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AMS is a space version of a precision detector used in accelerators
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AMS provides precision, long-duration measurements of charged cosmic rays

With high accuracy, AMS measures:

particle anti-particle

Charge (Z) and charge sign
Rigidity (R=P/Z, GV)
Velocity (S=v/c)

Energy (E, GeV)
Mass M = &2
By

Flux (Nevents/(s sr m?GeV))

for all the charged cosmic
rays, e+, e-, p, and p,
and the nuclei
in the Periodic Table

Matter Antimatter
e | P Fe et P He
| |
TRD % v T % v
TOF v v i v T
Tracker
+ Magnet / \ \ \ / /
o e | R o e i
RICH ..’ ‘Pb-} O “o._" ..’ {‘:}
ECAL //ﬂ\ % //ﬂ\ 1
Cosmic-ray Dark Matter Primordial
properties searches antimatter
searches

Thanks to its large acceptance and long-duration mission, AMS is also studying time evolution
of cosmic-ray fluxes for e+, e—, p, and p, and nuclei.
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Cosmic Nuclei identification with AMS

Today, with 240 billion events and improved analysis,
we have precise spectroscopy of cosmic ray nuclei
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., Fe nuclei

S i a2 SR e _ Primary elements,

Prlmary cosmlc Rays S : protons, He, C, O, Ne, Mg, Si..
' 3 Tk e are produced

during the lifetime of stars.

They are accelerated in

_Proton . .
- o supernovae epr05|ons

e and
@9 e expelled in the interstellar medium
e, e where they propagate diffusively
0% Cabon % through the galaxy.
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Secondary Cosmic Rays

. Secondary cosmic rays
~ Li, Be, B, F, sub-Fe nuclei
'a're‘ produced by the collision of
prlmary cosmicrays, C, O, Si, ..., Fe,
; with the
- interstellar medium

ACE News Caltech
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Rigidity (or energy) spectra of secondary cosmic rays compared to primary spectra give information on cosmic-ray propagation:
measure of rigidity dendence of CR diffusion coefficient 5



Light primary cosmic-ray nuclei : H (protons)
The proton spectrum deviates from a simple power law and hardens above 200 GV
x10°
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. . . . . AMS Collaboration Phys. Rep. 894, 1 (2021
Light primary cosmic-ray nuclei : Helium OTaRoTation Ty, TEp (2021)
The helium nuclei spectrum deviates from a simple

Proton spectrum is described by a
power law and hardens above 200 GV P 4

He-like component and an
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Nuclear cross-sections measurements with AMS-02
Crucial to accurately measure nuclei fluxes. Qi Yan et al, Nucl. Phys. A 996 121712 (2020)

1SS Flving Horizontally Inelastic cross sections data available only for few target and projectiles
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Nuclear cross-sections measurements with AMS-02
Nuclei breaking-up probability measured channel by channel with in-flight AMS data:

Incoming Cosmic-ray Fe nucleus
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Qi Yan et al Nucl. Phys. A 996 121712 (2020)
AMS Collaboration Phys. Rep. 894, 1 (2021)



AMS measured nuclear inelastic cross-sections
Qi Yan et al Nucl. Phys. A 996 121712 (2020)
AMS Collaboration Phys. Rep. 894, 1 (2021)
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Latest AMS results on nuclei Phys. Rev. Lett. 130, 211002 (2023)
Primaries and secondaries group each in two classes of rigidity dependence
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https://doi.org/10.1103/PhysRevLett.130.211002

AMS collaboration Phys. Rev. Lett. 120, 021101 (2018)
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https://doi.org/10.1103/PhysRevLett.120.021101

Phys. Rev. Lett. 126, 081102 (2021)

AMS result on Fluorine spectrum

The heavy secondary-to-primary ratio F/Si differs significantly

from light secondary-to-primary ratios , B/O, B/C, Li/O, etc..
What is this suggesting?

AMS Collaboration. Phys. Rev. Lett. 126, 081102 (2021) n; . .
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https://doi.org/10.1103/PhysRevLett.126.081102

Latest results on very heavy primary cosmic rays: Nickel nuclei

AMS Nickel flux: rigidity dependence is similar to Fe
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AMS N|/Fe Flux Ratio
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Cosmic-ray nuclei are mixtures of two or more isotopes

Isotopes in light cosmic-ray nuclei (1<Z <8)
7 A
. Primaries

. Secondaries ..
6 e

Primary

Interstellar medium
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Measurement of CR nuclei isotopic composition with AMS

R -7 The best velocity
Nucleimass M = —— measurement among those
,8)/ — i E— from TOF, RICH- NaF and

Charge Z RICH-Aerogel is chosen to
from Silicon Tracker optimize mass resolution
and TOF

200 Be

150 /
10.0

Rigidity R from
Silicon Tracker_

AM/M [%]
N
ul

Velocity [ from

TOF or RICH = 751  ToF RICH-NaF RICH-Aerogel
The isotopic composition is extracted from mass 05 10 20 40 80 120

] ] . . . . Ex per nucleon [GeV/n]
template fits of mass distributions in bins of E,/n .



Measurement of cosmic-ray nuclei isotopic composition with AMS

Extensive checks of mass templates definition, simulation of detector response and nuclear

fragmentatlon cross-sections are done Jiahui Wei (PhD thesis), Univ. Geneve, 2021 - Sc. 5582 - 2021/08/24

Example: check Of fragmentation https://doi.orag/10.13097/archive-ouverte/unige: 155018

background simulation for Be isotopes 0.7 | AMS data (this study) | 12 > 7Be
Incoming cosmic-ray Carbon nucleus " | Olson (1983) Bevalac ‘ 12¢ > 9Be

Korejwo (2000) Dubna 12¢ _> 108a

, |
fragmentation 2

_inside TRD or TOF ' |

daugther Beryllium nucleus

&3
Mass is reconstructed
from velocity measured

in RICH 1 2 4 6
Ex per nucleon [GeV/n]



https://doi.org/10.13097/archive-ouverte/unige:155018

AMS result on Deuterons

Phys. Rev. Lett. 132, 261001 (2024)

D are considered to be secondary cosmic rays originating mainly from fragmentation of 4He
Model calculations do not reproduce D/*He and D/He flux ratios
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Flux Ratio

D/4He and 3He/*He flux ratios are different
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AMS result on Deuterons s Rev. Lett. 132, 261001 (2024)

D and 3He are both considered to be secondary
cosmic rays with *He as main progenitor
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Phys. Rev. Lett. 132, 261001 (2024)

AMS result on Deuterons

Above 4.5 GV, the deuteron flux ®p is well described by the sum of a
primary component d)l’; x @4 _and a secondary component d),s; X P3_
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Lithium isotopes

Cosmic lithium contains two isotopes 6Li and 7Li
Both produced by spallation of heavier cosmic-ray nuclei with the interstellar medium

’Li might have a primary component from Big Bang nucleosynthesis or low-mass stars

Cosmic-ray model calculations of Li nuclei flux undershoot AMS measurement:

Lithium

Hint of a primary lithium ’Li component
(Boschini et al 2020)

with > :
primary

OR Li

uncertainties in lithium production cross-sections?
(Weinrich 2020, P. De La Torre Luque 2021,
Korsmeier & Cuoco 2021, Maurin 2022)
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Testing the Origin of Lithium Isotopes
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Preliminary data, please refer to upcoming AMS publication
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Testing the origin of Lithium Isotope Fluxes

Comparison with model calculations

ams Preliminary
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knowledge of fragmentation branching ratios to 6Li and 7Li:
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Measuring isotope branching ratios with AMS

Manbing Li PhD thesis Univ. Genéve, 2024 - Sc. 5842 - 2024/06/25
https://doi.org/10.13097/archive-ouverte/unige: 180626

Incoming cosmic-ray Carbon nucleus

fragmentation

Mass is reconstructed

from velocity measured
in RICH
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https://doi.org/10.13097/archive-ouverte/unige:180626

Measuring cosmic-ray propagtion volume with
radioactive clocks

Secondary cosmic-ray nuclei include several radioactive isotopes with a decay lifetime
comparable with the cosmic-ray residence time in-the Galaxy, such as °Be,2°Al,3°Cl, and >*Mn.
Stable secondaries as °Be propagate in the entire galactic halo,

‘while 19Be decay to 1B before reaching the boundary of the Galaxy.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

. Unstable secondary . : . ;
ol 10Be Primary Cosmic Rays r— - | + L Galﬁcnc
10g_ WA T o | halo

[ 380k 71~ 005 OO A B 20056 15 1506 e 1460 6 DO e g ’ Y . el k. L e e R R, (PR S

Stable secondary '
R + »
°Be

The fraction of survived radioactive isotopes at Earth measures the Galactlc halo size L.

This can be obtained »
Indirectly from mother-to-daughter ratio Be/B AI/Mg, Ar/Cl, - larger uncertalnty onlL due to xsec
Or more directly from the unstable-to-stable secondaries ratio 1°Be/°Be -> more difficult to measure 26



Cosmic 1°Be/’Be Flux Ratio Before AMS-02
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Beryllium Isotope Flux Ratios

AMS

Hagen et al.
Buffington et al.
Webber
Webber & Kish
IMP 7 & 8

IMP 7 & 8
ISEE3-HKH
Ulysses-HET
Voyager 1&2

9 7
Lo Be/7Be

Psp/P7pe
o =
o0 o
<+ @ ¢ P > H B &

¢¢¢

(@]
)]
-.-
&
R 2l

* L ®

0.4
Preliminary data, refer to upcoming AMS publication

p) 4 6 8 10 12
Kinetic Energy Ex/n [GeV/n]

P10 /Pope

0.7

o
o

o
8]

©
N

©
w

©
N

o
-

o
o

10Be/ %Be ¢ AMS A IMP7&8
* ACE-CRIS ¢ IMP7&8
* ACE-SIS ¢ ISEE3-HKH
B Hagen et al. Y ISOMAX
® Buffington et al. Y Ulysses-HET
A Webber & Kish ® \Voyager 1&2
|
¢ ¢ + +
¢
+ + + & L

treliminary data, refer to upcoming AMS publication

p) 4 6 8 10 12
Kinetic Energy Ey/n [GeV/n]

29



Galactic halo size L with AMS 19Be/°Be Flux Ratio
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m=m L=3.270-2kpc £1 kpc from cross-sections
uncertainties (not shown)

Preliminary data,
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https://www.aanda.org/articles/aa/abs/2022/11/aa43546-22/aa43546-22.html

~ Latest Results on cosmic particles: e+, e-, and anti-protons
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AMS positron flux measurement

Well described by the sum of low-energy part from cosmic ray collisions
plus a high-energy source term from pulsars or dark matter with a cutoff energy E.

2
@ (B) = 25 [CalB /B + C,(B/E) “exp(~ B/Ey)|

— o5 Solar CR collisions source term
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AMS Result on the electron spectrum

The spectrum fits well with two power laws (a, b) and a _
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Cosmic Antiprotons and Positrons

Pulsars do not produce antiprotons

Above 60 GeV, the p and e* fluxes have identical energy dependence
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Which is the origin of the high-energy positrons?

Why their spectrum is similar to the antiproton spectrum?

* AMS Positron-to-Antiproton Flux Ratio

cI>eJ<I>rj =1.98 + 0.03 (stat.) = 0.05(syst.)
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Summary and Conclusions

In the past hundred years, measurements of charged cosmic rays by balloons and satellites
have typically had ~(30-50)% accuracy.

AMS is providing cosmic ray information with ~1% accuracy.
The improvement in accuracy and energy range is providing new insights on cosmic-ray origin,
acceleration and propagation mechanismes.
AMS data are arising questions to be addressed by a comprehensive model of cosmic rays:
which is the origin of the high-energy positrons ?
why positron and antiproton spectra have identical shape at high energy?
which is the origin of the high-energy deuterons?
why there are two classes of spectra in both primary and secondary cosmic-ray nuclei?
do light and heavy cosmic-ray nuclei propagate in the same way? primary component in
fluorine? why Fe and Ni group with the light primaries He, C, and O?

Measurements of production cross-sections are eagerly awaited to answer these questions but
also to precisely determine model parameters from current data (as the propagation halo size).
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Latest AMS Results on Heavy Antlmatter

Matter is deﬁned by its mass M and charge zZz
Antnmatter has the same mass M but opp05|te charge —Z

D, He,C 0.

' Antimatter‘ Star

 AMS is a unique antimatter spectrometer in space
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An Anti-Deuteron Candidate from ~100 million deuterons and ~10 billion protons

Bending Plane

Cherenkov cone in RICH

Anti-deuteron Candidate
Charge =-1.02 %= 0.05
Mass =1.9%+0.1 GeV/c?

Deuteron

Charge =+1
Mass =1.88 GeV/c?
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Anti-*Helium Event

bending plane

4He: Mass
Charge

=-2.05 £ 0.05

3.81 = 0.29 GeV/c?

3.73 GeV/c?
+2
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Current Matter and Antimatter Statistics
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By 2030, AMS will have additional measurement points in the study of antlmatter
anti-deuterons, anti-helium, anti-carbon, and anti-oxygen.
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