Measurements of Cosmic-Ray Cross Sections with NA61/SHINE

Michael Unger (KIT) for the NA61/SHINE Collaboration

NA61/SHINE

\approx 140 physicists from 14 countries and 28 institutions

Strong interactions physics

- search for the critical point of strongly interacting matter
- study of the properties of the onset of deconfinement
- heavy guarks: direct measurement of open charm at SPS energies

Neutrino and cosmic ray physics

- hadron measurements for the I-PARC neutrino program
- hadron measurements for the Fermilab neutrino program
- measurements for cosmic ray physics (Pierre-Auger and KASCADE experiments) for improving air shower simulations
- · measurements of nuclear fragmentation cross sections of intermediate mass nuclei needed to understand the propagation of cosmic rays in our Galaxy

cosmic ray groups: KIT (Germany), Uni. Hawaii (USA), Uni. Silesia (Poland)

associate member: Goddard Space Flight Center (USA)

NA61/SHINE at the SPS H2 Beam Line

NA61/SHINE at the SPS H2 Beam Line

A precise (2% dp/p acceptance), robust, flexible magnetic spectrometer

EHN1 Building NA61 Trzo SPS L Efformispecies - CEN - EDMS No: 115532

NA61/SHINE at the SPS H2 Beam Line

NA61/SHINE

NA61/SHINE Detector

- large acceptance $\approx 50\%$ at $p_T \leq 2.5 \, {\rm GeV/c}$
- momentum resolution: $\sigma(p)/p^2 \approx 10^{-4} ({\rm GeV/c})^{-1}$
- tracking efficiency: > 95%, pid with dE/dx and ToF

Particle Production Measurement with NA61/SHINE

Particle Production Measurement with NA61/SHINE

and a

Particle Production Measurements of Relevance for Cosmic-Ray Physics from NA61/SHINE (published)

reaction	energy	π^+	π^{-}	K^+	K^-	р	Þ	Λ	$\bar{\Lambda}$	K_S^0	$ ho^0$	ω	K^{*0}	Ξ^0	$\bar{\Xi^0}$	Ξ^+	Ξ^-	ϕ
p+C	31	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark								
p+C	120	\checkmark	\checkmark															
π^+ +C	60	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark								
π^-+C	158	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark												
π^-+C	350	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark												
p+p	20	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
p+p	31	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark								
p+p	40	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			\checkmark					\checkmark
p+p	80	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			\checkmark					\checkmark
p+p	158	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						

🛞 HEPData

The Cosmic-Ray Program of the NA61/SHINE Facility

• Particle Production in Air Showers

p+C Interactions
 (31, 60, 90, 120 GeV/c)

π+C Interactions (30, 60, 158, 350 GeV/c)

Galactic Cosmic Rays

• d, \bar{d} , \bar{p} Production

(p+p at 20, 31, 40, 80, 158, 400 GeV/c)

• e^{\pm} and ν from pion and kaon decays (p+p at 20, 31, 40, 80, 158, 400 GeV/c)

• Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c)

The Cosmic-Ray Program of the NA61/SHINE Facility

• Particle Production in Air Showers

p+C Interactions
 (31, 60, 90, 120 GeV/c)

π+C Interactions (30, 60, 158, 350 GeV/c)

Galactic Cosmic Rays

• d, \bar{d} , \bar{p} Production

(p+p at 20, 31, 40, 80, 158, 400 GeV/c)

• e^{\pm} and ν from pion and kaon decays (p+p at 20, 31, 40, 80, 158, 400 GeV/c)

• Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c)

 \leftarrow this talk

Nuclear Fragmentation at SPS energies

- $E/n \gtrsim 10 \text{ GeV} \rightarrow$ "asymptotic" XS-values for AMS/DAMPE/CALET energies
- scan of projectiles: Li...Si (XS ranking from Genolini+2023)

 \rightarrow see talks by Carmelo and David!

NA61/SHINE Pilot Run on Fragmentation in 2018

- fragmented Pb beam from SPS, $p = 13.5 \, A {\rm GeV}/c$
- isotope identification with NA61/SHINE

NA61/SHINE Pilot Run on Fragmentation in 2018

raw composition of projectiles from SPS during setup:

- 2.5 days data taking at 13.5 AGeV/c
- events after upstream ¹²C selection:
 - 1.7×10^5 CH₂-target
 - 1.5×10^5 C-target
 - 0.4×10^5 empty-target

Particle Identification

projectiles upstream of target

- 12C+p at 13.5A GeV/c 0.4 13C fragments Litme of flight difference [ns] ⁰B fragments PF 10 ili A X/Cm 10 ili Be fragments 12C 14N ¹B fragments 11C Targets used: Polyethylene (PE) ٠ -10 -0.4 Graphite (C) 30 50 45 Triggered beam particles.
- (A/Z) from *t.o.f.* difference = t_{S1} t_A

fragments downstream of target

• (A/Z) from $\Delta x \propto R(A,Z)$

Fragments as measured in the MTPC.

Carbon Isotopes in TPC

Boron Isotopes in TPC

Results: Mass-Changing Cross Section

Results: Mass- and Charge-Changing Cross Section

Results: Derived C+p Mass-Changing Cross Section

Results: Boron Production in C+p

- pilot run succesful
- precision of pilot result limited by statistical uncertainty

 $\sigma_{C+p \rightarrow B} = 77 \pm 5 \text{ mb}$

need high-statistics physics run!

Neeraj Amin *Measurement of the Production of Boron from the Fragmentation of Cosmic Ray Carbon with NA61/SHINE* PhD Thesis, KIT, 2024

Planned Fragmentation Measurements in 2024

- one week fragmented Pb beam scheduled end November
- NA61 upgrade: 10-fold increase of readout-rate wrt. pilot run

Run A: L	i-F	Run B: F-Si						
reaction	$N_{\rm int}$	reaction	Nint					
¹⁶ O+p	60k	²⁸ Si+p	50k					
${}^{12}C+p$	50k	$^{24}Mg+p$	50k					
${}^{11}B+p$	10k	²⁰ Ne+p	50k					
$^{15}N+p$	10k	²² Ne+p	20k					
${}^{14}N+p$	10k	$^{27}\text{Al}+p$	10k					
${}^{10}B+p$	5k	$^{26}Mg+p$	10k					
¹³ C+p	5k	²³ Na+p	10k					
7 Li+p	5k	²⁵ Mg+p	10k					
		²¹ Ne+ <i>p</i>	10k					
		³² S+p	5k					
		²⁹ Si+p	5k					
$\Sigma N_{\rm c} = 3.8 \times 10^5$								

reactions to be measured:

based on Genolini+23

expected improvement of CR prop params.:

Summary

CR studies at SPS with NA61/SHINE:

- π^- +C & p+C interactions
- \rightarrow particle production in air showers
- p+p interactions
- ightarrow nucleon coalescence
- ightarrow tuning of air shower models
- nuclear fragmentation
- \rightarrow particle production in Galaxy
- \rightarrow air shower fluctuations

Outlook

Upcoming Cosmic-Ray Measurements:

- 2024 fragmented Pb beam production of GCR secondaries Li, Be, B
- **2024** π^{\pm} +C at 158 GeV/c π^{0} and η production in EAS
- 2025 primary oxygen? O+O interactions, CR fragmentation

• 2025 high statistics p+p

nucleon coalescence, anti-deuterons

inside NA61 (Julien Ordan/CERN)