PRODUCTION CROSS SECTIONS OF e^{\pm} **AND** γ **RAYS**

Luca Orusa XSCRC2024: Cross sections for Cosmic Rays CERN, 17/10/2024 Luca Orusa, Mattia Di Mauro, Fiorenza Donato, Michael Korsmeier

arXiv:2203.13143, Phys. Rev. D 105 (2022), 123021 arXiv:2302.01943, Phys. Rev. D 107 (2023), 083031 <u>https://github.com/lucaorusa/</u>

The positron excess (Orusa et al. 2024 arXiv:2410.10951)

Secondary positrons

•Secondary contribution: $q(T_{e^+}) = \sum_{i,j} 4\pi n_{\text{ISM},j} \times \int dT_i \phi_i(T_i) \frac{d\sigma_{ij}}{dT_{e^+}}(T_i, T_{e^+})$

•Scattering of a relativistic cosmic ray nucleus i colliding with an interstellar nucleus j at rest:

$$\sigma_{\rm inv}^{(ij)} = E_{\pi^{\pm}} \frac{d^3 \sigma_{ij}}{dp_{\pi^{\pm}}^3} (\sqrt{s}, p_T, x_R)$$

• $d\sigma(p + H \rightarrow e^{\pm} + X)$ former predictions affected by a factor 2 of uncertainty.

Fit to π^+ data

- Total uncertainties between 5 and 10%. $\sqrt{s} = 5-50$ GeV relevant.
- Integrating σ_{inv} over the solid angle and combining the result with the π^+ decay, we obtain the $\frac{d\sigma_{ij}}{dT_{e^+}}(T_i, T_{e^+})$ from π^+ .

Experiment	$\sqrt{s}~[{ m GeV}]$		$\sigma_{ m inv}$	n	Ref.
NA49	17.3	(π^{\pm},K^{\pm})		-	[67, 76]
ALICE	900	(π^+, K^\pm)		-	[77]
CMS	900, 2760, 7000, 13000	(π^{\pm},K^{\pm})		-	[78, 79]
Antinucci	3.0, 3.5, 4.9, 5.0, 6.1, 6.8	(π^{\pm})	-	\checkmark	[80]
	2.8, 3.0, 3.2, 5.3, 6.1, 6.8	(K^+)	-	\checkmark	[80]
	4.9,5.0,6.1,6.8	(K^{-})	-	\checkmark	[80]
NA61/SHINE	6.3, 7.7, 8.8, 12.3, 17.3	(π^{\pm}, K^{\pm})	-		[68]

Other channels

We consider the π^+ created from weak decays of strange particles:

- K^{\pm} , K_S^0 : fit on available data.
- K_L^0 : rescaled contribution from $\overline{K_S^0}$.
- $\overline{\Lambda}$, Σ and Ξ : rescaled contribution from the Λ .

We also consider the contribution from π^0 to the e^+ yield by multiplying the π^+ cross sections by a normalization factor connected to the multiplicity of π^+, π^0 .

Results on the e^+ production cross section

- The π^+ channel dominates the total cross section (10 times higher than the K^+ channel).
- e^+ production from K_S^0 , K_L^0 , and subdominant channels contributes at a few % level.
- $d\sigma/dT_{e^+}$ uncertainty: at 1σ is 5% to 8% at all T_p energies.

• Secondary e^+ are produced in nuclei interactions (p + A, A + p, and A + A).

• We use data from NA49 for $p + \mathbf{C}
ightarrow \pi^+ + \mathbf{X}$ and NA61 for the other channels. 6 17/10/2024

Results on the e^+ production cross section

- The q(E) is predicted with a remarkably small uncertainty, ranging from 5% to 8%.
- The channels involving He, constitute 30-40% of the total spectrum.
- The heavier primary CNO nuclei contribute a non negligible few percent at the AMS-02 energies.

- Similar analysis performed for e^- with similar conclusions.
- Future measurements of pion production in the p + He could help to improve the predictions for nuclei channels.
- For Monte Carlo predictions, see talk by De la Torre Luque (tomorrow).

- •Most of the γ rays detected by Fermi-LAT are produced by the Galactic diffuse emission.
- •It originates from the interaction of CRs with interstellar gas and radiation fields within our own Galaxy.

Diffuse γ -ray emission

γ+γ

 $\rightarrow \gamma + \gamma$

 $\rightarrow \gamma + \gamma$

 $\rightarrow \gamma + \gamma$

γ + γ

Di Mauro et al., Phys. Rev. D 103, 123005 (2021)

 $\sigma_{\text{inv}} = \sigma_0(s) c_{20} [G_{\pi^+}(p_T, x_R) + G_{\pi^-}(p_T, x_R)] A(s)$

- π^0 : total uncertainties between 7 and 20%. \sqrt{s} = 5-50 GeV relevant.
- K^{\pm} , K_S^0 : fit on available data.
- K_L^0 : rescaled contribution from $\overline{K_S^0}$.

• η : fit on available data and rescaled contribution from π^0 .

Results on the γ -ray production cross section

CERN

11

()/2()/24

Diffuse ν emission (Orusa et al. in prep)

•Unlike the multi-component fluxes of γ rays, the flux of galactic diffuse ν uniquely originate from the decay of charged mesons, that are produced in hadronic interactions.

• ν production cross section are needed.

CERN

17/10/2024

- 1. $p + \text{He} \rightarrow e^+ + X (p + \text{He} \rightarrow \pi^+ + X)$ (p beam ~ 10 - 200 GeV)
- 2. $p + p \rightarrow \gamma + X(p + p \rightarrow \pi^0 + X)$ (p beam ~ 10 - 200 GeV)
- 3. $p + \text{He} \rightarrow \gamma + X (p + \text{He} \rightarrow \pi^0 + X)$ (p beam ~ 10 - 200 GeV)

$$\sigma_{\text{inv}} = \sigma_0(s) c_1 \left[F_p(s, p_T, x_R) + F_r(p_T, x_R) \right] A(s)$$

$$F_p(s, p_T, x_R) = (1 - x_R)^{c_2} \exp(-c_3 x_R) p_T^{c_4} \times \exp\left[-c_5 \sqrt{s/s_0}^{c_6} \left(\sqrt{p_T^2 + m_\pi^2} - m_\pi \right)^{c_7 \sqrt{s/s_0}^{c_6}} \right]$$

$$F_r(p_T, x_R) = (1 - x_R)^{c_8} \times \exp\left[-c_9 p_T - \left(\frac{|p_T - c_{10}|}{c_{11}} \right)^{c_{12}} \right] \times \left[c_{13} \exp(-c_{14} p_T^{c_{15}} x_R) + c_{16} \exp\left(- \left(\frac{|x_R - c_{17}|}{c_{18}} \right)^{c_{19}} \right) \right]$$

$$A(s) = \frac{1 + \left(\sqrt{s/c_{20}} \right)^{c_{21} - c_{22}}}{1 + \left(\sqrt{s_0/c_{20}} \right)^{c_{21} - c_{22}}} \left(\sqrt{\frac{s}{s_0}} \right)^{c_{22}}$$

•

	π^+	π^-	K^+	K^{-}
$\chi^2_{ m NA49}/ m d.o.f.$	338/263	287/290.	146/151	197/151
$\chi^2_n/{ m d.o.f.}$	189/129	169/96	160/102	135/100
$\chi^2_{ m ALICE}$	77(33)	-	42(27)	36(27)
$\chi^2_{ m CMS}$	100 (88)	154 (88)	77~(68)	54~(68)
$\chi^2_{ m NA61,Antinucci}$	10(12)	15(12)	39(11)	44 (9)
$\chi^2_{ m tot}/ m d.o.f.$	527/392	456/386	306/253	332/251

- The uncertainties are about 5% for almost all $T_{e^{+.}}$
- The relative uncertainty increases above 20% when approaching the maximum energy, that has a negligible impact on the final uncertainty.
- The results of this Section already hint at the final result. The by far dominant contribution of e^+ production in p + p collisions comes from π^+ .

