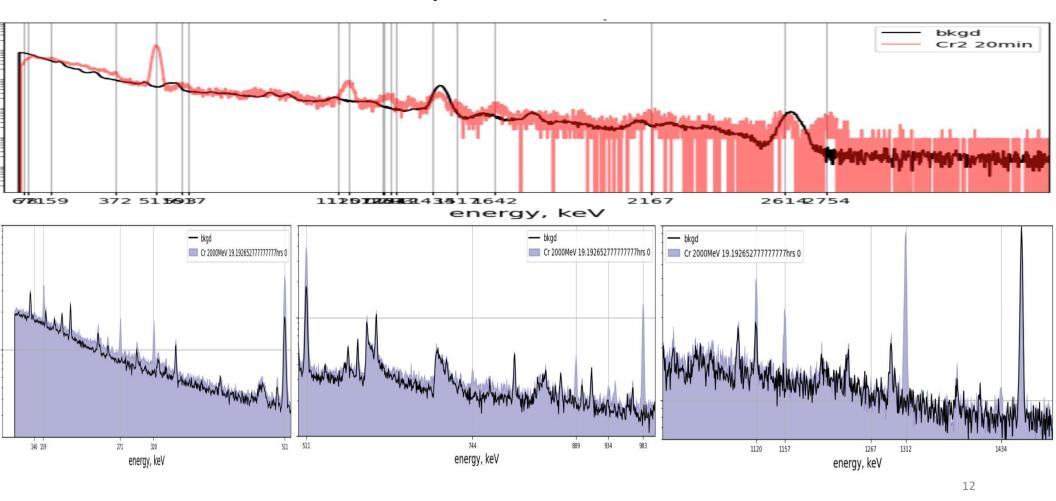
• Letaw


9

Experiment #1: Sub-Fe region isotopes

- Co: constrain astrophysical re-acc models
- Al: Instrument background removal
- Mn: scarce data at high energies
- Cr: Cr (p,x) reactions constrain astrophysical re-acc models

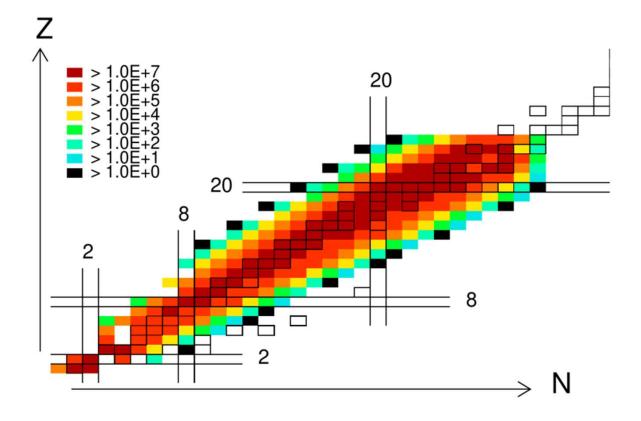
•



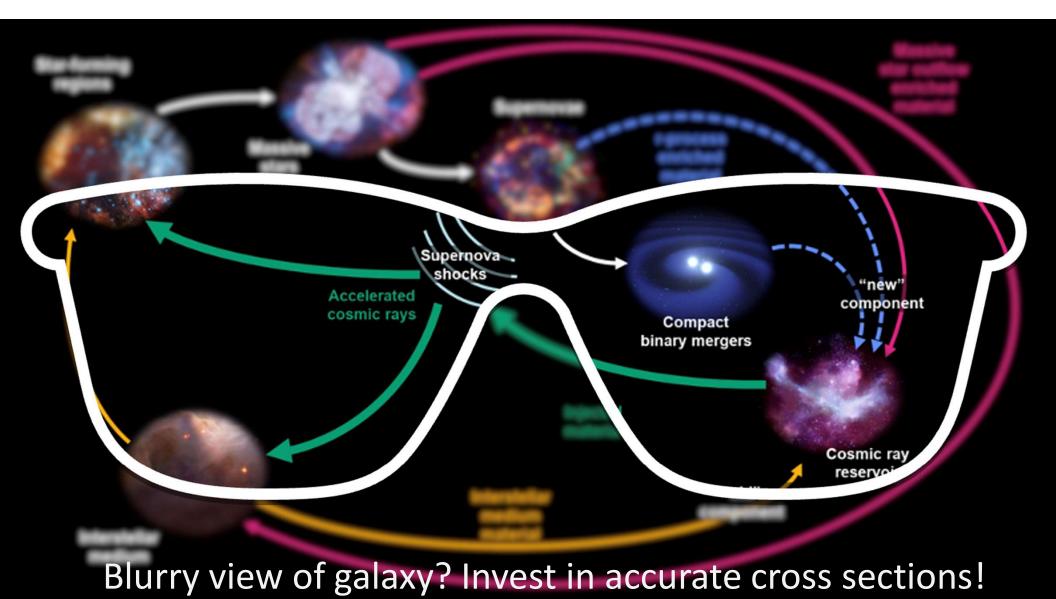
Reducing uncertainties in measurement at NSRL:

- High proton flux in short time (10⁸ p/cm² <30 mins), large beam area: multiple targets at once
- Thin targets, high purity: contributions of secondary products to nuclide production minimal, and thick target corrections will not be required.
- Measurements over entire energy range on single experimental setup: removing significant systematic uncertainty typically associated with multiple experiments with differing systematic uncertainties
- P-beam flux is measured in-situ with precision of 3.6%, reducing one large systematic uncertainty in activation cross-section
- Proposed target measurements will use high-precision γ-ray spectrometers whose detection efficiency is calibrated using NIST-tracible sources having 3% precision or better
- Using large data sets, statistical uncertainties will be negligible
- Target irradiations are planned to provide ample activation, with sufficiently long integration times.
- Because measurements can be repeated, decay curves are measured and provide validation of the expected isotopes and accurate background estimates.
- Taken together, we expect to provide total uncertainties of 7-10%, as demonstrated by measurements of ^{nat}Cu(p,X) reaction cross sections 11

Source of uncertainty to be reduced:


Experiment #2: NA61

Run A: Li-O		Run B: Na-Si			
reaction	$N_{\rm int}$	reaction	N _{int}		
¹⁶ O+ <i>p</i>	60k	²⁸ Si+ <i>p</i>	50k		
${}^{12}C+p$	50k	²⁴ Mg+ <i>p</i>	50k		
${}^{11}B+p$	10k	²⁰ Ne+ <i>p</i>	50k		
$^{15}N+p$	10k	²² Ne+ <i>p</i>	20k		
${}^{14}N+p$	10k	$^{27}Al+p$	10k		
${}^{10}B+p$	5k	$^{26}Mg+p$	10k		
¹³ C+ <i>p</i>	5k	23 Na+ <i>p</i>	10k		
$^{7}\text{Li}+p$	5k	$^{25}Mg+p$	10k		
-		²¹ Ne+ <i>p</i>	10k		
		³² S+ <i>p</i>	5k		
		²⁹ Si+p	5k		
$\Sigma N_{ m int} = 3.8 imes 10^5$					


Michael Unger's talk from yesterday!

Experiment #3: ⁵²Cr

FRIB

Figure 2: Expected total number of events measured in the proposed experiment

