

Bundesministerium für Bildung und Forschung

Antihelium production at LHC(b) and in Space

Valery Zhukov (RWTH1b, Aachen) on behalf of the LHCb

XSCRC2024 16-18 October, CERN

Antihelium in Space

Motivation:

Relic He from antimatter domains PHYSICS REPORT, VOLUME 222, 6, 309 (1992)

DM annihilation, eg.: $\chi + \chi \rightarrow bb \rightarrow {}^{3}\overline{He} + X$ physical review D, volume 62, 043003 (2000)

Background:

Cosmic Rays(CR): *p*,*He*,*O*,*C*,*N*,*etc* interacting with

• Interstellar Gas: *H*, *He*, *etc*.

• Detector material: *C*, *Al*, *Fe*, *etc*. production of $\overline{\text{He}}$ via 'coalescence' of $\overline{p}, \overline{n}, \overline{L}, ...$

Observations:

No published observed He , hence upper limit Best published is from BESS2 polar: He/He<1. 10⁻⁷ 95% C.L.

AMS02 has measured by now ~2. 10^9 He, i.e. without observation of He this would correspond to the limit He/He<1.5 10^{-9} 95%C.L.

AMS02 observed a few $\overline{H}e\mbox{-like}$ candidates ?

10⁻¹²

 10^{-13}

S. Ting, CERN colloquium (08.06.2023)

10

secondary ³He fl

Phys.Rev. C 105, 065801 (2022)

work √s = 7.7 GeV work √s = 17.3 GeV

T (GeV/nucleon)

 10^{2}

Antihelium in Accelerators

Many ³He registered in central collisions, where $He/He \sim 1$:

STAR(RIHC) AuAu,
ALICE(LHC) pp,pPbarxiv nucl-ex0104007, nucl-ex/0108022, PRL 87, 262301 (2001)
arxiv2109.13026, arxiv2212.04777, arxiv1709.08522, arxiv1907.06906 (2019)

But CR interactions are rather similar to the fixed target(FT), where $\overline{\text{He}}/\text{He} << 1$ very few ³He observed so far:

 $p(76 \text{ GeV/c})+Al \quad 5 \ {}^{3}\overline{He} \text{ (and } 4 \ \overline{T})$ $p(20 \text{ GeV/c})+Al \quad 10 \ {}^{3}\overline{He}$ $Pb(158A \text{ GeV/c})+Pb \quad 1 \ {}^{3}\overline{He}$ Serpukhov70, Phys.Lett.(1971) 164 SPS WA33. Nuclear Physics B144(1978) 317 SPS NA52, Nuclear Physics A661(1999) 177

At fixed target ³He and ³He are produced in different kinematic regions

17.10.2024 V.Zhukov

LHCb in Run 2

Designed for B decays, not for ions. Particle identification with RICH, but for ³He $\theta_c > 0$ at p>50 GeV/c

In Run2 LHCb had silicon strip tracking detectors, which are readout by 7-bit ADC \rightarrow dEdx~Z²

- **VELO** vertex locator 42 layers
- **TT** trigger tracker 4 layers
- **IT** inner tracker (after magnet) 12 layers only central ~20% of acceptance, outer are

• **OT** straw drift tubes that measure time delay with respect to interaction using fixed threshold discriminator. For He this delay has negative offset with respect to mips($\pi, K, p, ...$)

Also used RICH as a veto and E/HCAL signal to improve He identification

Major upgrade for Run3 (2021-):

lost most of dEdx measurements!

LHCb can operate in: • collisions mode:

pp, PbPb, pPb

• fixed target mode (SMOG) when the gas is injected inside beam pipe and only one downstream *p*,*Pb* beam: pNe, pHe, pAr,...

Response in VELO LHCb preliminary

17.10.2024 V.Zhukov

Prompt ³He at LHCb in pp13 TeV

17.10.2024 V.Zhukov

Displaced ³He in pp13 TeV: Hypertriton

Displaced ³He from hypertriton :

$${}^{3}\overline{\mathrm{H}}_{\Lambda} \rightarrow {}^{3}\overline{\mathrm{He}} + \pi^{+}$$

m=2991.148±0.040 MeV cτ~7.9 cm

 Identify displaced He and construct Minv(³Heπ) at secondary vertex

Observed **107** candidates in total; **46** ${}^{3}\overline{He}$ from ${}^{3}\overline{H}_{\Lambda}$ For the same data, observed 1.1 10⁵ prompt (${}^{3}He + {}^{3}\overline{He}$), i.e ${}^{3}H_{\Lambda}/{}^{3}\overline{He} < 0.001$, but ${}^{3}H_{\Lambda}/{}^{3}He > 0.1$ from PbPb(ALICE) and AuAu(STAR) arXiv:2310.12674. Lower efficiency of ${}^{3}H_{\Lambda}$ and ${}^{3}\overline{H}_{\overline{\Lambda}}$ is due to soft pion that can escape reconstruction.

17.10.2024 V.Zhukov

CERN Courier 11.2023

Displaced ³He in pp13 TeV: from $\overline{\Lambda}_{b}$ decays

Consider 3 channels:

 $\begin{array}{l} \mathcal{B}(\overline{\Lambda}^0_b \rightarrow \ ^3\overline{\mathrm{He}} + p + p) \text{ (exclusive mode)} \\ \mathcal{B}(\overline{\Lambda}^0_b \rightarrow \ ^3\overline{\mathrm{He}} + p + p + X) \text{ (inclusive mode)} \\ \mathcal{B}(\overline{\Lambda}^0_b \rightarrow \ ^3\overline{\mathrm{He}} + p + X) \text{ (inclusive mode)} \end{array}$

Coalescence of Λ_b decay products boosted for He comparing to prompt production, and can be a source of ${}^3\overline{\text{He}}$ from eg. DM annihilation with Br($\overline{\Lambda}_b \rightarrow {}^3\overline{\text{He}}X \sim 3.10^{-6}$) Phys. Rev. Lett. 126, 101101 (2021).

About $10^{11} \Lambda_{b}$ should be produced at LHCb during Run 2!

• Identify He and construct the exact(exclusive) or incomplete(inclusive) invariant masses for search channels. Signal regions are from simulations.

• Background is all combinatorial, investigated and normalized using reference channel: $\Lambda_b \rightarrow \Lambda_c(pK\pi)\pi$, and $\Lambda_b \rightarrow pK\pi\pi$, $B \rightarrow K\pi\pi\pi$

Using Pythia8.3 + coalescence $\mathcal{B}({}^{3}\overline{\text{Hepp}})/\mathcal{B}({}^{3}\overline{\text{HeX}}) <10^{-6}$ $\mathcal{B}({}^{3}\overline{\text{HeppX}})/\mathcal{B}({}^{3}\overline{\text{HeX}}) \sim 0.38$ $\mathcal{B}({}^{3}\overline{\text{HepX}})/\mathcal{B}({}^{3}\overline{\text{HeX}}) \sim 0.42$

No visible excess observed in signal regions, derive limits

LHCb-CONF-2024-005

Limit $\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{\text{He}}X$

CLs Upper Limits, including systematic:

$$\begin{split} \mathcal{B}(\overline{A}^0_b \to {}^3\overline{\mathrm{He}}pp) &< 1.9 \times 10^{-9} \text{ at } 90\% \text{ CL} \\ \mathcal{B}(\overline{A}^0_b \to {}^3\overline{\mathrm{He}}ppX) &< 1.6 \times 10^{-8} \text{ at } 90\% \text{ CL} \\ \mathcal{B}(\overline{A}^0_b \to {}^3\overline{\mathrm{He}}pX) &< 3.6 \times 10^{-8} \text{ at } 90\% \text{ CL} \end{split}$$

Extrapolation to inclusive $\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{\text{He}}X$ require some model assumptions:

• Using Pythia8.3+coalescence. ³HepX has largest fraction, but is sensitive to the deuterons production $\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{He}dX$, while the $\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{He}pp$ is not visible. Therefore use the $\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{He}ppX$ channel and get: $\mathbf{B}(\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{He}X) < 4.2 \ 10^{-8} \ (90\% CL)$

• Using strong isospin factors. will give $\mathcal{B}({}^{3}\overline{\mathrm{He}}\mathrm{ppX})/\mathcal{B}({}^{3}\overline{\mathrm{He}}\mathrm{X}) = 1/4$ and get: $\mathbf{B}(\overline{\Lambda}_{\mathrm{h}} \rightarrow {}^{3}\overline{\mathrm{He}}\mathrm{X}) \leq 6.3 \ 10^{-8} \ (90\% CL)$

Note that isospin is broken in $\overline{\Lambda}_{b}$ decay, suppressing ${}^{3}\overline{\text{Henn}}X^{**}$ states, hence this limit is conservative.

On the other hand ³HennX can be enhanced due to absence of coulomb barrier (WL), but measured ³H/³He~1, i.e. coulomb effects are not large.

WL

M. Winkler T.Linden Phys. Rev. Lett. 126, 101101 (2021) $\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{HeX}$ and $\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{H}({}^{3}\overline{He}+v+e)X$ total Br~3.10⁻⁶ i.e $\overline{\Lambda}_{b} \rightarrow {}^{3}\overline{HeX}$ Br~1.5 10⁻⁶ Used PYTHIA probQQtoQ to match the bb $\rightarrow \Lambda_{b}$ fragmentation fractions (PhysRev D100, 031102 (2019), but this doesnt affect the Λ_{b} decays, see arXiv 2105.00799, arXiv2404.13114 for discussion. The coalescence of He from Λ_{b} depends upon baryonic form factors that are not well modeled in Pythia hadronization, regardless tunes. These factors can be measured, eg in charmless decays, like $\Lambda_{b} \rightarrow \Lambda p \overline{p}$ (Br~3.2 10⁻⁶) or others. Scientific Reports 9, 1358 (2019)

Fixed Target measurements at LHCb

MC QGSJET xF of *pNe* in LHCb acceptance

Plenty ³He and only a few ³He are expected in the LHCb acceptance: $(\eta[2-5], p/z > 1GeV/c)$

pNe results are in the approval process...

Summary

• Many He, He analysis of Run2 data are ongoing at LHCb and publications are pending.

• LHCb detector has some advantages over others: good vertexing, forward η[2-5], fixed target facilities provide unique measurements relevant to antihelium production in Space.

• Unfortunately the Run3-4 will hardly contribute to the He studies, some He identification can be developed for the Run 5, after 2034.

Backup: Coalescence

Pythia8.3+coalescence default settings • 3 body event-by-event coalescence (ppn/ Λ) dp<p_c and dr<r_c , p_c=125 GeV r_c=2fm $\mathcal{B}(\overline{\Lambda}_{\rm b} \rightarrow {}^{3}\overline{\text{He}}X) \sim 2.10^{-6}$ $\mathcal{B}(\overline{\Lambda}_{\rm b} \rightarrow {}^{3}\overline{\text{H}}X) \sim 1.410^{-6}$ ${}^{3}\overline{\text{Hepp}}+X^{0} \sim 38.3\%$ ${}^{3}\overline{\text{Hpp}}+X^{+} \sim 25\%$

 3 <u>Henn+X-</u>~11.1% 3 <u>Hnn+X-</u>~21.3%

 ${}^{3}\overline{\text{Hepn}}+\text{X}^{-}\sim4.2\%$ ${}^{3}\overline{\text{Hpn}}+\text{X}^{0}\sim4.6\%$

 $^{3}\text{Hed}+X^{-} \sim 46.5\%$ $^{3}\overline{\text{Hd}}+X^{0} \sim 49.2\%$

• 2 body coalescence. Using deuterons produced in Pythia (Phys.Rev. D92,069903, 2015) and add an antiproton in (dp,dr) its not a really consistent procedure. $\mathcal{B}(\overline{\Lambda}_{h} \rightarrow {}^{3}\overline{\text{He}}X) \sim 1.2 \ 10^{-9}$

isospin in the $\Lambda_{\rm b}$ decays

Table 14: Composition of the $\Lambda_b^0 \to {}^3\text{He}X$ simulation samples.

Rate $[\%]$	Decay	Rate [%]	Decay
14.366000	$^{3}\mathrm{He}\bar{d}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	0.192555	$^{3}\text{He}\overline{p}\overline{p}K^{+}\pi^{-}\pi^{0}$
10.666000	${}^{3}\text{He}\overline{p}\overline{p}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	0.192555	$^{3}\mathrm{He}\overline{p}\overline{p}K^{-}\pi^{+}\pi^{0}$
9.760510	${}^{3}\mathrm{He}\overline{p}\overline{p}\pi^{+}\pi^{-}\pi^{0}$	0.190800	$^{3}\mathrm{He}\overline{p}\overline{p}\pi^{0}\pi^{0}$
6.550000	$^{3}\mathrm{He}\bar{d}\pi^{-}\pi^{0}\pi^{0}$	0.186510	$^{3}\mathrm{He}\overline{pp}K_{\mathrm{L}}^{0}\pi^{+}\pi^{-}$
6.258540	${}^{3}\text{He}\bar{d}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}$	0.186000	$^{3}\text{He}\overline{pn}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$
4.905030	${}^{3}\text{He}\bar{d}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.176000	$^{3}\mathrm{He}\overline{p}\overline{p}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$
4.610000	$^{3}\mathrm{He}\bar{d}\pi^{+}\pi^{-}\pi^{-}$	0.170800	$^{3}\mathrm{He}\overline{pn}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$
3.982510	$^{3}\text{He}\overline{pp}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	0.121000	$^{3}\mathrm{He}\overline{nn}K_{\mathrm{L}}^{0}\pi^{-}\pi^{-}$
3.334510	${}^{3}\text{He}\overline{pp}\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.111000	$^{3}\mathrm{He}\bar{d}K_{\mathrm{L}}^{0}\pi^{-}\pi^{0}\pi^{0}$
2.935200	$^{3}\mathrm{He}\overline{nn}\pi^{-}\pi^{-}\pi^{0}$	0.108000	$^{3}\mathrm{He}\overline{nn}\bar{K}^{-}\pi^{-}\pi^{0}$
2.797540	³ He $\overline{pp}\pi^+\pi^+\pi^-\pi^-\pi^0\pi^0$	0.103510	$^{3}\mathrm{He}\bar{d}K^{-}\pi^{0}\pi^{0}$
2.391000	$^{3}\text{He}\overline{nn}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	0.095500	³ He $\overline{nn}\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-$
2.000000	$^{3}\text{He}\bar{d}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	0.093040	$^{3}\mathrm{He}\overline{p}\overline{p}K_{\mathrm{L}}^{0}\pi^{0}\pi^{0}$
1.795100	$^{3}\mathrm{He}\bar{d}\pi^{-}\pi^{0}$	0.088000	$^{3}\mathrm{He}\overline{p}\overline{p}K^{+}\pi^{-}\pi^{0}\pi^{0}$
1.699000	${}^{3}\text{He}\bar{d}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.088000	$^{3}\mathrm{He}\overline{p}\overline{p}K^{-}\pi^{+}\pi^{0}\pi^{0}$
1.662510	$^{3}\text{He}\overline{pp}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	0.080500	$^{3}\mathrm{He}\overline{p}\overline{p}K_{\mathrm{L}}^{0}\pi^{+}\pi^{-}\pi^{0}$
1.577000	$^{3}\mathrm{He}\overline{p}\overline{p}\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.075500	$^{3}\mathrm{He}\bar{d}K^{+}\pi^{-}\pi^{-}\pi^{0}$
1.312700	${}^{3}\text{He}\overline{pn}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	0.075500	$^{3}\mathrm{He}\bar{d}K^{-}\pi^{+}\pi^{-}\pi^{0}$
1.291000	$^{3}\mathrm{He}\overline{nn}\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.060330	$^{3}\mathrm{He}\overline{p}\overline{p}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$
1.277000	³ He $\overline{nn}\pi^+\pi^-\pi^-\pi^-\pi^0\pi^0$	0.057800	$^{3}\mathrm{He}\bar{d}K^{-}\pi^{0}\pi^{0}\pi^{0}$
1.250000	${}^{3}\text{He}\overline{p}\overline{p}\pi^{+}\pi^{-}$	0.042710	$^{3}\mathrm{He}\overline{pn}K_{\mathrm{L}}^{0}\pi^{-}\pi^{0}$
1.222000	$^{3}\text{He}\bar{d}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	0.035200	$^{3}\mathrm{He}\overline{pn}K^{-}\pi^{0}\pi^{0}$
1.161000	${}^{3}\mathrm{He}\overline{p}\overline{p}\pi^{0}\pi^{0}\pi^{0}$	0.027700	$^{3}\mathrm{He}\overline{nn}K_{\mathrm{L}}^{0}\pi^{-}\pi^{-}\pi^{0}$
0.960000	$^{3}\mathrm{He}\overline{nn}\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.023900	$^{3}\mathrm{He}\overline{p}\overline{p}K^{+}\pi^{-}$
0.953200	$^{3}\mathrm{He}\overline{nn}\pi^{-}\pi^{-}\pi^{0}\pi^{0}$	0.023900	$^{3}\mathrm{He}\overline{p}\overline{p}K^{-}\pi^{+}$
0.940800	$^{3}\mathrm{He}\bar{d}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.022600	$^{3}\mathrm{He}\overline{nn}K^{-}\pi^{-}\pi^{0}\pi^{0}$
0.930510	$^{3}\text{He}\overline{nn}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	0.020100	$^{3}\text{He}\overline{pn}K^{+}\pi^{-}\pi^{-}$
0.714000	${}^{3}\text{He}\bar{d}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.020100	$^{3}\text{He}\overline{pn}K^{-}\pi^{+}\pi^{-}$
0.682000	$^{3}\text{He}\overline{pn}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}$	0.017600	$^{3}\mathrm{He}\overline{pn}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$
0.568000	$^{3}\text{He}\overline{pn}\pi^{+}\pi^{-}\pi^{-}$	0.010100	$^{3}\mathrm{He}\overline{p}\overline{p}\pi^{0}$
0.407600	${}^{3}\text{He}\overline{pn}\pi^{-}\pi^{0}\pi^{0}$	0.010100	$^{3}\text{He}ar{d}\pi^{-}$
0.404700	$^{3}\mathrm{He}\overline{pp}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.007540	$^{3}\mathrm{He}ar{d}K_{\mathrm{L}}^{0}\pi^{-}$
0.374700	${}^{3}\mathrm{He}\overline{pn}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.005030	$^{3}\mathrm{He}\overline{p}\overline{p}K_{\mathrm{L}}^{0}\pi^{0}$
0.342000	$^{3}\mathrm{He}\bar{d}K^{+}\pi^{-}\pi^{-}$	0.005030	$^{3}\mathrm{He}\bar{d}K^{-}\pi^{0}$
0.342000	$^{3}\mathrm{He}\bar{d}K^{-}\pi^{+}\pi^{-}$	0.005030	$^{3}\mathrm{He}\overline{pn}K_{\mathrm{L}}^{0}\pi^{-}$
0.329510	$^{3}\mathrm{He}ar{d}K_{\mathrm{L}}^{0}\pi^{-}\pi^{0}$	0.005030	$^{3}\text{He}\overline{pn}\pi^{-}$
0.304600	${}^{3}\text{He}\overline{pn}\pi^{-}\pi^{0}$	0.005030	$^{3}\text{He}\overline{nn}\pi^{-}\pi^{-}$
0.259100	$^{3}\mathrm{He}\overline{pp}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.002510	$^{3}\text{He}\overline{pn}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$

11

Backup: He identification in LHCb

•He PID efficiency can be estimated from data using different subdetector: PID(He)>80% and contamination <1%

•Overall efficiency depends upon trigger, event and track selections, can be low •In Run 3 the VELO and OT/IT are replaced by detectors with digital readouts •In Run 5&6(>2034) expecting TORCH detector with TOF measurements allowing He identification up to 20 GeV/c

101

p [GeV/c]

102

1000

800

600 400

100