

17.10.2024

Coalescence studies for light nuclei

Maximilian Mahlein, Laura Fabbietti, Bhawani Singh, Chiara Pinto, Michele Viviani

Based on:arXiv:2404.03352 (accepted by EPJC) *Technical University Munich*

XSCRC '24

Cosmic Rays

Antinuclei in Cosmic Rays

• Antinuclei could be a probe for indirect Dark Matter searches

XSCRC '24

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

2

17.10.2024

Cosmic Rays

Antinuclei in Cosmic Rays

ALICE Collaboration, Nat. Phys. 19, 61–71 (2023)

• Antinuclei could be a probe for indirect Dark Matter searches

XSCRC '24

• However: Astrophysical background from cosmic rays expected

Cosmic Rays Antinuclei in Cosmic Rays

• Antinuclei could be a probe for indirect Dark Matter searches

XSCRC '24

- However: Astrophysical background from cosmic rays expected
- High Signal/Noise ratio (~10²-10⁴) at low E_{kin} expected by many models!

• Antinuclei could be a probe for indirect Dark Matter searches

XSCRC '24

- However: Astrophysical background from cosmic rays expected
- High Signal/Noise ratio (~10²-10⁴) at low E_{kin} expected by many models!

Modelling (Anti)nuclei Production The Coalescence Model

• Nucleons bind after freeze-out if they are close in phase-space

6

17.10.2024

Modelling (Anti)nuclei Production The Coalescence Model

- Nucleons bind after freeze-out if they are close in phase-space
- Wigner function formalism:

$$\frac{dN_{d}}{d^{3}P} = S_{d} \int d^{3}x_{1} \int d^{3}x_{2} \int d^{3}x_{1}' \int d^{3}x_{2}' \Psi_{d}^{*}(\vec{x_{1}}', \vec{x_{2}}') \\ \times \Psi_{d} (\vec{x_{1}}, \vec{x_{2}}) \langle \Psi_{2}^{\dagger}(\vec{x}_{2}') \Psi_{1}^{\dagger}(\vec{x}_{1}') \Psi_{1}(\vec{x}_{1}) \Psi_{2}(\vec{x}_{2}) \rangle$$

$$\mathcal{P}(q,\sigma) = \frac{S_2}{(2\pi)^3 \sigma^6} \int d^3 r_p d^3 r_n \mathcal{D}(q,r) e^{-\frac{r_p^2 + r_n^2}{2\sigma^2}}$$

$$\int d^3 \zeta \, \Psi(\vec{r} + \vec{\zeta}/2) \Psi^*(\vec{r} - \vec{\zeta}/2) \exp(i\vec{q} \cdot \vec{\zeta}))$$

$$= \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r}_n^2 + \vec{r}_p^2}{2\sigma^2}\right)$$

\$

17.10.2024

Relative momenta of nucleons Source size Kachelriess et al EPJA (2020)56: 4, MM et al .Eur.Phys.J.C 83 (2023) 9, 804

XSCRC '24

Nucleus wave function

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

XSCRC '24

Coalescence Results EPOS & Pythia

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

Coalescence Results EPOS & Pythia

Deuteron spectra

- Corrections to Protons, Source, Multiplicity
- Wavefunctions: Gaussian, Hulthén and Argonne v₁₈
- AV₁₈ reproduces data to ~10%

17.10.2024 **10**

Develop a purpose built Event Generator to apply this model

XSCRC '24

The ToMCCA Model A Toy Monte Carlo Coalescence Afterburner

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

<u>17.</u>10.2024 **11**

Main Inputs: Multiplicity, momentum distributions, source size

A Toy Monte Carlo Coalescence Afterburner

Main Inputs: Multiplicity, momentum distributions, source size

XSCRC '24

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

A Toy Monte Carlo Coalescence Afterburner

Main Inputs: Multiplicity, momentum distributions, source size

XSCRC '24

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

A Toy Monte Carlo Coalescence Afterburner

Main Inputs: Multiplicity, momentum distributions, source size

XSCRC '24

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

A Toy Monte Carlo Coalescence Afterburner

Main Inputs: Multiplicity, momentum distributions, source size

XSCRC '24

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

Deuteron Spectra ToMCCA Model in HM pp Collisions

- Using ToMCCA for 13 TeV HM collisions ((dN_{ch}/dη)_{|η|<0.8}~31) we can reproduce measured spectra
- No free parameters!

Deuteron Spectra ToMCCA Model in HM pp Collisions

- Using ToMCCA for 13 TeV HM collisions ((dN_{ch}/dη)_{|η|<0.8}~31) we can reproduce measured spectra
- No free parameters!

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

Cosmic Rays Production energy of antinuclei

17.10.2024 **18**

 Antideuteron production predominantly for protons of E_{kin}~200-500 GeV (√s ~ **19-30 GeV** for p-H)

• Extrapolation to lower energies via event multiplicity

Serkšnytė, et al. PRD 105, 083021 (2022)

Cosmic Rays Production energy of antinuclei

17.10.2024 **19**

• Antideuteron production predominantly for protons of $E_{kin} \sim 200-500 \text{ GeV}$ ($\sqrt{s} \sim 19-30 \text{ GeV}$ for p-H)

• Extrapolation to lower energies via event multiplicity

Cosmic Rays Production energy of antinuclei

17.10.2024 **20**

• Antideuteron production predominantly for protons of $E_{kin} \sim 200-500 \text{ GeV}$ ($\sqrt{s} \sim 19-30 \text{ GeV}$ for p-H)

 Extrapolation to lower energies via event multiplicity

high-multiplicity collisions

Extrapolating the Source Using ToMCCA as a fitting tool

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with $m_{\rm T}$ to measured data
- Cross check at different energies

17.10.2024 **21**

Extrapolating the Source Using ToMCCA as a fitting tool

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with m_T to measured data
- Cross check at different energies

17.10.2024 **22**

Extrapolating the Source Using ToMCCA as a fitting tool

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with $\ensuremath{\mathsf{m_T}}$ to measured data
- Cross check at different energies

17.10.2024 **23**

Extrapolating the Source Using ToMCCA as a fitting tool

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with $\ensuremath{\mathsf{m_T}}$ to measured data
- Cross check at different energies

XSCRC '24

Extrapolating the Source Using ToMCCA as a fitting tool

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with $m_{\rm T}$ to measured data
- Cross check at different energies

XSCRC '24

<u>XS</u>CRC '24

Deuteron results Minimum bias 7 TeV

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with m_T to measured data
- Cross check at different energies
- Minimum Bias works well

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

Deuteron results d/p ratio

17.10.2024 **27**

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with m_T to measured data
- Cross check at different energies
- Minimum Bias works well
- d/p ratio reproduces data well, tension to previous predictions at high multiplicity

Deuteron results B₂ parameter

- Deuterons were also measured by ALICE Collab. for different multiplicities
- Fit source size and scaling with m_T to measured data
- Cross check at different energies
- Minimum Bias works well
- d/p ratio reproduces data well, tension to previous predictions at high multiplicity
- B₂ also reproduced well

$$B_A(p_{\mathrm{T}}^p) = E_A \frac{d^3 N_{\mathrm{A}}}{dp_{\mathrm{A}}^3} \Big/ \left(E_{\mathrm{p}} \frac{d^3 N_{\mathrm{p}}}{dp_{\mathrm{p}}^3} \right)^{\mathrm{A}}$$

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

Extension to A=3

Add 3rd particle to basic formalism

XSCRC '24

$$\frac{\mathrm{d}N_{\mathrm{He}}}{\mathrm{d}^{3}P} = S_{\mathrm{He}} \int \mathrm{d}^{3}x_{1} \int \mathrm{d}^{3}x_{2} \int \mathrm{d}^{3}x_{3} \int \mathrm{d}^{3}x_{1}' \int \mathrm{d}^{3}x_{2}' \int \mathrm{d}^{3}x_{3}' \\ \times \Psi_{\mathrm{He}}^{*} \left(\vec{x_{1}}', \vec{x_{2}}', \vec{x_{3}}\right) \Psi_{\mathrm{He}} \left(\vec{x_{1}}, \vec{x_{2}}, \vec{x_{3}}\right) \langle \Psi_{3}^{\dagger}(\vec{x}_{3}')\Psi_{2}^{\dagger}(\vec{x}_{2}')\Psi_{1}^{\dagger}(\vec{x}_{1}')\Psi_{1}(\vec{x}_{1})\Psi_{2}(\vec{x}_{2})\Psi_{3}' \rangle$$

Similarly the probability can be expressed as

$$\mathcal{P}(q_1, q_2, \sigma) = \frac{S_d}{(2\pi)^3 2^3 \sigma^6} \int d^3 r_1 d^3 r_2 \mathcal{D}(q_1, q_2, r_1, r_2) e^{-\frac{r_1^2 + r_2^2}{4\sigma^2}}$$

17.10.2024 **29**

Extension to A=3 Helium-3

Extension to A=3 coalescence

- Use 2-body source size
 - Assign every pair a distance
 - Geometric mean of distance for coalescence probability
- 3-body angular correlations built from 2-body
- Wavefunction based on Argonne v₁₈ (2-body) + Urbana IX (3-body)¹
- Fully numeric calculation of Probability

📚¹ Provided by Michele Viviani, INFN Pisa

Extension to A=3 Helium-3

Extension to A=3 coalescence

- Use 2-body source size
 - Assign every pair a distance
 - Geometric mean of distance for coalescence probability
- 3-body angular correlations built from 2-body
- Wavefunction based on Argonne v₁₈ (2-body) + Urbana IX (3-body)¹
- Fully numeric calculation of Probability

📚¹ Provided by Michele Viviani, INFN Pisa

Extension to A=3 Hypertriton

• Congleton¹ wavefunction

$$\Psi_{\Lambda}(q) = N \frac{exp[-(q/\Lambda)^2]}{q^2 + \alpha^2}$$

- Assumes factorization of Hypertriton wavefunction into deuteron+Λ
- Scattering parameters retuned to latest Hypertriton formfactor calculations² by Hildenbrand & Hammer³

 ¹ J G Congleton 1992 J. Phys. G: Nucl. Part. Phys. 18 339
 ² F. Bellini et al.: Phys.Rev.C 103, 1 (2021)
 ³ F. Hildenbrand and H.-W. Hammer: Phys. Rev. C 100, 034002

17.10.2024 **32**

Extension to A=3 Hypertriton

17.10.2024 33

 Latest ALICE measurements of ³/_AH in 13 TeV MB

Extension to A=3

17.10.2024 **34**

- Latest ALICE measurements of ³/_AH in 13 TeV MB
- ${}^{3}_{\Lambda}H/{}^{3}He$ Ratio falling off for large p_T

 $_{\Lambda}^{3}H/^{3}He$

XSCRC '24

Extension to A=3

^{📚&}lt;sup>1</sup>K.-J. Sun et.al. arXiv:2404.02701

Extension to A=3

- $^{3}_{\Lambda}$ H/ 3 He Ratio falling off for large p_T
- ³H/Λ Ratio as a function of Multiplicity

17.10.2024 **36**

Conclusion

цар. 1.0 <u>le-3</u> _dp/hp/N₂р **Deuteron spectra** ToMCCA ALICE EPJC 80, 889 (2020) 0.8 pp $\sqrt{s} = 13TeV$ $dN_{ch} = 26.0$ 0.6 Helium-3 ALICE [HEP 01, 106 (2022) + High Mult. + Min. Bias ×5 ToMCCA AV₁₈ + UIX Hiah Mult. Min. Bias ×5 2.0 2.5 3.0 p_⊤ [GeV/c]

 $p_T[GeV/c^2]$

Deuterons:

- Coalescence model reproduces data with no free parameters
- Realistic wavefunction required
- ToMCCA allows for an extension to arbitrary multiplicities
- A=3 Coalescence
- L **1.2** L **1.2** L **d**p Mp/N **1**.' Successful extension of the model to A=3
 - Nuclei and *Hyper*nuclei
 - Realistic wavefunctions required

ToMCCA is available under: https://github.com/horstma/tomcca-public

XSCRC '24

Maximilian Mahlein (TUM), maximilian.mahlein @tum.de

0.8

0.6

0.4

0.2

2

Conclusion

Maximilian Mahlein (TUM), maximilian um.de

BACKUP

XSCRC '24

Comment on Event Generators

17.10.2024 **40**

Advantages:

- Model extremely complex phenomena and particle correlations
- Easy to use ('Plug and play')

XSCRC '24

 Trivial extrapolation to different energies, multiplicities (and Collision systems)

Disadvantages:

- Convoluted Code, hard to adjust
- Hard to distill influence of single mechanism on the final result
- Long simulation times
- No nuclei production

Comment on Event Generators

Advantages:

- Model extremely complex phenomena and particle correlations
- Easy to use ('Plug and play')
- Trivial extrapolation to different energies, multiplicities (and Collision systems)

Disadvantages:

- Convoluted Code, hard to adjust
- Hard to distill influence of single mechanism on the final result
- Long simulation times
- No nuclei production

Build Toy Monte Carlo that uses only the necessary mechanisms for nuclei production <u>Requirements</u>: Fast simulation, easy to adjust to end-users needs

Toy Monte Carlo Coalescence Afterburner: ToMCCA

<u>17.10.20</u>24 **41**

XSCRC '24

ToMCCA Building principles

17.10.2024 **42**

Speed:

Slowest parts of Event generators: *Hadronization*, *Hadronic Cascade* ➡ Fully omit Hadronization, start from a statistical distribution of nucleons (no mesons)
 ➡ No Rescattering, Flow, Jets, ...

Correlations:

No ab-initio correlations, built in fully by hand can be easily deactivated or adjusted

User-Friendly: All of ToMCCA is ~800 lines of Code ➡Easy to find code responsible for specific effect Run-in-place configuration

Download (<u>https://github.com/HorstMa/ToMCCA-Public</u>) and run immediately

XSCRC '24

ToMCCA Building principles

17.10.2024 **43**

Speed:

Slowest parts of Event generators: *Hadronization*, *Hadronic Cascade* ➡ Fully omit Hadronization, start from a statistical distribution of nucleons (no mesons)
 ➡ No Rescattering, Flow, Jets, …

But a Toy Model needs measured inputs...

User-Friendly: All of ToMCCA is ~800 lines of Code ➡Easy to find code responsible for specific effect Run-in-place configuration

Download (<u>https://github.com/HorstMa/ToMCCA-Public</u>) and run immediately

XSCRC '24

Conclusion Deuteron production

17.10.2024 **44**

- Understanding nuclei formation on earth can open a window to **indirect dark matter** searches
- Wigner function formalism can predict nuclei yields with no free parameters
- ToMCCA allows us to extrapolate to arbitrary multiplicities

Coalescence Results EPOS

Angular correlations

• $\Delta \phi$ of pp (pn) pairs

XSCRC '24

- Not reproduced by EPOS or Pythia
- No real control over these behaviours in general purpose event generators

SMM et al .Eur.Phys.J.C 83 (2023) 9, 804

Comparison to previous predictions

Important observable in accelerator measurements: B_A

$$B_A(p_{\rm T}^p) = E_A \frac{d^3 N_{\rm A}}{dp_{\rm A}^3} \bigg/ \left(E_{\rm p} \frac{d^3 N_{\rm p}}{dp_{\rm p}^3} \right)^A$$

• Theoretical prediction [1]

$$B_2(\vec{p}) \approx \frac{3}{2m} \int d^3q D(\vec{q}) e^{-R^2(p_{\rm T}) q^2}$$
$$D(\vec{q}) = \int d^3r |\phi_d(\vec{r})|^2 e^{-i\vec{q}\cdot\vec{r}}$$

- This neglects momentum difference between
 Nucleons
- approximate to 10% in Pb–Pb, factor 2 in pp

[1] Blum, Takimoto, PRC 99 (2019) 044913

17.10.2024 **46**

Comparison to previous predictions

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

XSCRC '24

Cosmic Rays Antinuclei in Cosmic Rays?

17.10.2024 **48**

- AMS-02 @ ISS has measured 9 antihelium candidates
- Not yet published
- What could be the origin of these **antinuclei**?

Pauolo Zuccon for AMS-02 Collaboration at MIAPP workshop 2022

XSCRC '24

Next generation coalescence Model

Fitting the Source

Fitting Procedure:

- Run ToMCCA with a fixed source size (e.g. 1.8 fm, flat in m_{T})
- For the resulting deuteron spectra calculate the χ^2 for each bin and save it
- Reduce source size
- Repeat until source size is 0

17.10.2024 **50**

XSCRC '24

Extension to A=3

- $^{3}_{\Lambda}$ H/ 3 He Ratio falling off for large p_T
- H/Λ Ratio as a function of Multiplicity
- Important Note: Minimum Bias Data is not comparable this way! 3x enhancement from wide multiplicity distribution

17.10.2024 **51**

¹K.-J. Sun et.al. arXiv:2404.02701

XSCRC '24

Recap: ToMCCA Inputs

17.10.<u>20</u>24 **52**

- ToMCCA is a Toy Monte Carlo →it requires everything as an *input*:
 - Momentum distribution → Fully parameterized
 - *Multiplicity* → Poissonian/Event Generator
 - Angular distribution → From Measurement
 - Source Size → ALICE Measurement

 $\frac{d^{2}N}{dydp_{T}} = \frac{dN}{dy} \frac{p_{T}(n-1)(n-2)}{nC[nC+m_{n}(n-2)]} \left(1 + \frac{m_{T}-m_{p}}{nC}\right)^{-1}$

XSCRC '24

New Wiger functions/Probabilities

XSCRC '24

Maximilian Mahlein (TUM), maximilian.mahlein@tum.de

Argonne D-State probability

17.10.2024 **54**

D-State probability is $6\% \rightarrow Maximum \sim 11\%$ effect

XSCRC '24