

1

Status of the LHCf Experiment

Eugenio Berti, on behalf of the LHCf collaboration Cross Section for Cosmic Rays @ CERN 16-18 October 2024, CERN

Introduction

Ultra High Energy Cosmic Rays

Hadronic interaction models

The LHCf Experiment

The LHCf detectors

Arm1

Position resolution:

< 200 µm (photons) < 1 mm (hadrons) Energy resolution: < 2% (photons) ~ 40% (hadrons) Imaging layers: x-y 160μm Si microstrip Position resolution: < 40 μm (photons) < 800 μm (hadrons)

The LHCf acceptance

Results from Run II

Neutron Production Cross Section $p-p \sqrt{s} = 13$ TeV

In η > 10.75 *no model agrees with peak structure and production rate*, whereas in the other regions, **SIBYLL 2.3** and **EPOS-LHC** have better but not satisfactorily agreement with the experimental measurements

Neutron Energy Flow & Inelasticity p-p √s = 13 TeV

Test of Feynman scaling using forward photons

<u>First confirmation of **Feynman scaling** using zero-degree photons</u> but no sensitivity to small x_F dependency as in some models

η Production Rate

p-p √s = 13 TeV

Among the large model variations, only **QGSJETII-04** has good but not satisfactorily agreement with the experimental measurements

η/π^0 Production Rate p-p $\sqrt{s} = 13$ TeV

LHCf-ATLAS joint analysis

p-p √s = 13 TeV

Operations in Run III

$p-p \sqrt{s} = 13.6 \text{ TeV}$ Operations on September 24-26, 2022

Physics targets π⁰ and η measurements

Large *increase in* π^{0} *and* η *statistics* with respect to Run II data sample by roughly a **factor 10**!

Physics targets K⁰s measurement

19

Physics targets LHCf+ATLAS

One pion exchange measurement

Improvement of hadronic energy resolution thanks to LHCf+ZDC system

Physics targets LHCf+ATLAS

Diffraction process measurement

Improvement of information thanks to LHCf+ARP(ALFA+AFP) system

LHCf in Run III: p-O Foreseen in July 2025

Main Motivation

Both p-p and p-Pb collisions are not representative of the first interaction of a UHECR (which is a light nucleus) with an atmospheric nucleus (mainly N or O), hence the importance of *p-O* (and O-O) operations to avoid large interpolation

One week of oxygen run (p-O and O-O) in 2025: • 1-2 days of data taking • L_{int} = 1.4 nb⁻¹ for p-O [unlikely O-O with LHCf]

Additional motivations wrt p-Pb collisions:

- Ultra Peripheral background negligible
- LHCf-ATLAS analysis possible (no UPC)

*) This schedule might be changed

Summary

The LHCf experiment highlighted *significant deviations* in forward production with respect to the current model expectations.

The data acquired in $p-p \sqrt{s} = 13.6$ TeV will improve our knowledge:

- High precision measurement on *forward* π^{0} and η production
- First ever measurement of K_{s}^{0} production in the forward region
 - Insight into different production mechanisms (LHCf-ATLAS)

Of fundamental importance for CR are **p-O runs** in 2025: Run III is the <u>last chance</u> for LHCf experiment to take this data!

Thank you for the attention!

Photons dσ/dE p-p √s = 13 TeV

QGSJET II-04 is in good agreement for $\eta > 10.94$, otherwise softer **EPOS-LHC** is in good agreement below 3-5 TeV, otherwise harder

Test of Feynman scaling using π^0

Diffractive and non-diffractive production

LHCf-ATLAS joint analysis Preliminary result for photons in p-p $\sqrt{s} = 13$ TeV

π^{0} Production Rate p-p $\sqrt{s} = 13$ TeV

$p-p \sqrt{s} = 13.6 \text{ TeV}$: Hadron-like candidate in Small Tower

p-p √s = 13.6 TeV: Type-I candidate

$p-p \sqrt{s} = 13.6 \text{ TeV}$: Type-II candidate in Small Tower

Physics targets

LHCf-ATLAS joint analysis On-going analysis

Study of **mechanism of multiparton interaction** using neutron events in LHCf as proposed by S. Ostapchenko et al., Phys. Rev. D 94, 114026

p-O and O-O operations: Ultra Peripheral Collisions

p-remnant side

LHCf-ATLAS Joint Analysis

Neutron energy [GeV]

p-O and O-O operations:

Main experimental challenge

p-O and O-O operations: Collision conditions

