

ALICE measurements for cosmic rays

 $\sqrt[3]{\text{He}}$

Laura Šerk šnyt ^ė Technical University of Munich XSCRC24 Workshop 17.10.2024

Understanding cosmic ray fluxes

• Production

Understanding cosmic ray fluxes

- **Production**
- **Propagation**

Understanding cosmic ray fluxes

- **Production**
- **Propagation**
- Inelastic interactions

Understanding cosmic ray fluxes

Production

- **Propagation**
- Inelastic interactions

Production cross section measurements and production mechanism studies

Understanding cosmic ray fluxes

- **Production**
- **Propagation**
- Inelastic interactions

Production cross section measurements and production mechanism studies

Inelastic cross section measurements

Excellent tracking and particle identification (PID) capabilities

A Large Ion Collider Experiment

Inner Tracking System (ITS) Tracking, vertex

Time Projection Chamber (TPC) Tracking, PID (d*E*/d*x*)

Time Of Flight detector (TOF) PID (TOF measurement)

Transition Radiation Detector (TRD)

Int.J.Mod.Phys.A 29 (2014) 1430044 JINST 3 (2008) S08002

A Large Ion Collider Experiment

4

Time Projection Chamber (TPC) Tracking, PID (d*E*/d*x*)

ALI-PERF-341664

A Large Ion Collider Experiment

4

Time Projection Chamber (TPC) Tracking, PID (d*E*/d*x*)

ALI-PERF-341664

Time Of Flight detector (TOF) PID (TOF measurement)

LHC - antimatter factory

• High precision measurement of different (anti)nuclei spectra

ALICE, JHEP 01 (2022) 106

(Anti)nuclei production mechanism

- Coalescence Model
	- Nuclei are formed by nucleons coalescing after freeze-out
	- Depends on phase-space of produced nucleons (momentum, distance) and nucleus Wigner function

$$
B_A = \frac{E_A \frac{d^3 N_A}{d^3 p_A}}{\left(E_p \frac{d^3 N_p}{d^3 p_p}\right)^A}
$$

LHC - antimatter factory

• High precision measurement of different (anti)nuclei spectra

ALICE, JHEP 01 (2022) 106

LHC - antimatter factory

• High precision measurement of different (anti)nuclei spectra

Rapidity dependence

- Antideuteron yields usually
measured at $|y| < 0.5$
	- At rapidities lower than ~5 GV and larger than ~100 GV, most of the antideuteron flux is produced at rigidities larger than 0.5
	- Assumption based on event generators: coalescence parameter is independent on rapidity

Rapidity dependence

- Antideuteron yields usually measured at $|y| < 0.5$
	- At rapidities lower than ~5 GV and larger than ~100 GV, most of the antideuteron flux is produced at rigidities larger than 0.5
	- Assumption based on event generators: coalescence parameter is independent on rapidity

⁸ Blum, Phys.Rev.C 109 (2024) 3, L031904

XSCRC 2024 | laura.serksnyte@cern.ch ALICE Collaboration, arXiv:2407.10527

Rapidity dependence

- Antideuteron yields usually
measured at $|y| < 0.5$
	- At rapidities lower than ~5 GV and larger than ~100 GV, most of the antideuteron flux is produced at rigidities larger than 0.5
	- Assumption based on event generators: coalescence parameter is independent on rapidity
- ALICE extended the measurement range of antideuterons to |*y|* < 0.7
- Results:
	- Confirmed flat shape of B₂

$$
B_A = \frac{E_A \frac{d^3 N_A}{d^3 p_A}}{\left(E_p \frac{d^3 N_p}{d^3 p_p}\right)^A}
$$

XSCRC 2024 | laura.serksnyte@cern.ch ALICE Collaboration, arXiv:2407.10527

Safe to extrapolate to forward rapidities

- Antideuteron yields usually measured at |*y|* < 0.5
	- At rapidities lower than ~5 GV and larger than ~100 GV, most of the antideuteron flux is produced at rigidities larger than 0.5
	- Assumption based on event generators: coalescence parameter is independent on rapidity
- ALICE extended the measurement range of antideuterons to |*y|* < 0.7
- Results:
	- Confirmed flat shape of B_2

Rapidity dependence

$$
B_A = \frac{E_A \frac{d^3 N_A}{d^3 p_A}}{\left(E_p \frac{d^3 N_p}{d^3 p_p}\right)^A}
$$
 Safe to use mid-rapidity da

Understanding cosmic ray fluxes

- **Production**
- **Propagation**
- Inelastic interactions

10

ALICE: measurements to understand the production and constrain models

ALICE: Inelastic cross section measurements

Understanding cosmic ray fluxes

- **Production**
- **Propagation**
- Inelastic interactions

ALICE: measurements to understand the production and constrain models

ALICE: Inelastic cross section measurements

Results

- Momentum estimated at the inelastic interaction point
- Inelastic antihelium-3 cross section on average target material
- At low momentum, rather good agreement between data and Geant4 prediction observed **Article** https://doi.org/10.1038/s41567-022-01804-8

- Momentum estimated at the inelastic interaction point
- Inelastic antihelium-3 cross section on average target material
- At low momentum, rather good agreement between data and Geant4 prediction observed
- At higher momentum, data are systematically ~20% lower than Geant4 parametrisation Article expected that the details of charactically 000 lower than Coopt in presentive otion

Results

- Momentum estimated at the inelastic interaction point
- Inelastic antihelium-3 cross section on average target material
- At low momentum, rather good agreement between data and Geant4 prediction observed
- At higher momentum, data are systematically ~20% lower than Geant4 parametrisation Article expected that the details of charactically 000 lower than Coopt in presentive otion

Results

Solar modulated antihelium flux

- Coalescence model validated with ALICE antideuteron and antihelium-3 data
- Uncertainties shown only from ALICE measurement, small compared to other uncertainties in the field
- Disappearance effect strongly depends on the cosmic ray flux shape
- Large transparency to both signal and background components

Solar modulated antihelium flux

- Coalescence model validated with ALICE antideuteron and antihelium-3 data
- Uncertainties shown only from ALICE measurement, small compared to other uncertainties in the field
- Disappearance effect strongly depends on the cosmic ray flux shape
- Large transparency to both signal and background components

Transparency =
$$
\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel} = 0)}
$$

Solar modulated antihelium flux

ALICE measurement of antihelium-3 inelastic cross sections can be used in all future studies of antihelium-3 cosmic rays!

- Coalescence model validated with ALICE antideuteron and antihelium-3 data
- Uncertainties shown only from ALICE measurement, small compared to other uncertainties in the field
- Disappearance effect strongly depends on the cosmic ray flux shape
- Large transparency to both signal and background components

Transparency =
$$
\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel} = 0)}
$$

πп

Same studies for antideuterons

14

First low energy antideuterons inelastic cross section measurement

Ш

Same studies for antideuterons

14

First low energy antideuterons inelastic cross section measurement

Talk by David at 13:10

Summary

- **Production**
	- High precision differential (anti)deuteron and (anti)helium yields in pp collisions
	- Coalescence parameter B_2 is flat as a function of rapidity: extrapolation from mid-rapidity to forward rapidity should be safe
- Annihilation:
	- First ever low momentum antideuteron measurement
	- First ever antihelium-3 measurement
- Future/ongoing:
	- high-pT deuterons with HMPID
	- inelastic cross-section of antihelium-4
	- First observation of antihelium-4 in pp collisions

- …

Thank you for your attention!

Method: ALICE as a target

17

• Measure reconstructed ${}^{3}\overline{\text{He}}/{}^{3}\text{He}$ and compare with MC simulations He/ 3 He

Antimatter-to-matter ratio

TOF-to-TPC-matching

• Measure reconstructed 3 and compare with MC simulations $\rm{He_{TOF}}/$ 3 $\rm{He_{TPC}}$

(Anti)nuclei production mechanisms

- Statistical Hadronisation Model (SHM)
	- describes the yields of light-flavoured hadrons by requiring thermal and hadron-chemical equilibrium

18

(Anti)nuclei production mechanisms

- Statistical Hadronisation Model (SHM)
	- describes the yields of light-flavoured hadrons by requiring thermal and hadron-chemical equilibrium
- Coalescence Model
	- Nuclei are formed by nucleons coalescing after freeze-out
	- Depends on phase-space of produced nucleons (momentum, distance) and deuteron Wigner function

19

Comparison

- Nucleus to nucleon yield ratio evolves smoothly with multiplicity
	- Dependence on the system size
- Deuterons: no conclusion on the different models
- Helium-3: model predictions different but insufficient data precision

ALICE, arxiv:2405.19826

тип

Comparison

- Nucleus to nucleon yield ratio evolves smoothly with multiplicity
	- Dependence on the system size
- Deuterons: no conclusion on the different models
-

CSM vs Coalescence

- Nucleus to nucleon yield ratio evolves smoothly with multiplicity
	- Dependence on the system size
- Deuterons: no conclusion on the different models
- Helium-3: model predictions different but insufficient data precision

- Hypertriton has a size of $~10$ fm
	- Relevant for coalescence but not SHM
- Coalescence provides the best description of hypertriton measurement in pp collision system

ТИТ

 $\sigma_{\rm inel}$ (³He) in MC varied for each momentum bin to match: 3 He

- experimental data \rightarrow central value
- upper/lower edge of the total error bar \rightarrow 1 σ confidence interval

Antimatter-to-matter method

Antimatter-to-matte

 $\sigma_{\rm inel}$ (³He) in MC varied for each momentum σ_0 ¹ 3 He

- experimental data \rightarrow central value
- upper/lower edge of the total error bar \rightarrow 1 σ confidence interval Help Community

22

3 (TOF) / raw He

ო

Raw

 $\frac{1}{3}$

くくしトー

 $\overline{}$

 $\sigma_{\rm inel}$ (³He) in MC varied for each momentum σ_0 ¹ 3 He

- experimental data \rightarrow central value
- upper/lower edge of the total error bar \rightarrow 1 σ confidence interval Help Community

 $\frac{1}{3}$ くくしトー $\overline{}$ 3 (TOF) / raw He ო Raw

 \overline{a} -|- -3He 3 Raw (/ He ო **discrete p**
p*n p* \bullet MC Data $1\sigma_{\text{tot}} = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$ $\overline{}$, and the contract of the contrac $\sigma_{\text{inel}}^{\text{(3)}}(b)$ 0.2 0.4 0.6 R \overline{p} eer law: $\mathbf{D} / \mathbf{D} \propto \exp(-\sigma_{\text{inel}})$ $\begin{picture}(18,17) \put(0,0){\vector(1,0){150}} \put(1,0){\vector(1,0){150}} \put(1,0){\vector(1$ \mathbf{p} | Lambert-Beer law: D/D ∝ ex $\overline{}$ Data Lambert-Beer law: B/B ∝ exp($-\sigma_{\rm inel}$)

 $\sigma_{\rm inel}$ (³He) in MC varied for each momentum σ_0 ¹ 3 He

- experimental data \rightarrow central value
- upper/lower edge of the total error bar \rightarrow 1 σ confidence interval Help Community

 $\frac{1}{3}$ くくしトー $\overline{}$ 3 (TOF) / raw He ო Raw

 \overline{a} -|- -3He 3 Raw (/ He ო **discrete p**
p*n p* \bullet MC Data $1\sigma_{\text{tot}} = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$ $\overline{}$, and the contract of the contrac $\sigma_{\text{inel}}^{\text{(3)}}(b)$ 0.2 0.4 0.6 R \overline{p} eer law: $\mathbf{D} / \mathbf{D} \propto \exp(-\sigma_{\text{inel}})$ $\begin{picture}(18,17) \put(0,0){\vector(1,0){150}} \put(1,0){\vector(1,0){150}} \put(1,0){\vector(1$ \mathbf{p} | Lambert-Beer law: D/D ∝ ex $\overline{}$ Data Lambert-Beer law: B/B ∝ exp($-\sigma_{\rm inel}$)

 $\sigma_{\rm inel}$ (³He) in MC varied for each momentum σ_0 ¹ 3 He

- experimental data \rightarrow central value
- upper/lower edge of the total error bar \rightarrow 1 σ confidence interval Help Community

 $\frac{1}{3}$ くくしトー $\overline{}$ 3 (TOF) / raw He ო Raw

 $\sigma_{\rm inel}$ (³He) in MC varied for each momentum σ_0 ¹ 3 He

- experimental data \rightarrow central value
- upper/lower edge of the total error bar \rightarrow 1 σ confidence interval Help Community

 $\frac{1}{3}$ くくしトー $\overline{}$ 3 (TOF) / raw He ო Raw

 $\sigma_{\rm inel}$ (³He) in MC varied for each momentum σ_0 ¹ 3 He

- experimental data \rightarrow central value
- upper/lower edge of the total error bar \rightarrow 1 σ confidence interval Help Community

 $\frac{1}{3}$ くくしトー $\overline{}$ 3 (TOF) / raw He ო Raw

Antimatter-to-matter method

 $\sigma_{\rm inel}$ (³He) in MC varied for each momentum bin to match: 3 He

- experimental data \rightarrow central value
- upper/lower edge of the total error bar \rightarrow 1c confidence in the continuum

24

 \overline{a}

 \overline{O}

[Nature Physics \(2022\)](https://www.nature.com/articles/s41567-022-01804-8?fbclid=IwAR1aw8_-EfBehoWUQL0FeLbmM81uNnfXqPDEwt71LUDUcS8Q2HqQRZ4UWbg)

ALICE material budget

- Material budged distribution can be modelled and studied in Geant4
- Was validated with:
	- ‣ Photon conversion analyses (up to outer TPC vessel) [1]
	- ‣ Tagged pion and proton absorption studies (for the material between TPC and TOF detectors) [2]
- Result: total material budget known to a precision of ~4.5%!

 $\langle A \rangle$ =

 $\sum_{i=1}^{R} \sum_{j=1}^{N} \rho_{ij} A_{ij}$

 $\sum_{i=1}^{R} \sum_{j=1}^{N} \rho_{ij}$

- Antimatter-to-matter method: 31.8
- $T\bigcap T_{i}$ is $T\bigcap \bigcap f_{i}$ is engineers and $\bigcap A$ if T • TOF-to-TPC method: 34.7

• Average material

[1] Int.J.Mod.Phys.A 29 (2014) 1430044 [2] Public Note<https://cds.cern.ch/record/2800896>

(Anti)nuclei production mechanisms

- Statistical Hadronisation Model (SHM)
	- describes the yields of light-flavoured hadrons by requiring thermal and hadron-chemical equilibrium
	- canonical ensemble (CSM): local conservation of quantum numbers (S, Q and B)

(Anti)nuclei production mechanisms

- Statistical Hadronisation Model (SHM)
	- describes the yields of light-flavoured hadrons by requiring thermal and hadron-chemical equilibrium
	- canonical ensemble (CSM): local conservation of quantum numbers (S, Q and B)
- Coalescence Model
	- Nuclei are formed by nucleons coalescing after freeze-out
	- Depends on phase-space of produced nucleons (momentum, distance) and deuteron Wigner function

CSM vs Coalescence

- Nucleus to nucleon yield ratio evolves smoothly with multiplicity
	- Dependence on the system size
- Deuterons: no conclusion on the different models
- Helium-3: model predictions different but insufficient data precision

ALICE, arxiv:2405.19826

CSM vs Coalescence

- Nucleus to nucleon yield ratio evolves smoothly with multiplicity
	- Dependence on the system size
- Deuterons: no conclusion on the different models
-

CSM vs Coalescence

- Nucleus to nucleon yield ratio evolves smoothly with multiplicity
	- Dependence on the system size
- Deuterons: no conclusion on the different models
- Helium-3: model predictions different but insufficient data precision

- Hypertriton has a size of $~10$ fm
	- Relevant for coalescence but not SHM
- Coalescence provides the best description of hypertriton measurement in pp collision system

 $\partial \sigma_{\text{inel}}^3 \overline{\text{He}}^4\text{He}(p)$

Inelastic cross section

Relation between annihilation term and the inelastic cross section \bullet

$$
\frac{1}{\tau} = \beta c \left(n_H(\mathbf{r}) \sigma_{\text{inel}}^{3\overline{\text{He}}} (p) + n_{He}(\mathbf{r}) \sigma_{\text{inel}}^{3\overline{\text{He}}} (p) \right)
$$

• Parametrisation in Geant4, where RA is a function of target nuclei nucleon number

$$
\sigma_{hA}^{\text{inel}} = \pi R_A^2 \ln \left(1 + \frac{A \sigma_{hN}^{\text{tot}}}{\pi R_A^2} \right)
$$

31

Sophisticated Coalescence

- Largest uncertainty: production models
- Wigner formalism the new era of coalescence studies

$$
\mathscr{P}(r_0, q) = \int d^3 r \int d^3 r H_{\text{pn}} \left(\vec{r}, \vec{r}_d; r_0\right) \mathscr{D}(\vec{q}, \vec{r})
$$

$$
\frac{d^3 N_d}{dP_d^3} = S_d \int d^3 q \mathcal{P}(r_0, q) \frac{G_{np} \left(\overrightarrow{P}_d/2 + \overrightarrow{q}, \overrightarrow{P}_d/2 - \overrightarrow{q}\right)}{(2\pi)^6}
$$

$$
\mathcal{D}(\vec{q}, \vec{r}) = \int d^3 \xi e^{-i\vec{q}\cdot\vec{\xi}} \varphi_d(\vec{r} + \vec{\xi}/2) \varphi_d^*(\vec{r} - \vec{\xi}/2)
$$

Method benchmark: antiprotons

- Benchmark with well known inelastic cross-section measurement: antiprotons
- measurements

• Good agreement between the data and Geant4 parametrisation constrained to available

XSCRC 2024 | laura.serksnyte@cern.ch

34

Annihilation

ilation

Collisions in interstellar medium

- Largest antideuteron yield from collisions of protons of kinetic energy ~200-500 GeV • Corresponds to SPS centre-of-mass energies!
-
- The antinuclei inelastic cross sections must be evaluated at many different collision energies

Annihilation

Collisions in interstellar medium

- Largest antideuteron yield from collisions of protons of kinetic energy ~200-500 GeV • Corresponds to SPS centre-of-mass energies!
-
- The antinuclei inelastic cross sections must be evaluated at many different collision energies

Annihilation

Antideuteron cosmic ray fluxes

- Uncertainty only from inelastic \bullet cross section measurement
- Different coalescence models \bullet provide order of magnitude difference
- Signal to background ratio 2-3 orders of magnitude!
- Signal fluxes decreasing with increasing DM mass

Antideuteron cosmic ray fluxes

- Uncertainty only from inelastic \bullet cross section measurement
- Different coalescence models \bullet provide order of magnitude difference
- Signal to background ratio 2-3 orders of magnitude!
- Signal fluxes decreasing with increasing DM mass

All antihelium vs which reaches TOF

37

Antitriton

Inelastic cross sections

All antinuclei up to A=3 measured!

Antihelium-3

Phys.Lett.B 848 (2024) 138337

Benchmark: Antiproton

Inelastic cross section uncertainties

- First time data-driven estimate; propagated uncertainties \bullet
- Inelastic cross section from now on well constrained with data! \bullet

Phys. Rev. D 105, 083021 (2022)

Studying light nuclei formation

Light nuclei production must be understood better!

- ALICE studies of light nuclei production
- AMBER experiment at SPS [1]:
	- Proton beam scan from 50 GeV to 250 GeV
	- Proton and helium targets
- LHCb experiment at LHC [2]:
	- \rightarrow p-He collisions
- NA61 experiment at SPS [3]: \bullet
	- Proton beam scan from 9 GeV to 400 GeV
	- Antideuteron production

[1] Few Body Syst. 63 (2022) 4, 72 [2] PRL 121, 222001 (2018) [3] CERN-SPSC-2006-001

Production cross sections

- Model is used to estimate production cross-section at different collision energies \bullet
- These can be used directly as input to account for antinuclei production in cosmic ray \bullet collisions with interstellar medium

42

CR fluxes for different DM assumptions TITI &

PhD Thesis of Stephan Königstorfer

