

The FLUKA cross sections for secondary cosmic rays: Latest results

Along with Nicola Mazziotta

Pedro de la Torre Luque --- pedro.delatorre@uam.es Juan de la Cierva fellowship (IFT/UAM - Madrid) XSCRC@CERN 18/10/2024

FLUKA (direct) inclusive cross sections

Combined fit of light secondary CRs

MC Monte Carlo analysis: Combination of the ratios of secondary CRs (P.D.L. et al *JCAP*07, 2021, 010) including nuisance parameters (<u>Scale factors</u>) for renormalizing FLUKA cross sections.

We can simultaneously reproduce all light secondary CRs with small scaling factors (~10%) !!

Fluka cross sections: e^+ uncertainties

Other main cross sections data-sets available:

Different cross sections differ by up to 25%-30% below 30 GeV in the p+p channel. The different XS show very similar trends in this energy range.

Residuals w.r.t. Kamae (Kamae - o /Kamae)

Fluka cross sections: e^+ uncertainties

Contribution of each channel to the total positron spectrum

The contribution of elements with high mass number is as important as that from C or O above ~10 GeV

Contribution of heavy nuclei (above He and up to ⁵⁶Fe) constitutes between 7.5% and 10% of the total e^+ flux at 10 GeV \rightarrow Overestimation due to the lack of data on sub-Fe elements

PDL et al JCAP 10 (2023) 011 ArXiv:2305.02958

Fluka cross sections: e^+ uncertainties

Contribution of each channel to the total positron spectrum

The contribution of elements with high mass number is as important as that from C or O above ~10 GeV

Contribution of heavy nuclei (above He and up to ⁵⁶Fe) constitutes between 7.5% and 10% of the total e^+ flux at 10 GeV \rightarrow Overestimation due to the lack of data on sub-Fe elements

PDL et al JCAP 10 (2023) 011 ArXiv:2305.02958

New measurements require better predictions of the γ -ray and ν flux at high energies

Fast evolution of γ-ray experiments covering the sky from the MeV to the PeV allow us to improve our knowledge of the Galactic and extragalactic environment. However, cross sections uncertainties are a problem in the whole energy range...

γ-ray production XS

While for p-p and p-He interactions the agreement is quite good with Orusa et al. and Kamae cross sections, for interactions of heavier nuclei the deviations are significant

8

FLUKA cross sections for gamma-ray production

Study of the **local emissivity** (at latitudes $10^{\circ} < |b| < 70^{\circ}$) ISM composition with relative abundance of H : He : C : N : O : Ne : Mg : Si = 1:0.096 : 4.65 10^{-4} : 8.3 10^{-5} : 8.3 10^{-4} : 1.3 10^{-4} : 3.9 10^{-5} : 3.69 10^{-5} .

This quantity just depends on the cross sections of gamma-ray production and the spectrum of electrons, protons and He (**lowenergy especially uncertain due to solar modulation uncertainties!**)

Cross sections implemented in the *GammaSky* code

Conclusions

The FLUKA cross sections for secondary cosmic rays: Latest results

- FLUKA provides cross sections over a wide energy range and for every isotope and channel, not depending on the limited data
- FLUKA demonstrates to be compatible with the current cross section data and allows us to simultaneously reproduce B, Be and Li and ³He. However, there are caveats: Fluorine and antiprotons seem significantly deviated!
- Production cross sections of γ-rays seem to be compatible with other predictions for p-(p, He) interactions, but deviations seem more important for interactions of heavier nuclei
- In the next future, we want to consider coalescence and antinuclei with FLUKA

Pedro de la Torre Luque – XSCRC@CERN 2024 pedro.delatorre@uam.es

BACK UP SLIDES

Evaluation of cross sections for CR interactions with the FLUKA code

http://www.fluka.org/fluka.php

FLUKA has been used in other CR studies as in Mazziotta, **P.D.L**. et al PRD 101(8):083011 (2020), as well as for other astrophysical applications as atmospheric neutrino studies (Astropart. Phys., 23:526–534, 2005) or gamma-ray flares from the Sun (Solar Phys., 294(8):103, 2019).

We have computed inelastic and inclusive cross sections of interactions of all isotopes of the CR nuclei up to Z=26 (Iron) with protons and helium, including a careful analysis of those short-living particles produced (ghost nuclei) from 1 MeV/n to 35 TeV/n.

The result is a set a cross sections of secondary CRs that can be used in CR propagation codes. We have also computed cross sections for gamma-ray, secondary electrons and positrons, neutrinos and antiprotons.

The FLUKA toolkit and the evaluation of cross sections for CR interactions

http://www.fluka.org/fluka.php

- **Resonances** produced in hadron-nucleon inelastic collisions dominate from the MeV up to 3-5 GeV
- Above 3-5 GeV hadronizations through <u>Dual Parton Model</u> (**DPMJET-3**) takes over
- Extension to <u>hadron-nucleus</u> collisions is achieved <u>through the **PEANUT** model (GINC) + relaxation</u>
- Nucleus-Nucleus use **Boltzmann thermal equation** at E<0.1GeV/u, **rQDM** model up to 5 GeV/u and **DPMJET** above

Elastic,exchange Phase shifts data, eikonal	P<3-5GeV/c Resonance proc and decay	low E Spec	π, <i>Κ</i> ial	High Energy DPM hadronization
Hadron-Nucleus PEANUT Sophisticated GINC Gradual onset of Glauber-Gribov multiple interactions Preequilibrium Coalescence		N E< 0.1GeV/u BME Complete fusion+ peripheral	ucleus-Nucl 0.1< E< 5 GeV rQMD-2.4 modified new QMD	eus //u E> 5 GeV/U DPMJET DPM+ Glauber+ GINC

Credit: Paola sala

FLUKA inelastic cross sections

FLUKA inclusive cross sections for rare channels

Deuteron seems incompatible with our expectations

Fluka provides a similar prediction as when using other cross sections params., all being too steep compared to the data above a few GeV/n. The head-on approximation does not seem to be the problem... Correlated errors? Other contributions?

Fluka cross sections

G. Battistoni et al, Annals of Nuclear Energy, Vol. 82 (2015)

T. Böhlen Nuclear data sheets,

F. Cerutti, "FLUKA: theoretical grounds and wished new data",

xzF

Fluka cross sections

http://www.fluka.org/fluka.php

FLUKA (cumulative) inclusive cross sections

These cross sections are implemented in the DRAGON2 code with the aim of studying the production of the secondary CRs B, Be and Li

The <u>propagation params</u>. inferred from the <u>B/C</u> ratio are very <u>compatible</u> with those derived from other updated parametrizations

FLUKA cross sections: B, Be and Li ratios

FLUKA cross sections: B, Be and Li ratios

Energy dependence is greatly reproduced above a few GeV per nucleon These ratios match AMS-02 data considering a ~10-25% scaling of the cross sections

How valid is the head-on approximation below Li?

FLUKA cross sections: The halo size

Cross sections e^+ uncertainties

Conventional set-up: <u>Cylindrical symmetry of gas density</u> (dependence on **r** and **z**), source distribution, magnetic field. Prop. adjusted from secondary CRs (ArXiv:2202.03559)

Predicted secondary e+ from different analysis of secondary CRs with Fluka cross sections

FLUKA cross sections for gamma-ray production

Electrons require a doubly broken power-law in order to reproduce at the same time local CR measurements and **local γ-ray emissivity** at low energies # γ-ray production from different gas nuclei # Protons, He and electrons are treated with the *Force field* approximation and need a break at around 8 GeV/n to fit well experimental data

FLUKA cross sections for gamma-ray production

Study of the **local emissivity** (at latitudes $10^{\circ} < |b| < 70^{\circ}$) ISM composition with relative abundance of H : He : C : N : O : Ne : Mg : Si = 1:0.096 : 4.65 10^{-4} : 8.3 10^{-5} : 8.3 10^{-4} : 1.3 10^{-4} : 3.9 10^{-5} : 3.69 10^{-5} .

This quantity just depends on the cross sections of gamma-ray production and the spectrum of electrons, protons and He (**lowenergy specially uncertain due to solar modulation uncertainties!**)

Cross sections implemented in the *GammaSky* code

The cross section problem

Orusa et al PRD 105 (2022) 12

 $e^{+} + \nu_{e} + \bar{\nu}_{\mu}$ $u^{+} + v_{\mu}$ Diffuse term Source term $\boldsymbol{\Phi}_{e^+}(\boldsymbol{E}) = \frac{E^2}{\widehat{F}^2} \Big[\boldsymbol{C}_d(\widehat{\boldsymbol{E}}/\boldsymbol{E}_1)^{\gamma_d} + \boldsymbol{C}_s \left(\widehat{\boldsymbol{E}}/\boldsymbol{E}_2\right)^{\gamma_s} \exp(-\widehat{\boldsymbol{E}}/\boldsymbol{E}_s) \Big]$ $K^+ + X$ p + p25r **Positron Spectrum** AMS-02 Collab. $K^- + X$ • AMS-02 Fit with Eq.(4) and 68% C.L. band $K_{s}^{0} + X$ Ś $e^{+} + \nu_{e} + \bar{\nu}_{u}$ ế³Φ_e, [GeV² m⁻² $K_l^0 + X$ Source term $^{+} + \nu_{\mu} + \pi^{-}$ **Diffuse term** $+ \nu_{e} + \pi^{2}$ $\bar{\Lambda} + X$ $u^+ + \nu_\mu$ Energy [GeV] $\pi^{0} + X$ $e^+ + e^- + \gamma$ 10 100 1000

Positrons mainly produced from p+p interactions, but also He and heavier CRs are involved and produce positrons!

Fluka cross sections: e^+ uncertainties

Scaling $\rightarrow \frac{\sigma_{A+p}}{\sigma_{p+p}} \sim A^s$ s found to be 0.9-1.1

 $p + He \rightarrow e^+$

103

He + He \rightarrow e⁺

103

AAfrag

Kamae

Fluka

AAfrag

Kamae

Fluka

Orusa et al

101

Orusa et al

101

10²

Energy e⁺ (GeV)

10²

Energy e⁺ (GeV)

