Opportunities for cross sections measurements at GSI/FAIR

Laurent Audouin

IJC Lab, Université Paris-Saclay

Food for thought: the nuclear energy approach

- No code can produce nuclear quantities at 3% out of the box
- Few percent precision is requested also in energy, therapy, nucleosynthesis...
 - Therapy uses a very narrow energy range : can afford code tuning
- Measurement compilation and reviewing (EXFOR database)
- Semi-empirical data modelling
- Production of evaluated libraries (JEFF, ENDF, JENDL...)
- Software to produce reduced, usable data

Inverse kinematics

Possibility to use radioactive beams

 Not the first priority for CR, but...?

Forward-focused reaction

 Reduced solid angles

Nuclei can be identified before decay
Fixed energy (no excitation function)

Recoil spectrometer : high resolution in A and Z

- Charge-states become an issue in the 10-100s MeV/u energy range
- Light fragments might be measured as well

🗙 Relativistic heavy ions beams world-wide: RHIC, GSI, CERN

Historical tool for spallation at GSI: the FRS

β from ToF measurements

H. Geissel et al., NIMB 70, 286 (1992)

 $u \gamma \beta c$

Spallation of Uranium @ FRS (H₂ target)

Aleksandra Kelić et al. AIP Conf. Proc. 912, 332–341 (2007)

Spallation of Lead @ FRS (H₂ target)

Spallation of Xenon @ FRS (H₂ target)

55Cs

10

- More than 1000 cross sections
- Accuracy 3%

10²

10

70

80

Cross section (mb)

Evolution of isotopic cross sections with the energy

Improvement of empiral models SPACS, EPAX, ...

³⁶Xe(200A MeV)+p

³⁶Xe(500A MeV)+p

¹³⁶Xe(1000A MeV)+p

а --

Mass number

110

90

10²

P. Napolitani et al., PRC 76, 064609 (2007) C. Paradela et al., PRC 95, 044606 (2017)

Spallation of Iron @ FRS (H₂ target)

C. Villagrasa et al., PRC 75, 044603 (2007)

Spectrometer acceptance: a bottleneck?

- Limited acceptance of FRS : 2% in transverse impulsion
 - Horizontal component: different magnetic settings
 - Vertical component: has to be simulated/measured... precision??
- Dispersion increases with « distance » from projectile

$$\sigma_{p_{\perp}}^{2} = \sigma_{o}^{2} \frac{F(A-F)}{A-1} + \sigma_{1}^{2} \frac{F(F-1)}{A(A-1)}$$

K. Van Bibber et al., Phys. Rev. Lett., 43:840–844 (1979)

- Significant impact on Xe+p
- ... even stronger in Fe+p

Large-acceptance measurement: SPALADIN

- Exclusive experiment
- Large dipole magnet, neutron wall, LCP wall
- Mass not measured, huge parasitic reactions

Large-acceptance measurement: SOFIA

- Fission yields experiments
- Identification of both fragments in A and Z
- Radioactive beams from FRS (100 systems in a few days) $\frac{3}{2}$
- Very large acceptance spectrometer (fission recoil)

E. Pellereau et al., Phys Rev C 95 (2017) 054603

The FAIR facility

The FAIR facility as of June 2024

Could we measure Cosmic Rays XS at FAIR?

• SFRS measurement

- Soon-to-be existing system
- Can measure sub-mb cross-sections (10⁷ Hz beam)
- Precision on cross-section depends on the knowledge of the transmission
- CH₂ target
- Energy up to 2 GeV/u
- Large acceptance set-up
 - To be designed and built.
 - Not for very small cross sections (10⁵ Hz beam)
 - H₂ target, He possible
 - Energy up to 2 GeV/u
- CBM cave : up to 10 GeV/u... but can CBM identify heavy residues? Be modified?